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The Pontrjagyn duality associates to an abelian locally compact group a dual group 
and studies the properties of this correspondence. A natural idea is to try and 
generalize this duality to nonabelian groups, in particular to define an object dual 
to a group. Such dual objects were defined, first for compact groups [45, 19] then 
for locally compact groups ([38], [46]). Up to a large extent, it was the search of 
such a dual object for general locally compact groups that led to the theory of 
C*-algebras. Then appeared the need of objects generalizing groups as well as their 
dual objects. These general objects can be called in a modern language "quantum 
groups". These "groups" can be studied as abstract groups, Lie groups, deforma-
tions of true groups . . . . It is certainly beyond our goals to review all aspects of the 
theory of "quantum groups" (see [3] and references therein). We will in fact concen-
trate our attention to the operator algebra approach, in other words to the study 
of the "locally compact quantum groups". 

In terms of operator algebras Pontrjaygn duality takes the form of Takesaki-
Takai duality [43, 40] based on the construction of W*- and C*-crossed-products. 
Along the years, under conjugated efforts of many specialists a set of axioms was 
built [11, 12,42,47, 16, 5] and duality was obtained [43, 20,21, 30, 39,4, 10, 6] for 
von Neumann algebras obeying these axioms called Kac von Neumann algebras. 
In a recent fundamental work [51-54], Woronowicz defined some objects that 
he called "compact matrix pseudogroups". Although they aren't Kac algebras, 
Woronowicz' "pseudo-groups" enjoy duality properties. Further examples with the 
same properties were given by Majid [26] and Podles-Woronowicz [32]. One of 
the motivations of this report is to describe a setting including both the Kac von 
Neumann algebras and these new examples, in which the duality results still hold. 

Let H be a Hilbert space and V e L(H (g) H) a unitary operator. Let us say V is 
multiplicative if it satisfies the pentagon equation V12V13V23 = V23V12. This rela-
tion appears in the framework of categories with associative tensor product (cf. [24, 
25]); it is the one satisfied by the fusion operator (cf. [29]). It is also very similar to 
the Yang-Baxter equation and in some sense more primitive. In many papers 
concerned with operator algebras possessing duality properties, a multiplicative 
unitary plays a fundamental role (e.g. [12, 42, 16, 5, 18, 10]...); it is clear and more 
or less explicit in these papers that this unitary describes the whole situation. 
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It is therefore very natural to look for additional conditions that a mutliplicative 
unitary should satisfy in order to correspond to a "locally compact quantum group". 
Studying this problem, we were led to consider two conditions that we call regularity 
and irreducibility. We show how two pairwise dual Hopf C*-algebras can be 
associated to a regular multiplicative unitary. When moreover this unitary is 
irreducible, we establish Takesaki-Takai duality results generalizing the previous 
ones. 

An advantage of our approach is that a "quantum group" and its dual play 
completely symmetric roles. Also, it treats simultaneously the C*- and ^ -a lgebra 
point of view. In fact, in our approach it is clear that for "locally compact quantum 
groups" the measure theory determines the topology. In some sense this can be 
thought of as a generalization of the famous theorem of Weil ([50], see also [23]): 
a "measurable quantum group" with an invariant (class of) measure (s) carries a 
unique structure of "locally compact quantum group". 

Let us also mention that many algebraic constructions can be performed in our 
setting. In particular, we may associate a "quantum double" to any (irreducible) 
multiplicative unitary, and together with it, comes a solution of the quantum Yang 
Baxter equation (cf. [3]). 

The question of the minimality of our axioms remains still unanswered: is a 
multiplicative unitary automatically regular? irreducible? Does one of these prop-
erties imply the other? Partial solutions to these questions were obtained: when the 
Hilbert space H is finite dimensional and when the unitary V satisfies a commuta-
tivity condition, regularity and irreducibility are both automatic; if the unitary V is 
of compact or discrete type (in other words if the associated quantum group is 
compact or discrete) its regularity implies its irreducibility. 

In this report, we will first present some examples of occurrence of multiplicative 
unitaries, then explain the conditions of regularity and irreducibility and their 
consequences; we will finally construct the multiplicative unitaries associated with 
the examples of [26, 32] and discuss possible future developments. All the proofs, 
as well as more precise statements of the results given here can be found in [2]. 

1. Multiplicative Unitaries and Hopf Algebras 

Let H be a Hilbert space. We will say that a unitary operator V acting on the tensor 
square H ® H is multiplicative if it satisfies the pentagon equation: 

v23v12 = v12v13v23 

Here, by V12, V23 and V13 we denote the operators V®lH, 1H®V and 
(1H ®Z)(V® iH)(\H ® E) acting on H ® H ® H, where E is the "flip" operator 
defined by Z(Ç ® rj) = rj ® £ (£, rj e H). 

Note that the identity operator lH(g)H is a multiplicative unitary. The importance 
of multiplicative unitaries in connection with operator algebras possessing duality 
properties was shown by many authors [12,42,16,5,10]. The multiplicative unitary 
associated with a locally compact group is constructed as follows: 
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Let G be a locally compact group and let m denote its right Haar measure. Let 
H = L2(G\ m) be the Hilbert space of square integrable functions on G with respect 
with the measure m. Identify H ®H with the space L2(G x G; m x m). Let then V 
be the operator acting on H ® H by the formula V(f)(s, 1) = f(st, t) for every square 
integrable function / on G x G and s,t E G. This operator is clearly unitary and its 
"multiplicativity" follows from the associativity of the composition law of G. 

Operators satisfying this pentagon equation are naturally associated with Hopf 
algebras. Recall that a Hopf C*-Algebra is a C*-algebra A endowed with a co-
product which is a *-homomorphism ö : A -> A ® A{1) satisfying the associativity 
condition: (<5 ® id) o ö = (id ® ö) o ö. Let us describe three different ways for inter-
preting the pentagon relation: 

a) Haar States and GNS Representations 

A Haar state on a Hopf C*-algebra is a state (/> E A* such that for any form ij/ E >4* 
we have (<f>®\l/)oö = (\l/®</>)oö = \j/(ì)</>. Let then (H^, n^, Ç+) be the GNS con-
struction associated with cj). Then the operator V^ defined by V^(n^(x)^®r)) = 
(n+ ® n(ft)(ö(x))(^ ® rj) is an isometry of H^ ® H^ satisfying the pentagon equation. 
In particular, if V^ is surjective, it is a multiplicative unitary. 

b) Covariant Representations 

Let (A, ö) be a Hopf C*-algebra. A corepresentation of A in a Hilbert space H 
is a unitary u E L(H ® A) of the Hilbert >4-module H® A satisfying the relation: 
(id ®ò)(u) = u12u13. 

A coaction of A on some C*-algebra B is a *-homomorphism 6B : B -> B ® A 
satisfying the associativity condition: (öB ® id) o SB = (id ® ö) o öB. A covariant 
representation of A, B on a Hilbert space H is a pair (n, u) where n: B-+ L(H) is a 
^representation and u E L(H ® A) is a corepresentation of A such that Vfc G B, 
(TE ® id) o öB(b) = u(n(b) ® l)u*. 

The coproduct ö is a coaction of A on itself. Let (n, u) be a covariant representa-
tion on the Hilbert space H. Then V = (id ® n)(u) is a multiplicative unitary. 

c) The Canonical Element 

Let A be a finite dimensional Hopf algebra. Let E be the algebra of endomorphisms 
of the vector space A. Let us denote by v the canonical element of A* ® A: through 
the identification of A* ® A with E, v is the identity of A. Denote by L the action 
of A on A by left multiplication. If x E A* and a E A, set g(x)a = (id ® x)ö(a). 
Consider L and Q as homomorphisms from A and A* into the algebra E. Simple 
computations then show: 

1 This is the C*-algebraic "min" tensor product. If A has no unit, Ò takes its values in the 
multiplier algebra M(A (g) A) of A ® A. 
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- For a e A we have in E ® A, (Q ® id)(u)(L(a) ® 1) = (L ® id)(ö(a))(g ® id)(u). 
- We have the equality (id ® ö)(v) = v12vl3. 

Therefore, the operator V = (Q ® L)(v) satisfies the pentagon equation. 

2. Algebras Associated with Multiplicative Unitaries 

Let V E L(H ® H) be a multiplicative unitary. If co is a continuous linear form 
on L(H), we may form the operators L(co) = (co® id)(V) EL(H) and Q(CO) = 
(id® co)(V) EL(H). Let L(H)H! denote the predual of L(H) i.e. the set of linear 
mappings of the form x -> Tr(xT) where T spans the space of trace class operators. 

2.1. Proposition. The sets A(V) = {L(m)/co E L(H)*} and A(V) = {Q(CO)/CO E L(H)^} 
are subalgebras of L(H). 

Indeed, L(co)L(co/) = (co ® co' ® id)(F13 V23) = L(\j/) where \l/(x) = (co® co') x 
(V*(l®x)V) 

since V12V13 = V23 V12V23*; in the same way, ^(co)^(co7) = (id® co® Cü')(K12 V13) = 
Q(ì//') where \j/'(x) = (co® co')(V(x® 1)V*). In fact, all properties which may be 
proved for A(V) are automatically proved for A(V) since ZV*Z is a multiplicative 
unitary. 

There is a natural duality between A(V) and A(V) expressed by the equalities 
(L(co), Q(co')y = CO(Q(CO')) = co'(L(co)) = (co® co')(V). 

It is also natural to consider the norm closures of the algebras A(V) and Â(V) 
that we denote by Sv and Sv. It is not clear whether these are always C*-algebras 
ie. if they are closed under the involution x -> x* of L(H). For this reason, we are 
led to make, in the next sections, some extra assumptions. 

In the case of the multiplicative unitary associated with a group, the algebras 
A(V) and A(V) are respectively the Fourier algebra A(G) acting by multiplication 
on L2(G) and LX(G) acting by (right) convolution on L2(G). Also Sv is the abelian 
C*-algebra C0(G) of continuous functions vanishing at infinity and Sv the reduced 
C*-algebra of the group G. In particular the Gelfand spectrum of Sv is G: we already 
have recovered G out of the associated multiplicative unitary. In fact, we get a 
converse to this statement: 

2.2 Theorem. / / the associated algebra A(V) is commutative, the multiplicative uni-
tary V is (up to multiplicity) the multiplicative unitary associated with a locally 
compact group. 

This theorem is a generalization theorem of [50, 23, 12, 41, 42, 47, 5, 52]. Of 
course, this theorem also classifies the multiplicative unitaries for which A(V) is 
commutative, since this is equivalent to saying that A(EV*Z) is commutative. 

Let us mention another case where no extra assumptions are needed: 



Operator Algebras and Duality 1001 

2.3 Theorem. A multiplicative unitary acting on a finite dimensional Hilbert space 
is (up to multiplicity) the multiplicative unitary associated with a finite dimensional 
Kac von Neumann algebra. 

3. Regularity; the "Compact" Case 

Let us begin with a rather easy fact: 

3.1 Proposition. Theset^(V) = {(id ® CO)(ECû)ICû E L(H)*} is a subalgebra of L(H), 

Studying this algebra in the case of locally compact groups and more generally 
in the examples to be discussed below, we find that this algebra is formed of compact 
operators and is norm dense in the algebra of compact operators. This leads to the 
following definition: 

3.2 Definition. We will say that the multiplicative unitary V is regular if the norm 
closure of ^(V) coincides with the algebra K(H) of compact operators of. H. 

Regularity turns out to be extremely efficient in proving nice properties of the 
associated algebras: 

3.3 Theorem. Let V be a regular multiplicative unitary. Then the algebras S and S 
are Hopf C*-algebras with coproducts given by ö(x) = V(x® 1)7* and o(y) = 
V* (1 ® y) V (x E S, y E §). The operator V is a multiplier of the (spatial) tensor product 
S®S. 

This last property means that the closed subalgebra of L(H ® H) generated by 
y ® x, x E S, y E S is closed under left and right multiplication by V. It is quite natural 
and helpful. In particular, it allows us to consider S and S as abstract C*-algebras 
and still make sense of V in every representation. 

We are also in position to form crossed products for algebras with coactions of 
the Hopf algebra S: if a C*-algebra A is endowed with a coaction ôA : A -> A ® S 
of S, the (reduced) crossed product A x Sis the C*-algebra of operators acting on 
the Hilbert A -module A® H generated by the products of the form öA(a)(l ® y), 
a E A, y E S. For a E A, y E S, öA(a) and (1 ® y) are multipliers of A x S. We thus 
get homomorphisms n and Ò from A and S respectively into the multiplier algebra 
of A x S. Still our set of axioms is not complete in order to allow us to prove the suit-
able duality. On the other hand, this duality may now be proved in the "compact" 
case. 

3.4 Definition. A multiplicative unitary is said to be of compact type if the unit 
operator belongs to the algebra A(V). 

If V is a multiplicative unitary associated with a compact group or with a Haar 
state of a unital Hopf algebra, it is of compact type. In a recent fundamental work 
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[51-54], S.L. Woronowicz introduced a set of axioms for "quantum groups" 
generated by a finite dimensional unitary representation. Woronowicz initially 
called his objects "compact matrix pseudogroups" but they are referred to as 
"compact quantum Lie groups". Nice and tractable examples were produced [51, 
53]. It is natural to define "compact quantum groups" as projective limits (this 
corresponds to inductive limits for the Hopf algebra of functions) of "compact 
quantum Lie groups". It was shown in [52] that "compact quantum groups" 
possess a Haar state. It is quite clear that the corresponding operator is unitary. Its 
regularity is also easy. The converse to these facts is true, namely: 

3.5 Theorem. A regular multiplicative unitary of compact type is (up to multiplicity) 
the multiplicative unitary associated with a "compact quantum group" of Woronowicz. 

4. Irreducibility and Takesaki-Takai Duality 

In order to introduce the last condition needed for the duality, let us examine again 
the case of locally compact groups: we have been able to produce out of the 
multiplicative unitary associated with a locally compact group, the multiplication 
operators and the right regular representation. On L2(G) acts moreover the left 
regular representation; moreover, left and right regular representations are equiva-
lent and intertwined by a unitary operator U given by (U£)(g) = A(g)i/2^(g~i), 
where A is the module of the group. 

This leads us to assume the existence of an operator U satisfying some equations: 

4.1 Definition, a) A multiplicative unitary V E L(H ® H) is said to be irreducible if 
there exists a unitary U E L(H) such that U2 = 1H, (V(U ® 1)E)3 = 1H®H

 and suc^ 
that the unitary V = E(U ® l)V(U ® 1)27 is multiplicative. 

b) A Kac system is a triple (H, V, U) where H is a Hilbert space, V E L(H ® H) 
is a multiplicative unitary and U E L(H) satisfies the requirements of a); moreover, we 
require that V and V be regular. 

If (H, V, U) is a Kac system, (H, V, U) is also a Kac system and V = 
(U®U)V(U®U). Taking the dual again, we find V= 27(1 ® U)V(l ® U)Z; 
a fourth time will give us back V. This is the well noticed but still somewhat 
mysterious period 4 periodicity. (Note that as V = (U ® U)V(U ® U) and V = 
(U ® U)V(U ® U) they are regular multiplicative unitaries). 

We now have two representations of S and S in H: we will denote by L : S -> L(H) 
and Q:S^>L(H) the inclusions considered up to now as identity representations; 
we will then set R(x\ = UL(x)U and X(y) = Ug(y)U (xES,yE §). 

Replacing V by V we may now form crossed products for algebras with coactions 
of the Hopf algebra S: if a C*-algebra A is endowed with a coaction òA : A -» A ® S 
of S, the (reduced) crossed product A x S is the C*-algebra of operators acting on 
the Hilbert ^-module A® H generated by the products of the form 

(id®l)öA(a)(l®L(x)), a E A, x E S. 
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We still have homomorphisms n and 6 from A and S respectively into the multiplier 
algebra of A x S, and A x Sis spanned by products n(a)6(x) a E A, XE S. 

Let the C*-algebra A be endowed with a coaction öA of S (resp. S), then the 
crossed product A x S (resp. A x S) is endowed with a coaction oA of S (resp. S) 
given by ôA(n(a)Ô(y)) = (71(0) ® l)(d ® \6)&{y\ a E A, y E S (resp. <^(H(<ï)0(X)) -
(n(a) ®l)(6® id)<5(x), a G A, x E S). 

4.2 Theorem (Takesaki-Takai Duality Theorem). Let (H, V, U) be a Kac system. 
Then for any algebra A endowed with a coaction2 öA of S the double crossed product 
A x S x S is naturally isomorphic with A ® K(H). 

Remark. Replacing (H, V, U) by (H, V, U) we may exchange the roles of S and S. 
It is transparent in many papers (cf. eg. [21], [22], [39], [4], [10]) that Takesaki 

duality only relies on the "fundamental" operator; our proof is therefore just an 
adaption of methods used by these authors. 

A first step to this duality is the case A = C: 

4.3 Lemma. Let (H, V, U) be a Kac system. Then the closed vector span of 
{L(x)Q(y)/x E S, y E S} and the closed vector span of {L(x)X(y)/x E S, y E §} are the 
algebra K(H). 

This lemma, which can be thought of as a generalization of the famous Weyl-von 
Neumann theorem, explains the terminology of irreducibility. 

Remark. It is also quite easy to prove a Takesaki duality theorem in the von 
Neumann algebra setting for Kac systems. In fact the regularity can be replaced by 
the weaker condition: the weak closure of ^(V) is L(H). The proof (if not the precise 
statement) of the main theorem of [10] applies in this context. 

Also, one may generalize results of [1] and prove a Takesaki-Takai duality 
theorem for equivariant KK-theory with respect to the Hopf C*-algebras S and S. 

5. Examples of Majid and Podles-Woronowicz 

In [26] and [32] appeared a series of new constructions of interesting "quantum 
groups". These "quantum groups" are not in general Kac von Neumann algebras 
but they can still be expressed by a multiplicative unitary; in this way Takesaki-
Takai duality is just an easy check. 

The algebraic setting in the examples of [26, 27] and [32] is that of matched 
pairs of Hopf algebras (cf. [23,28]). To such a matched pair are associated two new 
Hopf algebras: the one "generated by the matched pair" and the "bicrossproduct". 
These constructions were given in [37] and [28] in purely algebraic terms but may 
be performed in the multiplicative unitary setting. Examples of such matched pairs 

2 Provided a technical assumption called non-degeneracy in [21] is fulfilled by SA. 
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are given by any (locally compact) group G with two (closed) subgroups H and K 
such that every element g of G admits a unique decomposition g = hk(hE H,kE K 
- [44, 26]). Other examples are given by the "quantum double" construction^" 
Drinfeld [3], The examples of Podles and Woronowicz [32] are in fact based on 
this "quantum double" construction. 

Let (A, öA) and (B, öB) be two Hopf C*-algebras. Consider the *-homomorphism 
öA®öB:A®B^A®A®B®B. In order to put a Hopf C*-algebra structure 
on A®B, we use a isomorphism x:A®B-+B®A and wish to put ö = 
(idA ® x ® idf l)(^ ® öB). For ö to be coassociative it is enough that the following 
condition be satisfied: 

(C) (T ® id J (idA ® x) (öA ® idB) = (idB ® öA)x and 

(idB ® x)(x ® idB)(id^ ® öB) = (ÖB ® i d j i 

Condition (C) is stated in [32] and, from a dual point of view, in [37] and [28] 
(in purely algebraic terms). 

5.1 Definition. Let (A, öA) and (B, öB) be two Hopf C*-algebras. An inversion on A, 
B is a ^-isomorphism x:A®B-*B®A satisfying the conditions (C). 

Let (A, B, x) be as in definition 5.1. Note that b -» T(1 ® b) is a (right) coaction, 
called ß, of the Hopf C*-algebra A on the C*-algebra B and a -> x(a ® 1) is a (left) 
coaction, called a, of the Hopf C*-algebra B on the C*-algebra A. 

Let X E L(H ® H) and Y E L(K ® K) be two regular multiplicative unitaries. 
Denote by Sx, Sx, SY and SY the associated Hopf C*-algebras associated with X and 
Y and by öx, öY the coproducts of Sx and SY. Let x:Sx® Sy -> SY® Sx be an 
inversion on (Sx, SY). 

5.2 Proposition. The unitary operator T = (T ®id)(Y23)(id®z)(X23) acting on 
K® H ® K® H is multiplicative. It is called the bicrossproduct of X and Y with 
respect to x. 

Let (H, X, u) and (K, Y, v) be two Kac systems. It is more natural to assume that 
x is an inversion on (Sx, SY). Of course, in this case, we may form the bicrossproduct 
of X and Y In order to form the twisted and bicrossproducts of the Kac systems, 
we need the inversion x to be suitably implemented. 

5.3 Definition. A matched pair of Kac systems is given by two Kac systems (H, X, u) 
and (K, Y, v) together with a unitary operator Z E L(H ® K) such that 

a) There exists an inversion x : Sx ® SY -» SY ® Sx such that for all x e Sx, y E SY 
we have Zx~l(y ® x)Z* = x® y. 

b) (H ® K, V, U) is a Kac system where V = (Zf2X13Z12) Y24 and U = (u ® v)Z. 

5.4 Theorem. Let ((H, X, u); (K, Y, v)\ Z) be a matched pair of Kac systems. Define 
the unitary operator W = (Z34*Y24.Z34)(Z12*X13Z12) acting on H ® K ® H ® K. 
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Then (H ® K, W, U) is a Kac system. The Hopf algebra S associated with V is 
(Sx ® SY, Sx). The algebras S and S associated with W are isomorphic respectively to 
Sx xa SY and SY xp Sx. 

Moreover, the multiplicative unitary operator T of proposition 5.2 is equivalent 
to W. 

5.5 Definition. With the notation of the above theorem, the Kac system (H ® K, V, U) 
is called the product of (H, X, u) and (K, Y, v) twisted by Z; the Kac system 
(H ® K, W, U) is called the bicrossproduct of (H, X, u) and (K, Y, v) relative to Z. 

5.6 Examples 
a) Let (H, X, u) be a Kac system and G be a locally compact group acting by Hopf 
C*-algebra automorphisms on Sx. Let x : C0(G) ®SX-+SX® C0(G) be given by 
T(f)(x) = M / M ) XE G, f E C0(G; Sx) where we have identified C0(G) ® Sx and 
Sx ® C0(G) with the C*-algebra C0(G; Sx) of continuous S^-valued functions 
vanishing at oo on G. In this case, G acts naturally on the Hopf C*-algebra Sx and 
the twisted and bicrossproducts are both obtained by the well known crossed-
product constructions. 

b) Let Gx and G2 be two locally compact groups. An inversion on 
(Q)(Gi), C0(G2)) is given by a homeomorphism x : G2 x G1 -> Gx x G2; then the 
product (xl9 x2)(y1, y2) = (x1z1, z2x2) where (zl9 z2) = x(x2, y j is associative on 
G1 x G2 and, endowed with this product, Gx x G2 is a locally compact group G. 
Then, the twisted product of the associated Kac systems is the Kac system of the 
group G. The bicrossproduct construction gives new examples of Kac systems. In 
general, these examples are not associated with Kac von Neumann algebras [26, 27] 
and the antipode K is unbounded. However, many computations may still be 
performed in this context. 

Another way of understanding this example, is to start with a locally compact 
group G and assume that it has two closed subgroups Gx and G2 such that the map 
(*i J ̂ 2) -* x\*i i s a homeomorphism from Gx x G2 onto G. In this case, the actions 
of Gx on G2 and of G2 on Gx are the restrictions of the actions of G on G2 = Gj\G 
and on G1 = G/G2 and it is easy to compute the corresponding crossed products 
and thus the algebras S and S associated with W. Also, it is quite easy to construct 
groups with these properties: 

- the Iwasawa decomposition G = KP (P = AN) of semisimple Lie groups; 
- let G be a locally compact group acting by homeomorphisms on a locally compact 

group G2 and containing the right translations of G2; let then Gx be the set of 
elements of G fixing the neutral element of G2; 

- in the above example, we may take G2 to be any finite group and G be the group 
of all permutations of the set G2.. . 

A third way of interpreting this example (cf. [2] Appendix C) is the search of 
measure spaces X and transformations o f l x l satisfying the pentagon relation. 
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It is then natural to add cocycles and form new multiplicative unitaries. In this way 
one recovers examples of Kac and Paliutkin [14,15]. 

c) Let (H, X, u) be a Kac system and set Y = sX*s where-,rei(fr®^f)4s 
the flip operator; then (H, Y, u) is a Kac system and SY = Sx, SY = Sx

{3). Let 
then x : Sx ® SY -> SY ® Sx be given by x(x) = XsxsX*. Since X is a multiplier of 
SY®SX this is well defined. It turns out that x is a non degenerate inversion 
and that ((H, X, u); (K, Y, v); Z) is a matched pair of Kac systems, where 
Z = sX(u ® u)X*(u ® u)s. The corresponding twisted product (H ® H, V, U) is the 
quantum double of the Kac system (H, X, u). Let Sv and Sv denote the corresponding 
Hopf C*-algebras. There is a unitary operator R which is a multiplier of Sv ® Sv 
which satisfies the algebraic properties of [3] and in particular R is a solution of 
the quantum Yang-Baxter equation. 

Note that the construction of this twisted product was used by Podles and 
Woronowicz to build the "quantum Sl(2, C)" out of the "quantum SU(2)" ([32]). 

In this case, the bicrossproduct is just a direct product. 

6. Concluding Remarks 

We developed here one point of view: find conditions easy to check on the "funda-
mental operator" that ensure Takesaki-Takai duality. However, we do not know if 
these conditions may turn out to be automatic. 

Maybe one should look for a counterexample to regularity in transformations 
satisfying the pentagon equation. 

The operator U defining irreducibility, is usually the product J J of the Tornita 
operators associated with Haar measures. Therefore, to prove irreducibility one 
would need to prove the existence of these Haar measures. Note that, in our context, 
this problem doesn't seem too difficult since we are given the regular representations 
and therefore the class of the Haar measures. 

Once the Haar measures are found one needs to perform modular theory on 
them. Concerning this, we may formulate the following conjecture: 

Call cj>, \j/, cj> and y) the left and right Haar measures of S and S. Then there should 
exist positive unbounded operators F and F affiliated with the centralizers of ^ and 
<j> such that for all x e S and y e S,\l/(x) = (j>(FxF) \j/(y) = <j>(FyF). The Hilbert spaces 
H^, H^, H# and Hj, are naturally identified. The weights (j>, \j/, <ß and $ are faithful 
when extended to the bicommutants, therefore Tornita theory can be performed. 
Call J and J the Tornita operators associated with cj) and cj), and put U = J J = J J. 
Let L and X be the GNS representations associated with cj) and $; then form JR and 
Q using L, X and U. Since V is a multiplier of S ® S, (Q ® L)(V) acts naturally on 
Hfl, ® H<i>. Then (H^, V, U) is a Kac system. Moreover, the operators F and F are 
representations of the Hopf algebras, therefore they are unbounded multipliers of 
S and S. Moreover, the operators L(F), R(F), X(F) and Q(F) commute pairwise. The 
modular operators are computed in terms of F and F. We find: 

1 Note however that the coproducts of SY and SY differ from the ones of Sx and Sx by the flip. 
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