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Introduction. The entire functions are so closely related with the theory of systems 
of partial differential equations with constant coefficients and of convolution equations 
(cf. [1], [27], [29]), that about 1950 a deep study of their properties seemed neces-
sary to many mathematicians. Especially, the connection between the growth of 
entire functions and the growth of the sets of zeros appeared of great interest. For 
one variable, it is easy to deal with the Jensen formula and with the Weierstrass 
canonical products, in a very classical way. For several variables there is no trivial 
extension of the Weierstrass products but we are able to build entire functions with 
a given set of zeros and whose growth is connected with the growth of zeros. Working 
on these problems, the mathematicians were led to use more systematically tools 
of complex analysis as positive closed currents, plurisubharmonic functions, L2 

estimates or integral methods for the d operator. 
1. The current of integration and the Lelong—Poincaré equation. Let X be an analytic 

subset of dimension p in a complex manifold of dimension n. In 1953, P. Lelong [23] 
has proved that it is possible to define a current [X] using integration over the regular 
pari RegZ of X: 
0) <Ifl,?)= f<P, 

RegX 

where cp is a form of total degree 2p. Besides [X] is closed, of bidegree (n—p9 n—p) 
and positive; a current 0 of bidegree (n—p9 n—p) is said to be positive if: 

PO A OCj A ä]L A . . . A 0Cp A ttp S> 0 , 

for all (1, 0) forms a,- (the orientation of the manifold is defined by the (n9 n) form 
i"dz1 A dz1 A ... A dzn A rfz„). 



676 Henri Skoda 

Let in Cn be: a=/##log \z\2/29ß=idd\z\2/29 let er and v be the positive measures 
associated to 0 by : 

(2) G = —QABP
9 v = n-p0Acx.p. 

pi 
Let a(r) be the measure a supported by the closed euclidean ball of radius r. 
If 9=[X]9 a is the 2/j-dimensional area of A'. The significant growth of 0 (resp. [X]) 
is measured by the projective indicator: v(r)=n~pp\ r~2pa(r). 

The growth of an entire application F of C" in Ck will be described by : 

MF(r) = snp\\F(z)\\. 

When X is a hypersurface which is defined by only one equation F9 then X and 
F are connected by the Lelong-Poincaré equation of currents : 

(3) Ì-ddlog\F]=2nj[Xj\ = 6 

(where ns is the multiplicity of F on the irreducible branch X} of X). 
With the Poisson-Jensen formula, it is possible exactly as in the case of one 

variable, to obtain a bound for v(r)\ 

v (r) =< C(e, /?) log MF(r + er), 
for all fi>0 (and supposing |F(0)| = 1 for the simplicity). Conversely, if V is 
a solution of the equation : 
(4) iddV/n = 0, 
then P. Lelong observed in [24] that necessarily K=log \F\9 for some entire function 
F such that F~1{0}=X. 

When 0 is of finite order (i.e. lim supr_+00 r~ev(r)< + °° for some Q^0)9 
P. Lelong [24] has built in 1953 an explicit canonical potential V9 using a modi-
fication of the kernel — \z—x\~~2n+z by harmonic terms, which is a solution of (4). 
This potential exactly generalizes the canonical Weierstrass product. The difficulty 
is to prove that V9 which is already a solution of AAV—G9 is in fact a solution of (4). 

Therefore, using V we can define a given X by an entire function of the same 
order as X. W. Stoll, using H. Kneser's work [21], reaches the same result in [39], 
but does not obtain a globally convergent representation for log |JF|. 

In 1970, in [33], [34], we dealed with the general case, without restriction about X. 
We resolved the equation (4), using a regularization of 0, the classical Cartan-
Poincaré homotopy formula for d=d+d and the Hörmander's L2 estimates 
for d. We dealt also with the case where F verifies the weaker condition F~1{0}DX9 

but not necessarily F~1{0}=X. 
E. Bombieri in [2] (1970) has given a beautiful application of Lelong's results 

to the arithmetical properties of entire functions. This work will be pursued by 
M. Waldschmidt [43]. * 
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2. The case of analytic sets of codimension > 1. When the analytic set X is a complete 
intersection, defined as the set of zeros of a holomorphic map F=(Fl9 F29 ..., F„-p) 
of C (or of a manifold) in Cn~p

9 P. A. Griffiths and J. R. King [10] proved in 
1973 the following "Poincaré-Martinelli" equation of currents: 

(5) (2n)-ki dì [log ||F||»(/Wlog llil2)*"1] = [X], 

where k=n—p9 where the form in the brackets has locally summable coefficients, 
and where each irreducible branch of X is counted with the appropriate multiplicity 
of F (this multiplicity is defined for example in [7]). But the relation (5) is less 
useful than the Lelong-Poincaré equation, as well to obtain a bound of v(r) when 
a bound of MF(r) is given, as well to try to build the functions Fj when X is 
given. 

A counterexample of M. Cornalba and B. Shiffman, in 1972 [5], shows that it is 
not possible in general to obtain a bound of v(r) when a bound of MF(r) is given. 
Precisely, they proved: 

THEOREM 1. Let s: R+-+R+ be an increasing function. There exists a holomorphic 
map F of C2 in C2 such that X=F~1{0} has dimension 0, such that MF(r) is 
of order zero, but such that v(r) grows faster than s(r)9 that is: 

r-+~ s(r) 

lim sup r~e Log MF(r) = 0, for all Q > 0. 

This means that the Bezout theorem over the algebraic curve has no transcendental 
equivalent. Nevertheless, different works have been done by W. Stoll [41], P. A. 
Griffiths [11] and L. Gruman [13] in order to obtain weaker forms of bounds of 
"transcendental Bezout theorem" type. 

It is therefore surprising that the inverse problem, which seems at first more 
difficult, received a positive general answer, given by the author in 1972 in [35]. 
We have: 

THEOREM 2. Let X be an analytic subset of C"9 suchthat 0§_X9 let e and ô£R+. 
Then there exist n+1 entire functions F=(Fl9 F29 ..., i^+i) such that F~1{0}=X 
and such that for all r>0, F verifies one of the following bounds: 

1. logMF(7-)^C(c)v(r+cr).log2r, 
2. logMF(r)^C(e9g)r* fr

0t-ö-xv(t+ßt)dt, 

where C(s) and C(e9 S) are independent from r. 

Particularly, if v(r)< C1re
9 then we are able to find F such that logMF(r)^C2re

9 
for some constant Cx and C2 (choose ô<Q). We obtained in [35] different technical 
bounds which we do not reproduce for simplicity and which especially give the 
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following result of W. Stoll [40] and E. Bishop [1] (1966) about algebraic subset 
of Cn. 

THEOREM 3. X is algebraic if and only if r*-> v(r) is a bounded function. 

We shall now briefly talk about the methods of the proof. We do not use (5) 
which supposes that X is a complete intersection. We begin to build a plurisub-
harmonic function U which behaves intuitively as log||jF||, where F is the requested 
map. At first, we locally build U as an explicit negative potential, by integration 
of the kernel —\z—x\~~2p over X. Then using a partition of unity, we obtain a global 
^ 0 potential U0 which is nearly plurisubharmonic (i.e. modulo C°° strictly 
plurisubharmonic functions). We estimate the lack of plurisubharmonicity of 
U0 and we add to UQ SL strictly plurisubharmonic function with controlled growth 
to get U. When X has a low growth, such that fî°°t~2v(t) <#<-f°° and when 
0(£X, we can take very simply (and globally): 

(6) U(z)= f[-\z-x\-2p+\x\-2p]ßpA0(x)9 
cn 

where 9=[X]. The difficulty is to prove that U is plurisubharmonic. To be sucess-
ful we represent U as a direct image of a current on CnXCn. Let %1 and n2 be the 
projections of CnXCn over C", % the diagonal map (x9 z)-+z—x9 and K= — \x\~2pßp. 
We prove that choosing a convenient C°° function % ̂  0, which is equal to 1 on a 
neighbourhood of the diagonal of CnXC"9 we have: 

U = 7i2*(xz*KA n*9)-\-technical terms, 
jQdU — p7i2*(xt*0Lp+1 A 7rj0)+technical terms, 

such that the positivity of iddU is a consequence of the positivity of a and 0 and 
of the fact that positivity is invariant through the direct and inverse image (modulo 
precise estimates for the technical terms, cf. [34] and [35]). Now we build the func-
tions Fl9 F29 . . . ,JFII+1 using a theorem of Hörmander-Bombieri ([2], [1]) which 
gives (because of the plurisubharmonicity of U) the existence of a non trivial 
entire function / such that 

(7) / | / | 2 exp ( - /C / ) ( l + | z | 2 ) - » - 2 ^ ( z ) < + oo5 
cn 

where />0 and where dk is the Lebesgue measure. 
U were built such that for some />0, exp (—/C/) is not locally summable in 

all points of X. Therefore the estimates (7) imply that / is null over A'. Besides 
the estimates (7) give bounds for the growth of / . We repeat a classical argument 
of H. Grauert in order to obtain n+1 functions satisfying (7) such that JF,"1{0}=JST. 

The results of Theorem 2 seem the best from the point of view of the comparison 
of growth of F and X. There is still an open problem, that is to reduce the number 
w+1 of functions defining X in theorem 2 without loss of growth. According to O. 
Forster and K. J. Ramspott [9] n functions are always sufficient to define X (with-
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out controlled growth). When X is a submanifold of Cn
9 topological conditions 

which were shown in [10] gives the insurance that X is a complete intersection 
(for instance in codimension 2, the necessary and sufficient condition is the vanishing 
of the first Chern class of X). New ideas are requested to obtain the equivalent of 
Theorem 2 in these cases. 

The construction of the potential U associated to X in the proof of the Theorem 
2 is much generally valid for an arbitrary positive, closed current 0. Therefore 
to each such (n—p9 n—p) current is associated a plurisubharmonic function 
U and a positive (1, 1) current iddU9 whose properties are intimately connected 
with the properties of 0. The density or Lelongs number of 0 at z is defined by: 

v(z) = lim %-pp\ r~2p f ßp A 0 

(B(z9r) is the euclidean closed ball of radius r centered at z). v(z)=0 if 0 is 
C° in a neighbourhood of z. If 9=[X]9 v(z) is an integer at each point z£X 
and v(z) = l if z€RegX Conversely, the following result of Y. T. Siu [32] (1974), 
whose particular case is solved by Bombieri [2], King [15], Harvey [14], Skoda [38] 
says how much of a given 0 is an analytic set. 

THEOREM 4. Let 9 be a positive, closed, (k9 k) current on a complex manifold 
Q. Forali c>0, the set Ec={z^Q\v(z)^c} is an analytic subset of Q (of smaller 
dimension than n—k). 

The proof heavily depends on the Hörmander-Bombieri result (7). 
Recently, P. Lelong [25] has proved that the (1,1) current iddU9 locally associated 

to 0 as in (6), has the same density as 0 in all points. Therefore, it is sufficient to 
prove Theorem 4 for a (1, 1) current. In this last case, the proof of Y. T. Siu 
in [32] is particularly elegant. 

The result of Theorem 2 has easy extensions to an open pseudoconvex subset of C" 
and to Stein manifolds (cf. H. Skoda [35, Proposition 9.1]) but the precision of the 
bounds is limited by the L2 estimates and is not always the best. Therefore new 
methods were necessary. 

3. Fine results for strictly pseudoconvex open sets in C". Let ß be a bounded, strictly 
pseudoconvex, open set in C", of class C2, that is: ß={z|g(z)<0}, where g is 
a real function, defined, of class C2, strictly plurisubharmonic in a neighbourhood 
of Q and verifying dg^O on dQ. Let Qe be the set {z|g(z)< — c}. 

The Nevanlinna class N(Q) (resp. the space HP(Q)9 0</?<-}- °°) is the set of 
holomorphic functions / o n ß such that: 

(8) lim sup / log+ | / | r fS f i < + oo, 
e>0 dar 

resp. 
lim sup [\f\pdSe< + ~>9 

«>o ali-
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where dSE is the euclidean area of dQe. We trivially have 

H°°(Q)czHp(Q)czN(Q)9 

for all p9 where H°°(Q) is the space of bounded functions. An hypersurface X 
verifies the Blaschke condition if by definition : 

(9) f\g(z)\da(z)^ + ~9 
x 

where da is the area element on X. For one variable, it is classical that the Blaschke 
condition (9) characterizes the set of zeros of functions of N(Q) and of all Hp(Q) 
0<p<s+oo. For several variables, it is easy to prove using the Poisson-Jensen 
formula (cf. [4]) that the zero set of f£N(Q) verifies (9). But W. Rudin [31] has 
proved [11] that the characterization of zeros of functions in HP(Q) for the euclidean 
ball must necessarily depend on p9 so that such a characterization is probably 
much more complicated as in the case w=l. Nevertheless, in 1975 G. M. Hen-
kin [17] and the author [37], [38] have independently but by very similar methods 
proved the following: 

THEOREM 5. Let Q be a strictly pseudoconvex open set such that H2(Q9 Z)=0 
and let X be an hypersurface of Q verifying the Blaschke condition, then X is the 
zero set of some f£N(Q). 

More generally, we solved the Lelong-Poincaré equation iddV=69 where 0 is 
a given (1,1) positive, closed, current verifying: 

(io) /le|0A/î»-1< + - J 
ß 

and where V is built so that 

lim sup fv+dSe< + < 
dnE 

Partial results were obtained by L. Gruman [13] and G. Laville [22]. In fact, 
Theorem 5 is a consequence of an existence theorem for the d which is especially 
conceived for the theory of Hp spaces. For simplicity, we only consider the (0,1) 
form. 

THEOREM 6. If fisa (0,1) current on Q9d closed and if the coefficients of f and 
of the current \g\~1/2d"g A / are bounded measures on Q9 then there exists u^L^Q) 
such that 

du =f in Q9 

and such that u has a boundary value in L\dQ) in the sense of Stoke's formula: 

fuAcp = f fA(p+ fu AÔq)9 
dß fl ß 

for all (n9n — i) forms cp of class C1 in Q. 
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Theorem 6 was obtained by explicit integral formula for differential form of 
Cauchy-Leray-Poisson-Szegö type, which are closely related with the kernels 
for d already built in order to obtain L°° estimates for d (cf, [26], [15], [20], [30]). 

Theorem 5 follows from Theorem 6 using classical splitting of dd in d and d, 
homotopy formula for d. The new argument is that (10) implies very strong restric-
tion on the tangential coefficients of 0, for instance: 

; 9 A 9 , A V A > " _ ' - + ' 
ß 

(found in another more restrictive form by P. Malliavin [28]). 
In another direction, Theorem 6 is closely connected with the "corona problem" 

for H°°(Q) (i.e. the determination of the spectrum of H°°(Q)) and with Carleson-
Hörmander measures on Q (cf. N. Varopoulos [42] and [4], [38], [18]). 

Other results for hypersurfaces with polynomial growth: 

f\g(z)\«+1d(i(z)< + °o ( a > 0 ) 
x 

where recently in 1977 obtained by similar methods by G. M. Henkin [6] (cf. also [44]). 
All results of this section are in fact a consequence of an existence theorem for d. 

Perhaps, methods which will be more specific to the real idd operator, will 
permit us to reach better results concerning for instance zeros of HP(Q). Besides, 
there is no result similar to Theorem 5 for analytic sets of codimension >1. 

Bibliography 

1. E. Bishop, Conditions for the analyticity of certain sets, Michigan Math. J. 11 (1964), 289—304. 
2. E. Bombieri, Algebraic values of meromorphic maps, Invent. Math. 10 (1970), 267—287. 
3. Chee Pak Song, The Blaschke condition for bounded holomorphic function, Trans. Amer. Math. 

Soc. 148 (1970), 248—263. 
4. L. Carleson, The corona theorem, Proceedings of the 15th Scandinavian Congress (Oslo, 1968), 

Lecture Notes in Math. vol. 118, Springer-Verlag, Berlin and New York, 1970, pp. 121—132. 
5. M. Cornalba and B. Shiffman, A counter example to the "Transcendental Bezout" Problem, 

Ann. of Math. 96 (1972), 402—406. 
6. Daoutov and G. M. Henkin, Zeros des fonctions holomorphes d'ordre fini, résolution et estimation 

pondérée de l'opérateur d, preprint (en russe), Institut de Physique Kirienskij, Krasnojarsk, 1977. 
7. R. Draper, Intersection theory in analytic geometry, Math. Ann. 180 (1969), 175—204. 
8. O. Forster und K. J. Ramspott, Über die Darstellung analytischer Mengen, Sb. Bayer. Akad. 

Wiss. Math.-Nat. Kl., 1963, 1964, 89—99. 
9. Analytische Modulgarben und Eindromissbündel Invent. Math. 2 (1966), 145—170. 
10. P. A. Griffiths and J. King, Nevanlinna theory and holomorphic mappings between algebraic 

varieties, Acta. Math. 130 (1973), 145—220. 
11. P. A. Griffiths, On the Bezout problem for entire analytic sets, Ann. of Math. 100 (1974), 

533—552. 



682 Henri Skoda 

12. L. Gruman, The zeros of holomorphic functions in strictly pseudoconvex domains, Trans. Amer. 
Math. Soc. 207 (1975), 163—174. 

13. La géométrie globale des ensembles analytiques, Séminaire Pierre Lelong (Analyse), 
Année 1975/76, Lecture Notes in Math., vol. 578, Springer-Verla g, Berlin and New York, pp. 236— 
245. 

14. R. Harvey and J. King, On the structure of positive currents, Invent. Math. 15 (1972), 47—52. 
15. G. M. Henkin, Integral representations of functions holomorphic in strictly pseudoconvex domain 

and applications to the d problem. Mat. Sb. 82 (124), (1970), 300—308= Math. U.S.S.R. Sb. 11 
(1970), 273—281. 

16. Solutions with estimates of the H. Lewy and Poincaré-Lelong equations. The 
construction of fu fictions of a Nevanlinna class with given zeros in a strictly pseudoconvex domain, Dokl. 
Akad. Nauk. U.S.S.R. 224 (1975), 771—774=Soviet Math. Dokl. 16 (1975), 1310—1314. 

17. L. Hörmander, An introduction to complex analysis in several variables, Van Nostrana, 
Princeton, N. J., 1966, 2nd ed., 1973. 

18. If estimates for (pluri-) subharmonic functions, Math. Scand. 20 (1967), 65—78. 
19. J. King, The currents defined by analytic varieties, Acta. Math. 127 (1971), 185—220. 
20. N. Kerzman, Holder and If estimates for solutions ofd u=f in strongly pseudoconvex do-

mains, Comm. Pure Appi. Math. 24 (1971). 
21. H. Kneser, Zur Theorie der gebrochenen Funktionen mehrerer Veränderlicher, Jber. Deutsch. 

Math.-Verein. 48 (1938), 1—28. 
22. G. Laville, Sur les diviseurs de la classe de Nevanlinna dans la boule de C2, C. R. Acad. Sci. 

Paris 281 (1975), A 145—148. 
23. P. Lelong, Intégration sur un ensemble analytique complexe, Bull. Soc. Math. France 85, (1957) 

239—262. 
24. Fonctions entières (n variables) et fonctions plurisousharmoniques d'ordre fini dans 

C", J. Anal. Math. Jerusalem 12 (1964), 365—407. 
25. Sur la structure des courants positifs fermés, Séminaire Pierre Lelong (Analyse), 

Année 1975/76, Lecture Notes in Math., vol. 578, Springer-Verlag, Berlin and, New York, pp. 136— 
156. 

26. I. Lieb, Die Cauchy-Riemannschen Differentialgleichungen auf streng pseudokonvex Gebieten. 
Math. Ann. 190 (1970), 6—44. 

27. B. Malgrange, Existence et approximation des solutions des équations aux dérivées partielles et 
équation de convolution, Ann. Inst. Fourier 6 (1956), 271—355. 

28. P. Malliavin, Fonctions de Green d'un ouvert strictement pseudoconvexen et classe de Nevanlinna, 
C. R. Acad. Sci. Paris 278 (1974), A141—144. 

29. A. Martineau, Equations différentielles d'ordre infini, Bull. Soc. Math. France 95 (1967), 109— 
154. 

30. N. 0vrelid, Integral representation formulas and LF estimates for the d-equation, Math. Scand. 
29 (1971), 137—160. 

31. W. Rudin, Zeros of holomorphic functions in balls, Nederl. Akad. Wetensch. Proc. Ser. A 79 
Indag. Math., 38 (1976). 

32. Y. T. Siu, Analyticity of sets associated to Lelong numbers and the extension of closed positive 
currents, Invent. Math. 27 (1974), 53—156. 

33. H. Skoda, Solution à croissance du second problème du Cousin dans C", Ann. Inst. Fourier 
Grenoble 21 (1971), 11—23. 

34. Croissance des fonctions entières s'annulant sur une hypersurface donné de C\ 
Séminaire Pierre Lelong (Analyse), 1970/71, Lecture Notes in Math., vol. 332, Springer-Verlag, 
Berlin and New York. 

35. Sous-ensembles analytiques d'ordre fini ou infini dans C", Bull. Soc. Math. France 
100 (1972), 353—408. 



Integral Methods and Zeros of Holomorphic Functions 683 

36. Nouvelle méthode pour l'étude des potentiels associés aux ensembles analytiques, 
Séminaire Pierre Lelong (Analyse), 1972/73, Lecture Notes in Math., vol. 410 Springer-Verlag, 
Berlin and New York. 

37. Boundary values for the solution of the d-equation and application to the Nevanlinna 
class, Spaces of Analytic Functions (Kristiansand, Norway, 1975), Lecture Notes in Math., vol 512, 
Springer-Verlag, Berlin and New York 1976, pp. 166—177. 

38. Valeurs au bord pour les solutions de l'opérateur d" et caractérisation des zéros des 
fonctions de la classe de Nevanlinna, Bull. Soc. Math. France 104 (1976), 225—299. 

39. W. Stoll, Ganze Funktionen endlicher Ordnung mit gegebenen Nullstellenflächen, Math. Z. 57 
(1953), 211—237. 

40. The growth of the area of a transcendental analytic set, Math. Ann. 156 (1964), 
47—48, 144—170. 

41. A Bezout estimate for complete intersections, Ann. of Math. 96 (1972), 361—401. 
42. N. Varopoulos, B. M. O. functions and the equation, Pacific. J. Math. 71 (1977), 221—273. 
43. M. Waldschmidt, Propriétés arithmétiques des fonctions des plusieurs variables (II), Séminaire 

P. Lelong (Analyse), 1975/76, Lecture Notes in Math., vol. 578, Springer-Verlag, Berlin and New 
York. 

44. N. Weyland, Fonctions holomorphes d'ordre fini dans les domaines strictement convexes, 
C. R. Acad. Sci. Paris 283 (1976), 697—699. 

UNIVERSITY OF PARIS VI 
PARIS, FRANCE 


