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0. Introduction 

Consider a product of measure spaces, provided with the product measure. 
Consider a subset A of this product, of measure at least one half. An important 
fact (the so-called concentration of measure phenomenon) is that even a small 
"enlargement" of A has measure very close to one. The inequalities we present 
describe this phenomenon for several notions of "enlargement". 

1. The Isoperimetric Inequality for Gaussian Measure 

We denote by Sn the Euclidean sphere of R"+1, equipped with the geodesic 
distance Q and a rotation invariant probability pn. For a (measurable) subset A 
of S,„ consider the set Au of points of Sn within geodesic distance u of A. The 
isoperimetric inequality for the sphere, discovered by P. Levy, is of fundamental 
importance. It states that p„(Au) > p„(Cu), where C is a cap (intersection of the 
sphere and of a half space) of the same measure as A. 

We denote by y„ the canonical Gaussian measure on IR", of density 
(27c)-"/2e~"x'" /2 with respect to Lebesgue measure. Observe the simple, but essen-
tial fact that y„ is the product measure on IR" when each factor is endowed with 
yi. It is an old observation, known as Poincaré lemma (although it does seem to 
be due to Maxwell) that, as N —• oo, the projection of the normalized measure 
on T/NSN onto IR" has y„ as a limit. Therefore, it should not come as a sur-
prise that Levy's isoperimetric inequality on the sphere implies an isoperimetric 
inequality for yu. This was discovered independently by G Borell [Bl], and V. N. 
Sudakov and B. S. Tsirelson [S-T]. If we denote by Au the set of points within 
Euclidean distance u of A, then y„(Au) > yn(Hu), where Hu is a half space with 
yn(H) = yu(A). Taking this half space to be orthogonal to a coordinate axis, and 
remembering that y„ is a product measure shows that if yn(H) = yi((—oo, a]), then 
y„(HM) = yi((-oo,fl + w]). 
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For simplicity, we set &(u) = yi((—oo, u]) =* -4= / " ^ e~x /2dx. Thus we have 

if yn(A) = 0(a), then yn(Au) > &(a + u). (1.1) 

It is important to state this inequality, not only for the measure yn, but 
also for its infinite dimensional version y, the product measure on R N when 
each factor is endowed with y\ (the result for y follows from the result for 
yn and an obvious approximation). We denote by B the unit ball of ê1, i.e. 
B = {x G IR^JX/C^I xl ^ !}• The Gaussian isoperimetric inequality can then be 
stated as follows 

If y (A) = ^(a) then y*(A + uB) > &(a + u). (1.2) 

There A-{- uB = {x + uy;x G A, y G B}; the inner measure is needed as A + uB 
might not be measurable. As became customary, we call (1.1) and (1.2) Borell's 
inequality. Levy's inequality is usually proved using symmetrization (see e.g. the 
appendix of [F-L-M]). A. Ehrhard [El] has developed a symmetrization method 
adapted to the measures y„ that yields a direct proof of (1.2) as well as of the 
following remarkable inequality of Brunn-Minkowski's type: For two convex sets 
A,B of IR", a n d O < A < 1, 

0-Hyn(XA + (1 - X)B)) > X0-l(yn(A)) + (1 - X)0-1(7n(B)). (1.3) 

(It is still open whether this inequality holds for non convex sets.) 
Borell's inequality is a principle of remarkable power. It can be argued that, 

concerning applications, this inequality is used in two different forms. 
The first type of use consist of rewriting (1.1) as u~1yn(Au\A) > u~ly\([a,u+a\) 

so that 

I a2 

liminf u'^AuXA) > —= e x p - — . (1.4) 
"-•o ^J2% 2 

thereby recovering what is the more classical formulation of the isoperimetric 
inequality [O]. In this spirit (and using his symmetrization methods) A. Ehrhard 
has proved a number of interesting inequalities, that are versions for the Gauss 
measure of classical results [E2]. 

Inequality (1.4) for functions rather than sets [L] yields in particular that a 
function on R" whose gradient belongs to L1(yn), belongs to the Orlicz space 
L^logL)1/2 of this measure, connecting with logarithmic Sobolev inequalities and 
hypercontractivity. 

The second type of use of Borell's inequality is for "large" values of u (while 
Borell's inequality for large values of u follows from (1.4), the spirit of application 
is very different). It is mostly used in the following forms 

If yn(A) > 1/2, then yn(Au) > yi((-oo, u\) (1.5) 

If y04) > 1/2, then y*(A + uB) > yi((-oo,u]) > 1 - - exp(-u2/2). (1.6) 
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In the terminology of V. Milman [M2] (1.5) is a "concentration of measure 
phenomenon". An immediate consequence of (1.5) is that if / is a Lipschitz 
function on IR", we have 

y„({\f-Mf\>u})<2yi 
u2 

w^j^v-m^ {L7) 

where Mf is a median of/, i.e. y„({f > Mf}) = y„({f < Mf}) = 1/2, and where 
||/||Lip = sup X 7 t j , | / (x ) - / (^) | / | | x -y | | . 

It has been discovered by V. Milman [Ml] that (1.7) (or, equivalently, a 
corresponding inequality on the sphere Sn) is at the root of the celebrated 
Dvoretzky's theorem. Actually, the following inequality is sufficient to prove 
Dvoretzky's theorem: There is a numerical constant K such that if / is a 
Lipschitz function on R", then 

^-/^I^B^apf^). (1.8) 

A very simple proof of this inequality (1.8) was discovered by B. Maurey and G. 
Pisier (cf. [P] ; in that same reference is included a different proof due to Maurey 
using stochostic integrals which yields K = 2). 

To understand better the relationship between (1.7) and (1.8) one should note 
that either of these inequalities imply the fact that \Mf — f fdyn\ < X||/||Lip-
Here, as in the sequel, K denotes a universal constant, not necessarily the same 
at each occurence. It is not our purpose here to enter the topic of local theory of 
Banach spaces, that was covered by Milman's paper [M2], and we turn towards 
the application of (1.6) to probability theory. The importance of (1.6) stems from 
the fact that y is the prototype for all Gaussian measures. To stress the point, 
we now outline the "canonical" way to look at Gaussian processes, that was put 
forward in [D] and that turned out to be of crucial importance. Given a point t 
in /2 , the series Xfo>i ^xk converges y a.e. (since (x/c) is a sequence of independent 
r.v.) and thereby defines an element Xt of L2(y), of law N(0, \\tW2). Any subset T 
of/2 thus defines a Gaussian process (Xt)tET- For many purposes all Gaussian 
processes can be reduced to this type. We say that the process is bounded if 
supfGT Xt < 00 y a.e. (to avoid technicalities, we assume from now on that T is 
countable). 

A problem of historical importance was, given a Gaussian process (that 
is, in our setting a subset T of t1), to understand, under the conditions that 
G is bounded, what are the tails of Y = supteT \Xt\, i.e. the behavior of the 
function y({Y > u}) as u —> 00. It was proved by Landau and Shepp [L-S] and, 
independently by Femique [F], that E(eaY ) < 00 for some a > 0, where for 
simplicity, we write Ef for J fdy. Interestingly, the proof of Landau and Shepp is 
isoperimetric in nature. In [Bl], C. Borell use (1.5) as follows. Set CJ = suptET \\t\\2. 
It is then clear that Y(x) < Y(y) + au if x e y+ uB. Thus by (1.5) 

y({Y >:MY+CTU}) <y i (koo) ) . 
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This implies that 

Y2 

oc > er => E exp —-̂  < oo. (1.9) 

C. Borell also used the same approach to obtain sharp integrability results for 
homogneous chaos [B2, B3]. 

It turns out that, when more information is available on T (e.g. information 
about entropy numbers) results sharper that (1.10) can be obtained by specific 
methods. This has unfortunately lead some researchers to doubt the power of 
(1.6); the issue is that the usefulness of (1.6) is greatly enhanced by an appropriate 
use of A. This point was brought in particular to light in [Tl], where the following 
is proved. Given a bounded process T c /2 , set 

x = M{u > 0;y({sup \Xt\ < u}) > 0}. 

Then 

x' > x => E exp - ^ (Y - x')2 < oo. (1.10) 

This result should be compared to (1.9). It can be interpreted as a tail 
estimate. It means that the function f(u) = # _ 1 (?({}> < u})) (that is concave by 
(1.3)) satisfies 

0 > l i m (f(u)--)>--. (1.11) 
u->oo \ a J G 

Thus, f(u) has an asymptote (u/cr) + / with —x/o < / < 0. This result is 
optimal in the sense that / can approach this asymptote arbitrarily slowly. We 
refer to [L-T2], Chapter 3, for an extension of this result to homogeneous chaos, 
and to [G-K] for further developments of the same idea. 

While (1.10) is optimal for general processes, it can be improved when one 
has more information about T. In [T3] a method was introduced relying on (1.6) 
to improve the tail estimate (1.10) in the specific case where T is compact and 
there is a unique t G T with \\t\\ = cr. The method has been developed further 
in [D-M-W]. It could also be used in many other situations, e.g. to simplify the 
results of [B-K]. 

While (1.10) uses in a rather precise form the information provided by (1.6), 
it is often sufficient (e.g. for the proof of Dvoretzky's theorem) to have a weaker 
information of the type 

y(A) > 1/2 => y(A + uB) > 1 - K exp ( - ~ J (1.12) 

without precise information on the constant K. It is this principle, rather than 
(1.5) that we now on call the concentration of measure phenomenon (for the 
Gauss measure). 
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2. The Concentration of Measure Phenomenon 

It seems rather unlikely that (1.6) could at all be improved, but it could come 
as a surprise that on the other hand (1.12) can be improved, in the sense that 
a similar inequality holds when the set A + uB is replaced by a smaller (and, in 
some cases, much smaller) set. The central result of this section is that, in the 
class of product measures, the natural setting for the concentration of measure 
phenomenon is not the Gaussian measure y but rather the product measure v on 
RN obtained by providing each factor with the measure vi of density je"'*' with 
respect to Lebesgue measure. We set 

* = {*£ I R N ; £ \xk\ < l} ;B2 = {x G 1 R N ; £ 4 ^ l} . 

Theorem 2.1 [T6]. There exists a universal constant K such that for all subsets A 
o / R N , all u>0,we have 

V(A) = Vi((-oo,fl]) => v*(A + </ÜB2 + uBi) > vi ( ( -oo ,* + £ ] ) • (2.1) 

In particular 

v(A) > 1/2 => v*(A + y/ÜB2 + uBi) > vi ((oo, - | ] ) = 1 - - exp ( - - | ) . 
(2.2) 

A striking difference between this inequality and (1.6) is that the set A is 
enlarged by the mixture ^JuB2 + uB\ of the fi and f1 balls, whose shape changes 
with the value of u. To understand the reason for the strange set y/uB2 + uB2, 
it is instructive to derive from (2.1) the size of the tails v({Xt > u}), where 
Xt(x) = Yjt^k ana* t e ^2 (these can of course be obtained by a simple direct 
argument). The set A = {Xt < 0} satisfies v(A) > 1/2 by symmetry. Thus by (2.1), 
we have v*(A + <s/üB2 + uB{) > 1 - ^e~u/K. But obviously Xt < y/ü\\t\\2 + u\\t\\œ 
on A + sJuBi + uB\ (where \t\^ = sup^! |tfc|). Thus we get 

^i{Xt>^\\t\\2 + u\\tU})<^K 

which can be formulated as 

(and gives the correct order for —logv({Xt ^ w}). 
Another difference between (2.1) and (1.6) is the unspecified constant K on 

the left side, that actually makes (2.1) closer to (1.12) than to (1.6). An interesting 
problem would be to find an "exact" version of (2.1). One could ask for example 
if there is a natural "smallest" set W(u) (whose shape would depend on w in a 
possibly complex way) that could be used instead of y/uB2 + uB\ in (2.1). The 
resulting inequality should give sharp estimates for v({Xt ^ u}); the variety of 
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competing estimates for this quantity [Hoe] might indicate the difficulty of the 
task. 

The proof of Theorem 2.1 is made complicated by the fact that, in constrast 
withr^he^auss^easure^^Lebesguenrn^ v hapless symmetries-

(in particular is not invariant by rotations) and thus that this restricts the use of 
rearrangements. The method of proof is to consider a statement similar to (2.1) 
(the set ^/UB2 + uB\ being replaced by a more amenable set C(u) of comparable 
size) and prove it by induction over n, when the set A is assumed to depend on 
n coordinates only. The key observation is that the proof of the induction step 
can be deduced from a two-dimensional statement. While the proof in (2.1) is 
not simple, it is beyond doubt that the important part of (2.1) is (2.2) for large 
values of u (u > K). Fortunately, this is much simpler to prove. The idea is to 
prove, again by induction over the number of coordinates of which A depends, 
that, if one sets 

hA(x) = inf{w > 0;x G A + C(u)} 

then Ecxp(hA(x)/K) < 1/P(A), so that, by Chebyshev inequality, 

v ( . + C M ) £ 1 - ^ M p ( - | ) , 

that recovers (2.2) for u large enough. 
We now explain why (2.2) is an improvement over (1.12). The argument that 

we will present will be referred to in the sequel as the "contraction argument". 
The precise form we use was introduced by G. Pisier [P, Ch. 2] and played an 
essential role in the discovery of the correct formulation of Theorem 2.1. (A 
similar idea occurs earlier in [G-M], Section 2-1). 

Consider the increasing map \p from R to R that transforms vi into y\. It is 
a simple matter to see that 

Mx) - VUOI < Kmin(\x - y\, \x - y\^2). (2.3) 

Consider the map W from R N to R N , such that T((xk)k>{) = (\p(xk))k>i. Thus 
W transforms v into y. 

Consider a Borei set A of R N such that y (A) > 1/2. Then 

y(¥(W-{(A) + JAB2 + uBi)) = v(W~l(A) + ^B2 + uB{) (2.4) 
1 
2{ ^-rx phl) 

However, it follows from (2.3) that 

Au = T(W~l(A) + JuB2 + uBx) ^A + K^B2 (2.5) 

and thus (2.4) improves over (1.12). To illustrate the improvement of (2.4) over 
(1.12), consider the case where A = {x; Vfc < n, \xk\ < an}, where an is chosen so 
that y(A) = 1/2 (and hence is of order v^ögn). Then, for u < logn, the set Au is 
easily seen to be contained in 
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\y logn 2 yjlogn) \\ogn) 

where u/\ogn < 1. 
One intriguing aspect of Theorem 2.1, when used as an improvement over 

(1.12), is that it breaks the rotational invariance of the Gauss measure. Indeed, it 
not only tells us that y„(Au) > 1 — exp(—u/K) (where Au is defined in (2.5)) but 
also that yn((RA)u) > 1 — exp(—u/K) for any rotation R of R". 

A natural question is whether (2.2) is the correct formulation of the concen-
tration of measure phenomenon. This seems to be the case, at least in the setting 
of product measures. Indeed, consider a probability measure Q\9 on R, and its 
product 9 on RN. Suppose that the following holds (that is much weaker than 
(1.2)). There exists K > 0, such that 

9(A) > 1/2 => 9(A + KBœ) > 3/4 

where B^ = {x G RN,V/c > l,\xk\ < 1}. Then the tails f(u) = 0({|x| > w}) 
must decay exponentially [T6], Note that, if these tails decay exponentially in 
a smooth enough way, 9\ is the image of vi by a contraction, and Pisier's 
contraction argument presented before shows that (2.1) will also hold for 9. 

Consider now 1 < a < oo and the measure va on RN, obtained as the product 
measure when each factor is endowed with the probability measure aae~^adx 
(where a« is a normalizing constant). The contraction argument presented above 
shows that 

\ *(*)) va(A) > 1/2 => v?(A + [/«(«)) > 1 - exp ——• . (2.6)« 

where Ua(u) = u^2B2 + u^aBa for a < 2, Ua(u) = u^2B2 n w1/«^ for a > 2, and 
Ba = {x G R N ;X W ^ 1}. For « > ß> (2.6)« is a consequence of (2.6)̂  (by the 
contraction argument). 

As in the Gaussian case, to each point t e fi one can associate the random 
variable Xt = Xtei tkxk o n (RN»va); and each subset T of fi thus defines a 
stochastic process. The main motivation for proving (2.6)« was the discovery [T7, 
T8] of a new approach to the problem of finding lower bounds for E supfGT Xt that 
makes (2.6)« an essential step. This new approach eliminates the use of Slepian's 
lemma [S], which is a specific property of Gaussian processes. It replaces it by 
the use of (2.6)«, combined with a Sudakov-type minoration [Su]. It enables to 
describe E swptET Xt in terms of the geometry of T, thereby extending the results 
of [T2] for the Gaussian case a = 2. But due to limitations of space we cannot 
discuss this point further. 
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3. Concentration of Measure for Bernoulli Random Variables 

Pisier used his contraction argument mentioned above to conclude from (1.2) that 
Tfi^rdenotes^the product measure on R"^whenrR^s equippeo^^thrth^liruform 
measure X\ on [—1,1], then 

Xn(A) = 0(a) => Xn(Au) > 0 [a + | ) . (3.1) 

Closely related to Xn, but of somewhat greater importance in Probability 
(since it corresponds to random signs) is the probability pn on {—1,1}" that gives 
mass 2~n to each point. The problem arises whether a concentration of measure 
principle as strong as (3.1) holds for pn. This is not the case (as follows from the 
example given after (3.3)). The appropriate formulation for a substitute to (3.1) 
requires to think to {—1,1}" as a subset of Rw. For a non-empty subset A of 
{—1,1}", we set CPA(X) = inf{||x — y\\2',y G conv A}, where conv A denotes the 
convex hull of A in R". 

Theorem 3.1 [T4]. Eexp(cp2
A/8) < l/pn(A). 

Using Chebyshev inequality gives 

For u > 0, pn({cpA > II}) < —^<T" 2 / 8 . (3.2) 

We first explore the consequences of this result. Consider a convex function 
for R". Then one can deduce from (3.2) that if Mf is median of / (for pn), we 
have 

fin({\f-Mf\ > u}) < 4exp ( -g jyj jH • <3-3) 

This inequality should be compared to (1.7). A major difference with (1.7) is 
however that this result is really specific to convex functions. To see it, consider 
n even, and let A = {x G {—1, l } " ; ^ ^ * * ^ 0}, s o t n a t Mnt̂ ) ^ 1/2. Define 
f(x) = inf{||x — y\\2 : y G A}, so that | | / | |L ì P = 1, and Mf = 0. It is easy to 
see that for y G ( - 1 , l}n, we have f(y) = - ^ ( ( E ^ » ^ ^ ) 1 7 2 - But the central Hmit 
theorem shows that pn({f > en1/4}) > 1/4 for some constant c independent of n. 
(Note then that pn(Acni/4) < 3/4 and that (3.1) fails.) 

Consider now a Banach space E and vectors (xk)k<n in E. 
Set 

(T = sup |^x*(x f e ) 2 ;x*GE*, | |x* | 
I ten 

< 1 

The function on Rn given by f(y) = || ̂ ^y^x/c l l^ is convex and satisfies ||/||up = 
a. Consider a sequence (£k)k<n of (symmetric) Bernoulli random variables; that 
is, the sequence is independent identically distributed and P(si = 1) = P(e,- = 
-1 ) = 1/2. Then (3.3) implies 
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Y£kXk 
ten 

M > U \ < 4e-u2ßa (3.4) 

where M is a median of || Y<k<nekxk\\' F r o m (3-4) and elementary computations 
follows that 

ten 
^£kxk 
ten 

+ W/ 2, 
a precise form of the so called Khintchine-Kahane inequalities. 

It is not known whether the exponent 1/8 in (3.2) can be improved; the 
best possible exponent would be 1/2. Another problem of interest would be the 
determination of min{pn({cpA > u});pn(A) = u). It is likely that the sets which 
achieve this minimum depend on A,u; thus the problem might be difficult. 

It is of interest to compare Theorem 3.1 with the classical results concerning 
Hamming distance. The Hamming distance d(s, t) of two points s,t of a product 
of sets is the number of coordinates where s,t differ. For a subset A of {—1,1}", 
we set dA(x) = inf{d(x,y),y G A}. It follows from an isoperimetric inequality of 
Harper [Ha] that for pn(A) > 1/2, we have 

Pn({dA > uy/n}) < exp(—2w2). (3.5) 

On the other hand, it is simple to see that 2d A < \ß<$A- Thus {dA > u^/ri} c 
{çA ^ 2w}. Now (3.2) provides the estimate 

pn({cpA > 2u}) < 2exp(-w2/2). 

Compared with (3.5), this provides a weaker bound (but of the same essential 
strength) for a larger set. The most important difference is however that (3.2), in 
contrast with (3.5), is independent of the dimension. 

We now present an "abstract" extension of Theorem 3.1. Consider a sequence 
(Qk,pk)ten of probability spaces and denote by P the product measure on Q = 
Y[k<n f̂c- Consider a subset A of Q. For x G Q, consider the set 

UA(x) = {te {0,1}" ; 3y eA,tk = 0=>xk = yk). 

We consider UA(X) as a subset of R"; we denote by VA(X) the convex hull of 
UA(x). 

For a > 1, 0 < u < 1, we consider the function 

ci; (a, u) = a(l — u) log(l — u) — (a + 1 — aw) log ( 1 — aw 
1 + a 

Elementary calculus show that this function increases in a,w5 and is convex in w. 
We set 

v v i M = inf \ YJ èfaydiy = (ydi<n e vA(x) I. 

Theorem 3.2 [T9]. Eexp w < (1/P*(,4))a. 
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Calculus shows that £(l,w) > w2/4; thus Theorem 3.2 implies Theorem 3.1, 
but only with the worse exponent 1/16 instead of 1/8. An essential improvement 
of Theorem 3.2 over Theorem 3.1 is that for a large and u close to 1, £(a,w) is of 
order Ç(a, 1) = log(l +a) . The following bound seems to be of particular interest. 
For t > 1, 

PX(A) > 1/2 => P({ipu > t}) < (21 éf. 

It has been observed in [J-S] (using the method of [T4]) that if 0 < r\ < 1, 
and if pn denotes now the measure ((1 — rj)öo + rjöi)n on {0,1}", then for a set 
A a {0,1}", we have E vvp{cp2

A/A} < l/pn(A) (this also follows from Theorem 
3.2). An interesting fact in that direction is that the tails of çA do not improve 
when rj is small. This is somewhat unexpected. To see it, consider the case where 
A = {x e {0, l}n; Yuten xk ^ *7n)' s o t n a t ^n(^) *s °f order 1/2 by the law of large 
numbers. On the other hand, it is simple to see that (for rjn integer) cpA(y) < u 
if and only if ]T yk = p where y/p(l — rjn/p) < u, so that p < rfn-\- u^fp. For 
u < (rjn)1^2, this implies p < 2rjn, so that p < r\n+u^/2r\n. Thus for p > Y\n+u^2r\n 
we have cpA(y) > u. It follows from the central limit theorem that if 0 < rj < 1/2, 
then for n large enough, we have pn({(PA(y) > u}) > exp(—cu2) for some c 
independent of n,r\. 

4. An Isoperimetric Inequality for Product Measure 

An important concentration of measure phenomenon for product measures is as 
follows. Consider a sequence (Qk, pk)k<n of probability spaces. Denote by P the 
product measure on Q = Y[k^n Qk. Then 

P(,4) > 1/2 => P({dA > u}) < 2exp(-u2/Kn). (4.1) 

where the Hamming distance dA has been introduced in Section 3. This is an 
extension of (3.5) (with worse constants). It is easy to prove using the martingale 
approach introduced by B. Maurey and developed by G. Schechtman (see [M-S]). 
It also follows from Theorem 3.2 the way (3.5) follows from Theorem 3.1. (This 
approach gives a constant K = 4 in the exponent.) 

For a set A c Q, and k,q>0, consider 

H(A,q,k)= lyeHüi<>3xi>'" >xq€Ä> card{i;W < q,yx ± x{) < k I . 
I ten J 

For q = 1, this is exactly the set {dA < fc}. The set H(A,q,k) can be thought of 
as an "enlargement" of A, although it does not seem possible to define it as a 
neighborhood of A for a distance. 

Theorem 4.1 [T5]. For some universal constant K, and all k,q>l, we have 

P(A)> 1/2 ^P,(H(A,q,k))> l - ( T + ~^—) • (4-2) 
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As stated, this theorem gives information only when k, q are large. However 
it is also possible to show that if q > 2, k > fco, then 

P(A) > 1/2 => P*(H(A,q,k)) ^l-rik 

where rj < 1 is universal. In contrast with the case q = 1 (4.1), the estimate (4.2) 
is independent of the number of coordinates (and thus can be extended to the 
case of an infinity of factors.) 

To gain some intuition about (4.2), it is useful to consider the case where 
O, = {0,1}, W({0}) = 1 - l/n,Pi({l}) - l/n, and 

I Hn J 

In that case, P(A) > 1/2 and 

H(A,q,k) = < (x/);^x/ <q + k 

For fc of order q log q, simple estimates show that 

«^»^-(i)' 
which should be compared to (4.2). 

Theorem 4.1 has strong implications about the behavior of sums of inde-
pendent random variables valued in a Banach space. Consider such variables 
Xu-- ,Xn valued into a separable Banach space F. We now outline a method to 
obtain bounds on the tails of || ̂ ^ n X , | | . (These bounds can now also be derived 
from Theorem 3.2, which has a considerably simpler proof than Theorem 4.1. Tail 
estimates are in particular at the root of classical theorems like strong laws of 
large numbers and laws of the iterated logarithm.) While this method might look 
complicated at first glance, it seems to capture the size of these tails in essentially 
all the situations; see e.g. [T5, L-Tl]. Without essential loss of generality, one can 
assume that the variables are symmetric, i.e. X\ has the same distribution as — X\, 
Consider a sequence (e,-)^„ of Bernoulli random variables, that can be assumed 
to be independent of (X\)\^n. Thus J ^ n 8,-Z,- has the same distribution as J^^n X\. 
We then write 

(4.3) 

where EE is the conditional expectation given PQ),^„. Denote by p\ the law of X\ 
on F; Consider a set A cz P",and suppose that 

Ze<-X< 
JSn 

= Ea 

: = (I) 

Z e * 
+ (II) 

• ( 
V 

Ze'*< 
/£n 

-Et Z e < * 
i<n 

(xh---,x„)eFn,Es Z E'x'' 
te« 

<M (4.4) 
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Then it is easy to see that 

{xw- ,xn) €H(A,q,k) ]Tei*i 
i<Jfi 

where ||x,-||* is the i-th largest term of the sequence (||xi||)^n. Suppose now that 
P((XU- • • ,Xn) G A) > 1/2 (e.g. if M = 2E\\ E^«£Äll a n d there is equality in 
(4.4)). It then follows from (4.2) that, if fc ̂  q 

P((I)>^M + ^ | | X z | r ) < ( | ) . (4.5) 
i<k \ ^ / 

On the other hand, if we set 

4 = s u p j j y ( X 0 2 ; x * G £*,||x*|| < 1 

it follows from (3.4) that, conditionally on X\, ' • • ,Xn 

P((II) > X(l + u)ox) < 4e~u2. (4.6) 

To make (4.5), (4.6) usable, it remains to control Y,i<n \\xi\\* (which is a 
problem about real-valued random variables) and ox- Several methods have 
been developed for that purpose; adjusting the various parameters involved has 
allowed to get bounds of the right order in all the problems studied to date; cf. 
[L-T2], Chapters 6 to 8. 
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