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The results that I shall survey here can be seen from several different angles. There 
is a discrete point of view related to discrete finitely generated groups; there is also 
a C°° point of view related to connected Lie groups. One can, to a certain extent, 
unify the above two settings by considering general compactly generated locally 
compact groups but I shall not do so here. Both in the discrete and in the C00 case 
we can put forward either the Geometric formulation, such as Sobolev inequalities, 
or the analytical formulation that examines the behaviour of natural semigroups of 
operators on L2(G). What makes the theory hold together, in a final analysis, is that 
equivalence of all these different aspects. To explain how this comes about I have 
to start with some definitions. 

1. Distance and Volume Growth 

Let G be a discrete group generated by a finite number of generators yi,...,ykeG. 
One defines then a distance d(., .) on G by requiring that d(gx, gy) = d(x, y) 
(x, y,g e G) and that d(e, x), the distance of x e G from the neutral point e e G is, 
by definition, the smallest n > 0 for which we can write x = y*1...y[n (i1,..., in = 
l,...,k;sj = 0,±l). 

Let G be a connected Lie group and let Xu ..., Xk E S£(G) be a finite number 
of generators of the Lie algebra of G; in other words Xu . . . , Xk are left invariant 
C00 fields on G that together with their successive brackets {X^[XÌ2,..., Xis]...] 
generate the tangent space. We say that an absolutely continuous path l(t) e G 

(0 < t < T) is of length less or equal to T if its speed vector l(t) = dli — J (with 

respect to Xl9..., Xk) is almost everywhere of length < 1: This means that l(t) = 
YJ=I ajXj (p.p. t^af < 1). We then say that d(x, y)<T(x,ye G) if we can join x 
to y with a path of length < T. 

The growth function y(t) (t > 0) of G is in either of the above two cases defined 
to be y(t) = The Haar measure of a ball of radius t. For large t (t > 1) the above 
function y(t) is essentially independent of the particular choice of the generators 
used: y(t) (t > 1) is thus a group invariant. For Lie groups and 0 < t < 1 the 
behaviour of y(t) does depend on the choice of Xl9 . . . , Xk but we always have 
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y(t) « t* with ò = Ò(G, X1,X2,...,Xk) = ì,2,.... (This is a theorem of Nagel-Stein-
Wainger). For t > 1 and a Lie group we have either y(t) « tD with D = D(G) = 0, 
1, ... or y(t) > Cect (This is a theorem of Guivarc'h). In the discrete case we have 
either y(t) « tD (D(G) = 0, 1, 2,...) if G is a finite extension of a nilpotent group or 
yMC"4 -? °o, for all A > 1 in all other cases (this is a theorem of Gromov). 

2. The Diffusion and the Random Walks 

Let G be a unimodular Lie group with Xl9 ..., Xke 3?(G) as above, we can then 
consider A = —Y,Xf which can be identified with a self adjoint (positive) operator 
on L2(G) and we can also consider Tt = exp( — tA) the corresponding submarkovian 
semigroup. The kernel of that semigroup will be denoted by pt(x, y) = pt(x~xy) 
(t > 0; x, y E G). The discrete analogue of the above diffusion is of course the random 
walk defined oh a discrete group by the transition matrix M(x, y) = p(x_1y) 
(x, y E G) where p E P ( G ) is a symmetric probability measure on G. We shall consider 
in" what follows, essentially, only random walks that are defined by symmetric 
measures that have generating supports (: Gp (supp p) = G). What we shall examine 
then is the convolution powers pH of that measure or equivalenti/ Tt = 
Gxp( — t(ö — p)) the continuous time Markov semigroup that it generates. 

3. Analytic and Probabilistic Formulation 

One of the main accomplishments of the present methods is that it allows us 
to study the convolution powers of a finitely supported symmetric measure as 
considered in the previous section. 

Theorem 1. Let G be a discrete finitely generated group and let p be a measure 
as above. Let us also assume that y(t) > ctD for some c, D > 0. We then have 
ß'\{e}) = 0(n-D'2). 

The above theorem allows us in particular to classify the discrete groups for 
which the series J]jU"({e}) = +oo. Such groups are called recurrent groups, the 
reason being that the random walk with transition matrix M(x, y) = p(x~ly) is a 
recurrent random walk (and this fact is independent of the particular choice of p): 

Corollary. The only recurrent groups are the finite extensions of the following three 
groups: {0}, TL, Z2. 

Theorem 1 easily generalizes to convolution products Pi*"m*p„ provided of 
course that the measures p> satisfy the appropriate conditions uniformly in j . 
Theorem 1 is a typical result of the discrete version of our theory. The continuous 
variant of the same result is the following. 



Analysis and Geometry on Groups 953 

Theorem 2. Let G be a unimodular Lie group and let X1,..., Xk E S£(G) be as before. 
Let us assume that the induced growth function satisfies y (t) « t&(t -*0)andy(t) >ctD 

(t> 1) for some Ö, D = 0, 1 , . . . . 

We then have ||p,L = 0(ra>2) (t -+ 0) and ||p,L = 0(rD'2) (t -> oo). 
The small time behaviour of HpJI«, described in the Theorem is contained in a 

previous more general result of A. Sanchez-Calle. The group structure is not 
essential for this small time behaviour of pt. The above two theorems can of course 
be unified to a single result on locally compact groups and the methods of the proofs, 
as we shall see, have very little to do with "real analysis". 

The metric ds2 = cp(y)(dx2 + dy2) on R 2 where cp(y) = y~2 for \y\ > 1 gives an 
example of a Riemannian manifold that has exponential volume growth (since for 
|y| > 1 it is just the hyperbolic plane) but has "slow" decay for its canonical p1 
as £-> oo. Indeed the above metric is conformai with the Euclidean metric and 
therefore has no Green's function i.e. Jf pt = +oo. This shows that the group 
structure in Theorem 2 is essential for the behaviour of pt as t -> oo. 

4 Geometric Formulation 

Let G be a unimodular Lie group and let Xu ..., Xk E 3?(G) be as before. We shall 
denote the corresponding gradient by: Vf = (XJ,..., Xkf) E IR* ( / e C£(G)). The 
main Geometric Theorem is 

Theorem 3. Let G and Xx,..., Xk be as before and let ö, D > 0 be as in Theorem 2. 
Let also n > 1, ö < n < D we then have 

imu-D^cnr/n,; /e Cf. 
Conversely if the above Sobolev inequality holds for some n then n > ö and y(t) > ctn 

it > i). 

(All the || \\p norms in what follows are taken in LP(G) for the Haar measure). 
The above Sobolev type estimates are usually reformulated by the Geometers 

in terms of isoperimetric inequalities of the type | A \ J""1 )/n < C\dA\r_1(A c G) where 
| |s refers to the appropriate s-dimensional Hausdorff measure and r is the topo-
logical dimension of G. The discrete analogue of the above theorem states: 

Theorem 4. Let G be a discrete finitely generated group, then the Sobolev inequality 
ll/L/o,-!, < C\\rf\\i ( / e C0(G)) holds for some l O i e R i / and only if y(t) > ctn 

(t > 1). 

In the above theorem the L^norm of the gradient is of course \Vf^i = 
Y,d(X,y)=i \f(x) — f(y)\- Once more the above result can be stated in terms of discrete 
isoperimetric inequalities. 
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5. The Connection Between Analysis and Geometry 

What unifies the Geometric and the Analytic point of view and what is, in a final 
anafysis^he^votr^fHhe^proofs^s^he^M 
Analysis: 

Let A be the generator of an appropriate semigroup Tt = e~tA of operators 
on LP(X; dx) (the spaces of p-integrable functions on an abstract measure space 
(X; dx)). Let n > 2, the following two conditions are then equivalent: 
(i) 11/112,„(„-2) < C{Af, Z)1'2; / e Dom(^). 
(ii) \\TtfL<cr'»2\\f\\1;t>0,feL1. 

For the semigroups associated to our random walks on discrete groups the 
generator is: A = 5 — p and the Dirichlet form satisfies Dß(f) = (Af,f) « D0(f) 
where we denote by D0(f) = Y,d(X,y)=i \f(x) — f(y)\2 t n e "standard" Dirichlet form 
on G. This equivalence Dß « D0 is trivial to see if p has finite support but what is 
important is that it remains true for a more general class of measures; namely 
for all symmetric Probability measures on G with generating support and whose 
"variance" is finite: 

E(p)= E d2(e,x)p({x})< +00. 
xeG 

This observation although not very difficult to prove is absolutely crucial for us. 
In the case of a Lie group the Dirichlet form of our semigroup Tt = e~tA is of 

course the familiar expression 

(4/;/)= 11*7115 = I IVI2 

Observe finally that the L1 -> U° operator norm ||e~fJ||ij00 on a Lie group is 
pt(e) and similarly ||e~w(<5~'i)||i,00 ~ pn(e) for a discrete group (This last ~ has to 
be interpreted correctly but it certainly implies pn(e) = 0(n~a)o ||e~f(<5_/i)||i œ = 
0(r*)). 

With the above facts in mind the connection between the Geometric and the 
Analytic theory becomes obvious. Another thing that becomes apparent (and this 
is the single most important feature of all the proofs) is that changing the measure 
p, say in Theorem 1, makes no difference as long as we restrict ourselves to measures 
of finite variance. Indeed such changes leave invariant (up to equivalence) the 
Dirichlet form Dß(f). What remains to be done to complete the proof of, say 
Theorem 1, is to produce one symmetric probability measure with finite variance 
and with convolution powers that decay optimally: pn({e}) = 0(n~D/2). 

This last step is done "by hand". We simply try out a measure of the form: 
p = ^/l^-where Ay > 0,^/ly = 1 and where Xj denotes the normalized characteristic 
function of the 7-ball in G. The condition E(p) < +00 is easy to express in terms of 
the A's and the convolution powers pn can be estimated by an elementary argument. 
The above construction does not seem to work if we restrict ourselves to measures 
of finite support and this is something that to this day I cannot really explain to 
myself in a satisfactory manner. 
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6. Further Development and Open Problems 

In the interaction between the Geometric and Analytical results there is one point 
that remains obscure. Indeed what is natural to consider from the semigroup point 
of view is the norm M1/2/llp ( / e QJ0 (A is a self adjoint positive operator) and what 
occurs naturally in the Geometric formulation is the norm || Vf\\p. It is only for p = 2 
that the two norms are obviously equivalent and it is an open problem whether we 
have in general \\Ff\\p » l|41/2/llj,. That this is the case in the real variable situation 
G = IR" is the content of the classical M. Riesz theorem (for p ^ 1, oo). This 
equivalence holds when G is a group of polynomial growth (This is a recent theorem 
of G. Alexopoulos). It also holds when G is non amenable e.g. a classical non 
compact semi-simple group (this is a result of N. Lohoué). The problem for a general 
unimodular group remains open and seems difficult. The above problem has an 
obvious discrete formulation that contains, no doubt, the essence of the difficulty. 

When the group G is not unimodular then, as we already pointed out, the 
geometric aspect of our theory goes through in a very satisfactory fashion. What 
remains very much open is the analytical theory. Indeed the long time behaviour 
of the appropriate heat kernel remains untractable by the above methods. The 
problem is very much connected with the analysis of the canonical heat kernel on 
symmetric spaces. Indeed any symmetric space of non-compact type can be realized, 
by the Iwasawa decomposition KAN, as the non-unimodular group AN. 

The last problem that I shall consider consists in obtaining a finer analysis of 
the behaviour of pt as t -> oo, for Lie group, or p" for a discrete group. Assume that 
G is a unimodular Lie group. If G is not amenable, and only then, we have 
pt(e) = 0(e~Xt) where X > 0 is the spectral gap of A and depends on the particular 
choice of the fields Xl9 . . . , Xk. There are good reasons to suspect that in fact 
pt(e) ~ ta/2e~Xt where a is some integer or possibly "4-oo" that only depends on the 
group and not on the choice of the fields (just as for amenable groups where we 
have X = 0). The analogous conjecture for discrete groups is false (the counter 
example is due to D. Cartwright). If G is semi-simple this is, once more, related to 
the heat kernel on symmetric spaces (Ph. Bougerol has examined this case). 

For a Lie group of polynomial growth G. Alexopoulos has proved a "local 
Central Limit" theorem: pt(e)tD/2 —̂—• a0 > 0. The following asymptotic develop-
ment pt(e) ~ t~DI2\a0 -h o^t"1'2 + •••] should hold, but this is an open problem. 
Similarly for semi-simple groups and symmetric spaces G Herz conjectures that 
pt(e) ~ e~kttal2\ß,0 + a^112 + •••] (as t -• oo). Some logarithms could possibly 
appear in these asymptotic developments. 

Let G be a discrete group and let p, v E P(G) be two symmetric probability 
measure of finite variance. Let us also assume that pn(e) = 0[exp( — a(n))] where 
oc(t) > 0 is an increasing positive function of (t > 0). By a slight variance of the 
previous methods (here we make essential use of E.B. Davies work in the subject) 
we can then show that: vn(e) = 0 [exp( — ca(cn))] for some 0 < c, where we denote 
by 

m = ìf 
1 Jo 

a(t) dt. 
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The analogous result for unimodular Lie groups also holds. What makes this fact 
interesting is that for many natural functions e.g. a(t) = ta, ta Log(l + t) e.c.t. we 
have a « a. This fact is used to analyse the groups that have superpolynomial growth: 

Assume that G (discrete or Lie, amenable or not, but unimodular) satisfies the 
growth condition y(t) > Gxp(ct"), t>\, for some 0 < a <, 1 [cf. R. Grigorchuk's 
paper in these proceedings]. Using our methods then we can easily establish that, 
say for a discrete group, we have y(n + 1) — y(n) > exp(cna) with possibly a different 
c> 0 but the same 0 < d: <> 1. Using this fact and refining our methods further (we 
use in particular here an idea of L. Saloff-Coste) we can then prove that (again for 
a discrete group) we have: 

pn({e}) = 0[exp(-cna/(a+2))] 
The analogous result when G is a Lie group and a = 1 also holds. The above 

estimate is optimal. Indeed for any non virtuelly Nilpotent polycyclic group and 
every finitely supported symmetric p e P(G) we have p2n(e) > C exp[ —cn1/3] (this 
was shown by G. Alexopoulos) and for all these groups a = 1. The details of the 
above result will appear elsewhere. 

A decay of the type exp(—cnß) for pt(e) gives rise of course to Orlicz type Sobolev 
inequalities of the form ||/||LiogyL < C||F/||x where y = y(ß). In terms of iso-
perimetric inequalities for discrete groups for instance, we can say that if pn = 
0[exp(-cn_/?)] (0 < ß < 1) then we have: 

|5ß| > ClßKloglßl)^ 
for all finite Q c G with \Q\ > 2 where | | denotes the cardinality of a finite set. 

For exponential groups this gives: 
\dQ\>C\Q\(\og\Q\Y2. 

A final result that I shall mention concerns pt(x, y) the canonical heat kernel on 
a Riemannian manifold that covers normally some compact manifold with deck 
transformation group G. With the present methods we can show that the behaviour 
°f llPtlloo (as t -> oo) is "identical" with the behaviour of pn(e) for p E P(G) (as in 
Section 3). The term "identical" means for instance that pn(e) = O(n~a)o HpJÎ  = 
0(t~a) or more generally that we have the: 

O [exp( - a(. )] <± 0 [exp( - ca(c. )] 
correspondence that we considered above. This is one of the very first results that 
I obtained in the subject and it is this that convinced me of the fundamental 
connection that existed between the discrete and the continuous theory. 

In this survey I have said nothing about the Gaussian estimates of the heat 
kernels. It would take a different paper to do that. The interested reader could 
consult the literature below. 

Literature 

The theory that we surveyed in this paper is the subject matter of a forthcoming book [1]. 
A preliminary version of this book exists in the form of mimeographed notes: University 
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Most of the results that I presented were developed by the author in a series of papers 
the most significant being [2]. 

For the Functional Analytic tools of Section 5, and the work of E.B. Davies cf. [3, 4, 5, 
6, 12]. 

For further developments in locally compact groups, cf. [7, 8, 9, 13]. Most of the work 
of G. Alexopoulos has not yet appeared in print, cf. [10, 14]. For the Symmetric space point 
of view, cf. [11, 15]. 
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