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1. Introduction

Affine Hecke algebras are very important in representation theory and have been studied
extensively over the past few decades, along with their degenerate version introduced by
Drinfeld and Lusztig. About twenty years ago, Cherednik introduced the notion of dou-
ble affine Hecke algebra, abbreviated as DAHA, which he used to prove the Macdonald’s
constant term conjecture for Macdonald polynomials. This algebra also admits degenerate
versions, the rational one, which is also called Cherednik algebra, having been introduced
by Etingof and Ginzburg in 2002.

A rational DAHA is defined for any complex reflection group W . Its representation the-
ory yields a new approach to the representation theory of the Hecke algebra of W . Remark-
ably, this representation theory is also similar to the representation theory of semi-simple Lie
algebras. In particular, it admits a highest weight category which is analogous to the BGG
category O. Highest weight representations are infinite dimensional in general, but they ad-
mit a character. An important question is to determine the characters of simple modules.

One of the most important family of rational DAHA’s is the cyclotomic one. One reason
is that their representation theory is closely related to the representation theory of cyclotomic
Hecke algebras, which are relevant in group theory. Another reason is that their highest
weight category is closely related to the representation theory of affine Kac-Moody algebras.
This was one important motivation for the development of categorical representations (in
representation theory).

Categorical representations of Kac-Moody algebras is a relatively young subject that
arises in Representation theory and in Knot theory. The first formal definition appeared in
a paper of Chuang and Rouquier. The general case was treated independently by Rouquier
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and by Khovanov and Lauda. The ideas leading to categorical representations were around
for some two decades. One of the most remarkable application is the work of Ariki, inspired
by a conjecture of Lascoux-Leclerc-Thibon, on cyclotomic Hecke algebras. It was observed
there that the module category of cyclotomic Hecke algebras has endofunctors that on the
level of the Grothendieck group give actions of Kac-Moody Lie algebras of (affine) type A.

This structure appears at several other places in Representation theory, such as the rep-
resentations of symmetric groups, of the general linear groups or of Lie algebras of type A.
An important fact is that the endofunctors come equipped with some natural transformations
which satisfy the relations of a new algebra called quiver-Hecke algebra.

Our aim is not to give a general introduction to the subject. There are a lot of them
available in the literature, both on DAHA’s and on categorical representations. We’ll simply
focus on some recent results concerning the representation theory of these algebras.

2. Double affine Hecke algebras

2.1. Rational double affine Hecke algebras.

2.1.1. Definition. A complex reflection group W is a group acting on a finite dimensional
complex vector space h that is generated by complex reflections, i.e., non-trivial elements
that fix a complex hyperplane in h pointwise.

Given a complex reflection group W , let S be its set of complex reflections. For each
s ∈ S let αs ∈ h∗ be a generator of Im(s|h∗ − 1), and α∨s be the generator of Im(s|h − 1)
such that (αs,α∨s ) = 2. Let c : S → C, s $→ cs be a W -invariant function.

Definition 2.1 ([18]). The rational DAHA, abbreviated RDAHA, associated with W, h and c
is the quotient Hc(W ) of the algebra CW!T (h⊕h∗) by the ideal generated by the relations
[x, x′] = [y, y′] = 0 and [y, x] = (y, x) −

∑
s∈S cs (y,αs)(α∨s , x), for all x, x′ ∈ h∗ and

y, y′ ∈ h.

The algebra Hc(W ) may as well be defined as the subalgebra of EndC(C[h]) gener-
ated by the action of w ∈ W , the multiplication by all elements of h∗ ⊂ C[h], and the
Dunkl-Opdam operators ∂y +

∑
s∈S cs (y,αs)α−1

s (s − 1) where y ∈ h. The (faithful)
representation of Hc(W ) on C[h] is called the polynomial representation.

2.1.2. The highest weight category Oc(W ). The algebra Hc(W ) contains commutative
subalgebras C[h] and C[h∗]. We define the category Oc(W ) to be the category of Hc(W )-
modules which are finitely generated over C[h] and locally nilpotent under the action of h.
It is discussed in details in [21]. This is an analogue of the BGG category O for semisimple
Lie algebras.

The algebra Hc(W ) admits a triangular decomposition. More precisely, the multiplica-
tion yields an isomorphism Hc(W ) ≃ C[h] ⊗ C[W ] ⊗ C[h∗]. The most important objects
in the category Oc(W ) are the standard modules ∆c(τ) = IndHc(W )

W⊗C[h∗] τ , where τ is an
irreducible representation of W with the zero action of h, and their irreducible quotients
Lc(τ).

It is easy to see that Oc(W ) contains all finite dimensional modules and that the standard
module ∆c(triv) is isomorphic to the polynomial representation, where triv is the trivial
one-dimensional representation of W .
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Definition 2.2. A highest weight category is a pair (C,Λ) where C artinian abelian cat-
egory with enough projectives and injectives, such that the endomorphism algebra of the
irreducible objects are one dimensional, and Λ is an interval-finite poset indexing a set of
pairwise non-isomorphic irreducible object {L(λ) ; λ ∈ Λ} of C.

Further, the following axioms hold. Let P (λ) be the projective cover of L(λ) in C. Define
the standard object ∆(λ) to be the largest quotient of P (λ) such that [∆(λ) : L(µ)] = δλ,µ
for µ ̸< λ. Then P (λ) has a finite filtration with top section isomorphic to ∆(λ) and other
sections of the form ∆(µ) with µ > λ.

The BGG category O for semisimple Lie algebras is an highest weight category. The
category Oc(W ) is also an an highest weight category.

Let Ht(W ) be the Hecke algebra of W at the parameter t = exp(2πic), see [7] for a
definition. According to [21], there is a functor KZc : Oc(W ) → Ht(W )-mod, which is
a quotient functor in the general sense of Gabriel. This functor has many good properties.
In particular, by [41], this functor determines the highest weight category Oc(W ) up to an
equivalence.

More precisely, let R be a commutative local C-algebra which is a domain and let C be a
highest weight category over R. Let H be a finite projective R-algebra. An R-linear functor
F : C → H-mod is a highest weight cover if it is a quotient functor which is fully faithful
on projective modules. It is a d-faithful highest weight cover if it is a quotient functor which
induces an isomorphism ExtiC(M,N) → ExtiH(FM,FN) for all i ! d and all M,N ∈ C
admitting a finite filtration whose sections are standard modules.

For any R-algebra R′ and any R-linear category C, let C⊗RR′ be the R′-linear category
with the same objects as C and with HomC⊗RR′(M,N) = HomC(M,N) ⊗R R′ for each
objects M,N .

Now, let K be the fraction field of R. We have the following.

Theorem 2.3 ([40]). Assume that the K-algebra H ⊗R K is split semisimple and that
Fi : Ci → H-mod is a 1-faithful highest weight cover for i = 1, 2. Then the category Ci⊗RK
is semisimple and the functor Fi ⊗R K induces a bijection Irr(Ci ⊗R K) ≃ Irr(H ⊗R K).
Let !i be the partial orders on Irr(H⊗RK) induced by the poset of Ci. If !1 is a refinement
of !2, then there is an equivalence of highest weight categories C1 ≃ C2.

2.1.3. Support of modules in Oc(W ). The functor KZc is not generally a category equiv-
alence, since the restriction from h to hreg kills any object of Oc(W ) supported on h \ hreg ,
the union of all reflecting hyperplanes of W . The support of an irreducible object is always
a W -orbit of an intersection of reflecting hyperplanes by [20]. So it has, up to conjugacy,
a parabolic subgroup W ′ attached to it by taking the stabilizer of a generic point in the in-
tersection of these hyperplanes. Despite there usually being no non-trivial homomorphism
Hc(W ′) → Hc(W ), Bezrukavnikov and Etingof have constructed in [2] an induction func-
tor and a restriction functor between the categories Oc(W ) and Oc(W ′), for each x ∈ h
with stabilizer W ′. Up to isomorphism, these functors are independent of the choice of the
element x. Therefore, it is important to know the support of representations in Oc(W ).

A module is supported at 0 if and only if it is finite dimensional. The values of the
parameter c for which the module Lc(triv) is finite dimensional has been determined in [52]
by geometric methods (with some restrictions on W and c), see Section 2.2.4 below. More
generally, the support of Lc(triv) has been completely determined by Etingof in [16], using
the Macdonald-Mehta integral for Weyl groups.
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Example 2.4. The complex reflection groups have been classified in [57]. One infinite fam-
ily appears, labelled G(d, p, n), where d, e, n are positive integers such that p divides d.
The subfamily G(d, 1, n) takes an important place. We have G(d, 1, n) = Sn ! (Z/d)n,
the wreath product of the symmetric group Sn and the cyclic group Z/d. We’ll abbrevi-
ate Hc(d, n) = Hc(G(d, 1, n)) and Oc(d, n) = Oc(G(d, 1, n)). The algebra’s Hc(d, n) are
called the cyclotomic RDAHA, and abbreviated CRDAHA. The Hecke algebra Ht(G(d, 1, n))
at the parameter t = exp(2πic) associated with Hc(d, n) is an important algebra in rep-
resentation theory. It is called the cyclotomic Hecke algebra. We’ll write Ht(d, n) =
Ht(G(d, 1, n)), hence the KZ-functor is a functor KZc : Oc(d, n)→ Ht(d, n)-mod.

To each tuple of integers e, s1, . . . , sd with e > 0, one associates the level d Fock space of
multicharge s = (s1, . . . , sd). It is a semisimple ŝle-module F (s) defined in a combinatorial
way and equipped with a (dual) canonical basis, defined also in a combinatorial manner, see
[50] and Section 4.2. The dimension of the support of all simple object in Oc(d, n) has been
characterized in [48] via the representation theory of F (s), using categorical representations,
answering positively to a conjecture of Etingof in [17]. See Section 4.2.

2.2. Affine and double affine Hecke algebras.

2.2.1. Cartan data and braid groups. A Cartan datum consists of a finite-rank free abelian
group X whose dual lattice is denoted X∨, a finite set of vectors Φ = {α1, . . . ,αn} ⊂ X
called simple roots and a finite set of vectors Φ∨ = {α∨1 , . . . ,α∨n} ⊂ X∨ called simple
coroots. Set I = {1, . . . , n}. The I × I matrix A with entries aij = (αj ,α∨i ) is assumed to
be a generalized Cartan matrix.

Let α ∈ X and α∨ ∈ X∨ satisfy (α,α∨) = 2. The linear automorphism sα,α∨(λ) =
λ − (λ,α∨)α of X is a reflection. If α∨ is implicitly associated to α we write sα for both
sα,α∨ and sα∨,α. When α = αi and α∨ = α∨i are a simple root and the corresponding
coroot, we write si = sαi . The si are called the simple reflections.

We’ll assume that the Cartan datum is non-degenerate, i.e., the simple roots are linearly
independent. The Weyl group W is the group of automorphisms of X (and of X∨) generated
by the simple reflections si. The sets of roots and coroots are R =

⋃
i W (αi), R∨ =⋃

i W (α∨i ). The root and coroot lattices are Q = ZΦ ⊂ X and Q∨ = ZΦ∨ ⊂ X∨. The
set of positive roots is R+ = R ∩Q+, where Q+ = NΦ. For each element α =

∑
i∈I ai αi

in Q+, let |α| =
∑

i∈I ai be the height of α. The dominant weights are the elements of the
cone X+ = {λ ∈ X ; (λ,α∨i ) ! 0 for all i}.

The Cartan datum is finite if W is a finite group, or equivalently, R is a finite set. The
finite Cartan data classify connected reductive algebraic groups G over any algebraically
closed field. Then X is the character group X∗(T ) of a maximal torus T in G, called the
weight lattice of G, and X∨ is the group X∗(T ) of one-parameter subgroups of T , called
the coweight lattice of G. An element ωi ∈ R ⊗ X is called a i-th fundamental weights if
we have (ωi,α∨j ) = δi,j for all j.

The Cartan datum is affine if its Cartan matrix A is singular, and for every proper subset
J ⊂ I , the Cartan datum (X, (αi)i∈J , X∨, (α∨i )i∈J) is finite. This definition implies that the
nullspace of A is one-dimensional. Since X is non-degenerate, then {λ ∈ Q ; (λ,α∨i ) = 0
for all i} is a sublattice of rank 1. It has a unique generator δ ∈ Q+, called the nullroot. The
affine Cartan matrices are classified in [23] and [37].

The Weyl group W is a Coxeter group with defining relations s2i = 1 and sjsjsi · · · =
sjsisj · · · (mij factors on each side) where if aijaji = 0, 1, 2, 3 then mij = 2, 3, 4, 6 re-
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spectively, and if aijaji ! 4 there is no relation between si, sj . The length l(w) of w ∈ W
is the minimal l such that w = si1 · · · sil . Such an expression is called a reduced fac-
torization. The braid group B(W ) is the group with generators Ti and the braid relations
TjTjTi · · · = TjTiTj · · · (mij factors on each side). If w = si1 · · · sil is a reduced fac-
torization, we set Tw = Ti1 . . . Til . There is a canonical homomorphism B(W ) → W ,
Ti #→ si.

The affine Weyl group is the semidirect product W !X . We use multiplicative notation
for the group X , denoting λ ∈ X by xλ. So W !X is generated by its subgroups W and
X with the additional relations sixλsi = xsi(λ). For any finite Cartan datum X with Weyl
group W and set of simple roots {αi}, there is an affine Cartan datum with weight lattice
X̃ = X ⊕Z δ, Weyl group W̃ = W !Q∨ and set of simple roots Φ̃ = {α̃0, . . . , α̃n}. Here,
we set α̃0 = δ − θ where θ the highest root in R, and α̃i = αi if i ̸= 0. Let α̃∨0 , . . . , α̃∨n
be the affine simple coroots in the dual lattice X̃∨. The canonical pairing X̃ × X̃∨ → Z
is such that (δ, α̃∨i ) = 0 for all i. There is also an affine Cartan datum with weight lattice
Xaff = X̃ ⊕ Z ω̃0, Weyl group W̃ and set of simple roots Φ̃ such that (ω̃0, α̃∨i ) = δi,0.

2.2.2. Affine and double affine Hecke algebras. Consider a non-degenerate Cartan datum
with weight lattice X , Weyl group W and root system R. To simplify, we’ll assume that
α∨i /∈ 2X∨ for each i. Fix a commutative ground ring A and a W -invariant function t :
R→ A×. We abbreviate ti = tαi .

Definition 2.5. The affine Hecke algebra Ht(W,X) is the A-algebra generated by elements
Ti satisfying the braid relations of B(W ), the quadratic relations (Ti − ti)(Ti + t−1

i ) = 0,
and elements xλ, with λ ∈ X, satisfying the relations of the group algebra AX and the
relation

Tix
λ − xsi(λ)Ti = (ti − t−1

i )(xλ − xsi(λ))(1− xαi)−1.

The subalgebra of Ht(W,X) generated by the elements Ti is isomorphic to the ordinary
Hecke algebra Ht(W ). The induced representation IndHt(W,X)

Ht(W ) (triv) is called the polyno-
mial representation.

Definition 2.6. Let W be finite. The double affine Hecke algebra associated with X is the
A-algebra Ht(W̃ , X̃).

2.2.3. Geometric realization of double affine Hecke algebras. Let G be a universal
Chevalley group, i.e., G is a connected, simple and simply connected algebraic group over C.
Let (X,R,X∨, R∨) be the root datum of G. Consider the corresponding affine Cartan data
with Weyl group W̃ and weight lattices X̃ or Xaff . The affine Hecke algebra Ht(W̃ ,Xaff)

associated with Xaff contains Ht(W̃ , X̃) as a subalgebra, and we have a semidirect de-
composition Ht(W̃ ,Xaff) = A[x±ω0 ] ! Ht(W̃ , X̃). Thus, the representation theory of
Ht(W̃ , X̃) may be deduced from the representation theory of Ht(W̃ ,Xaff) by Clifford the-
ory. The element q = xδ in Ht(W̃ ,Xaff) is central.

Set F = C((ϖ)) and O = C[[ϖ]]. Let G(F) be the loop group of G (this is an infinite-
dimensional group ind-scheme whose set of C-points is equal to the set of F-points of G).
Since G is simply connected, the isomorphism classes of central extensions of G(F) by Gm

are naturally in bijection with the W -invariant even, negative-definite symmetric bilinear
forms X∨ × X∨ → Z, see e.g., [39]. Let G̃ be the central extension associated with the
minimal such pairing. The multiplicative group Gm acts naturally on G(F) by ‘rotation of
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the loop’ and this action lifts to G̃. We denote the corresponding semi-direct product by
Gaff . The weight lattice of Gaff is Xaff , the weight lattice of G̃ is X̃ .

The affine flag manifold B is an ind-scheme equal to the fpqc quotient Gaff/I , where
I ⊂ G is the Iwahori subgroup. The set of C-points of B is canonically identified with
the set of all conjugates of the Lie algebra i of I , under the adjoint action of Gaff on its
Lie algebra. For each b ∈ B, let bnil denote its pro-nilpotent radical. Set N = {(x, b) ∈
inil × B ; x ∈ bnil}, an ind-coherent ind-scheme, see [53]. The ind-scheme N admits a
natural action of Gaff ×Gm, where Gm acts by dilatations on inil.

Let KI×Gm(N ) be the Grothendieck group of the abelian category of I×Gm-equivariant
coherent sheaves on N . From now on, we assume that the function t on R is constant, i.e., the
Hecke algebra depends on a single parameter t. Set A = Z[t−1, t]. Using correspondences
on N we prove the following, see [19, 53].

Theorem 2.7. There is an A-algebra structure on KI×Gm(N ), and Ht(W̃ ,Xaff) is isomor-
phic to KI×Gm(N ) as A-algebras.

Consider the tori T̃ = Spec(CX̃) and Taff = Spec(CXaff) in G̃ and Gaff . A character
χ : A[Xaff ] → C is a triple (s, τ, ζ) where ζ = χ(t), τ = χ(q) and s is an element of T̃ .
The pair (s, τ) can be viewed as an element of the group Taff . It acts on the ind-scheme B
by left multiplication. Let Bs,τ be the fixed points subset.

For each x ∈ gaff , the affine Springer fiber Bx is the ind-scheme Bx = {b ∈ B ; x ∈
bnil}. Set Bs,τ

x = Bs,τ ∩ Bx

Let G(s, τ, x) ⊂ Gaff be the subgroup of elements commuting with x and (s, τ), and let
A(s, τ, x) be the group of connected components of G(s, τ, x). An element of G̃ is called
semisimple if it is conjugate to an element of T̃ . Let Στ,ζ be the set of triples (s, x,π)

where s ∈ G̃ is semisimple, x ∈ gaff is topologically nilpotent in the sense of [32] with
ad(s,τ)(x) = ζ−1x, and π is an irreducible representation of A(s, τ, x) which is a constituent
of the natural representation of A(s, τ, x) in H∗(Bs,τ

x ,C). Two triples in Στ,ζ are equivalent
if they are conjugated by an element of Gaff .

The A-algebra Ht(W̃ ,Xaff) has a triangular decomposition Ht(W̃ ,Xaff) ≃ AXaff ⊗A

Ht(W )⊗AAX∨
aff . Let Oτ,ζ(W̃ ,Xaff) be the category of all finitely generated modules over

C which are locally finite over CXaff and such that q, t act by scalar multiplication by τ , ζ.
Using the theorem above, we get the following.

Theorem 2.8 ([53]). Assume that τ is not a root of 1 and that τk ̸= ζ2m for each k,m >
0. The isomorphism classes of simple objects in Oτ,ζ(W̃ ,Xaff) are in bijection with the
equivalence classes of triples (s, x,π) in Στ,ζ .

Remark 2.9.

(a) Theorem 2.7 is an affine version of the Kazhdan-Lusztig classification of the simple
modules of affine Hecke algebras in [31], see also Ginzburg’s proof in [10].

(b) Let τZ ⊂ C× be the subgroup generated by τ . By [5], there is a bijection from the set
of all τZ !G(F)-conjugacy classes in G(F) containing a point in G(O) onto the set
M(G) of isomorphism classes of topologically trivial semistable principal G-bundles
over the elliptic curve E = C×/τZ. We deduce that the set of equivalence classes in
Στ,ζ can be described in terms of isomorphism classes of Higgs bundles over E, see
[4] for details.
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(c) The theorem above admits a global version which yields a representation of an ana-
logue of the double affine Hecke algebra in the cohomology groups of some fibers of
the Hitchin map associated with a smooth projective curve C, see [60]. These fibers
are closed subschemes of the moduli space of parabolic Higgs bundles over C. If
C = P1, equipped with its natural Gm-action, the algebra above is closely related to
the graded version of Ht(W̃ ,Xaff) introduced by Cherednik, see Section 2.2.4 below.

2.2.4. Application to finite dimensional representations. Fix a Cartan datum with weight
lattice X, Weyl group W , root system R and set of simple roots Φ = {αi}. Fix a commu-
tative ground ring A. We’ll assume that α∨i /∈ 2X∨ for each i. Let κ : R → A× be a
W -invariant function. We abbreviate κi = καi .

The affine Hecke algebra Ht(W,X) admits a graded version, which is the A-algebra
H′κ(W,X) generated by elements σw, with ∈ W , satisfying the relations of the group alge-
bra AW and elements ξλ, with λ ∈ X , satisfying the relations of the group algebra AX and
the relation σiξλ − ξsi(λ)σi = κi(α∨i ,λ).

The induced representation Ind
H′κ(W,X)
AW (triv) is called the polynomial representation.

It is faithful, which permits to view H′κ(W,X) as a subalgebra of the semi-direct product
AW !D(T )rat, where D(T )rat is the ring of differential operators with rational coefficients
on the torus T associated with the lattice X , see [34].

Assume that the Cartan datum is of finite type. By [34] the irreducible representations of
the affine Hecke algebra Ht(W,X) may be described in terms of irreducible representations
of graded affine Hecke algebras associated with root subsystems of R. Similarly, by [52] the
irreducible representations of the double affine Hecke algebra Ht(W̃ , X̃) may be described
in terms of irreducible representations of some graded double affine Hecke algebras.

Assume also that the Cartan datum is associated with a universal Chevalley group G.
According to Cherednik, there is an exact fully faithful functor which embeds the category
of finite dimensional Hc(W )-modules into the category of finite dimensional H′κ(W̃ , X̃) for
a good choice of the parameters, see e.g., [52, sec. 2.3]. By [2, sec. 5.4], all finite dimensional
representations of H′κ(W̃ , X̃) may indeed be described in terms of representations of rational
DAHA’s associated with root subsystems of maximal rank via a version of the Borel-de
Siebenthal algorithm.

Using this, it is proved in [52] that Hc(W ) acts on the homology groups H∗(Bs,τ
x ,C),

whenever the affine Springer fiber Bx has a finite dimensional cohomology, yielding a clas-
sification of all finite dimensional modules which are quotient of the polynomial representa-
tion.

3. Quiver-Hecke algebras

3.1. Quantum groups.

3.1.1. Definition. Fix a non-degenerate Cartan datum (X,Φ, X∨,Φ∨) with a symmetriz-
able generalized Cartan matrix A = (ai,j)i,j∈I , i.e., there exist non-zero integers di such
that di aij = dj aji for all i, j. The integers di are unique up to an overall common factor.
They can be assumed positive. Then di is the length of the root αi. Note that the generalized
Cartan matrix of finite and affine type are all symmetrizable.
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Assume that for each i ∈ I , there exists ωi ∈ X, a fundamental weight, such that
(ωi,α∨j ) = δi,j for all j ∈ I . Let q be an indeterminate and set qi = qdi . For m,n ∈ N we
set [n]i = (qni − q−n

i )/(qi − q−1
i ), [n]i! =

∏n
k=1[k]! and

[
m
n

]
i
= [m]i!/[m− n]i![n]i!.

Definition 3.1. The quantum group associated with (X,Φ, X∨,Φ∨) is the associative alge-
bra Uq over Q(q) with 1 generated by ei, fi, i ∈ I , and lh, h ∈ X∨, satisfying the following
relations

l0 = 1, lhlh′ = lh+h′ ,
lheil−h = q(h,αi)ei, lhfil−h = q−(h,αi)fi,

eifj − fjei = δi,j(ki − k−1
i )(qi − q−1

i ) where ki = ldiα∨i
,

∑1−ai,j

r=0

[
1−aij

r

]
i
e
1−aij−r
i ejeri = 0 if i ̸= j,

∑1−ai,j

r=0

[
1−aij

r

]
i
e
1−aij−r
i ejeri = 0 if i ̸= j.

Let U+
q , U−q be the subalgebra of Uq generated by ei’s, fi’s respectively, and let U0

q be the
subalgebra of Uq generated by lh with h ∈ X∨. Then we have a triangular decomposition
Uq = U−q ⊗ U0

q ⊗ U+
q , and the weight space decomposition U−q =

⊕
α∈Q+

U−q,α where
U−q,α = {x ∈ U−q ; lhx l−h = q−(h,α)x for any h ∈ X∨}.

Fort each λ ∈ X there exists a unique irreducible highest weight module Lq(λ) with
highest weight λ, i.e., a Uq-module Lq(λ) = M with a weight space decomposition M =⊕

µ∈X Mµ, where Mµ = {v ∈ M ; lhv = q(h,µ)v for all h ∈ X∨}, such that there is a
non-zero vector vλ ∈Mλ with eivλ = 0 for all i ∈ I and M = Uq vλ.

Let A = Z[q, q−1] and set e(n)i = eni /[n]i!, f
(n)
i = fn

i /[n]i! for all n ∈ N. We define
the A-form UA to be the A-subalgebra of UA generated by e(n)i , f (n)

i , lh with i ∈ I , n ∈ N
and h ∈ X∨. We define the A-form LA(λ) to be the A-submodule of Lq(λ) given by
LA(λ) = UAvλ.

According to Lusztig and Kashiwara, see [35], [28], the quantum group U−q admits a
canonical basis, which is an A-basis B of the A-module U−A = UA∩U−q such that, for each
integrable dominant weight λ ∈ X+ the set {b vλ ; b vλ ̸= 0} is an A-basis of LA(λ).

3.2. Quiver-Hecke algebras.

3.2.1. Definition. Fix a symmetrizable generalized Cartan matrix A = (ai,j)i,j∈I and a
commutative graded ring k =

⊕
n∈Z kn such that k0 is a field and kn = 0 if n < 0. Let

ci,j,p,q ∈ k be of degree −2di(aij + p) − 2djq. Assume that ci,j,−ai,j ,0 is invertible. For
i, j ∈ I let Qi,j ∈ k[u, v] be such that Qij(u, v) = Qji(v, u), Qij(u, v) = 0 if i = j and
Qij(u, v) =

∑
p,q!0 ci,j,p,q u

pvq if i ̸= j.

Definition 3.2 ([32, 42]). The quiver-Hecke algebra of degree n ! 0 associated with A and
(Qi,j)i,j∈I is the associative algebra R(n) over k generated by e(i), xk, σl with i ∈ In,
k ∈ [1, n], l ∈ [1, n) satisfying the following defining relations

e(i) e(i′) = δi,i′ e(i),
∑

i e(i) = 1,
xk xl = xl xk, xk e(i) = e(i)xk,
σl e(i) = e(sli)σl, σk σl = σl σk if |k − l| > 1,
σ2
l e(i) = Qil,il+1(xl, xl+1) e(i),
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(σkxl − xsk(l)σk) e(i) =

⎧
⎪⎨

⎪⎩

−e(i) if l = k, ik = ik+1,

e(i) if l = k + 1, ik = ik+1,

0 otherwise,

(σk+1 σk σk+1 − σk σk+1 σk) e(i) =

{
ak(i) e(i) if ik = ik+2,

0 otherwise,

where ak(i) = (Qik,ik+1(xk, xk+1) − Qik+2,ik+1(xk+2, xk+1))/(xk − xk+2). The algebra
R(n) admits a Z-grading given by deg e(i) = 0, deg xke(i) = 2dik and deg σle(i) =
−dik aik,ik+1 .

Now, fix a non-degenerate Cartan datum (X,Φ, X∨,Φ∨) with generalized Cartan matrix
A. Fix a dominant integral weight λ ∈ X+. Given i ∈ I , set s = (λ,α∨i ) and fix a monic
polynomial aλi (u) =

∑s
r=0 ci,r u

s−r in k[u] of degree s such that the element ci,r ∈ k has
the degree 2rdi.

Definition 3.3. The cyclotomic quiver-Hecke algebra of degree n ! 0 associated with R(n),
the weight λ ∈ X+ and the polynomials aλi is the quotient Rλ(n) of the Z-graded algebra
R(n) by the homogeneous two-sided ideal generated by the elements aλi1(x1)e(i) for all
i ∈ In.

Let proj(R(n)), proj(Rλ(n)) be the categories of finitely generated projective graded
modules over R(n), Rλ(n) respectively. Let [proj(R(n))], [proj(Rλ(n))] be their
Grothendieck groups. They are A-modules, where the action of q is given by the grade
shift functor. There are natural embeddings R(m)⊗R(n) ⊂ R(m+ n). The induction and
restriction functors equip the A-module [proj(R)] =

⊕
n!0[proj(R(n))] with the structure

of a bialgebra.

Theorem 3.4 ([32]). The A-module [proj(R)] is isomorphic to U−A as a bialgebra.

Composing the induction and restriction functors with the functor

proj(R(n))→ proj(Rλ(n)), M &→ Rλ(n)⊗R(n) M,

Kang and Kashiwara proved the following, see also [58].

Theorem 3.5 ([24]). There is a natural structure of UA-module on

[proj(Rλ)] =
⊕

n!0

[proj(Rλ(n))]

such that it is isomorphic to LA(λ).

Remark 3.6. For each α ∈ Q+ of height n we write Iα = {i = (i1, . . . , in) ∈ In ;∑n
k=1 αik = α}, e(α) =

∑
i∈Iα e(i), R(α) = e(α)R(n) e(α) and R(α)λ = e(α)R(n)λ

e(α). Then, the isomorphisms in Theorems 3.4, 3.5 map [proj(R(α))] and [proj(R(α)λ)] to
the weight subspaces U−A,α = U−A ∩ U−q,α and LA(λ)λ−α = LA(λ) ∩ Lq(λ)λ−α.
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3.2.2. Geometric realization of quiver-Hecke algebras. Let Γ = (I,Ω) be a locally finite
quiver without loops, with a vertex set I and an oriented edge set Ω. For each arrow h ∈ Ω
let h′, h′′ denote the incoming and outgoing vertex. For i, j ∈ Ω with i ̸= j, let Ωij = {h ∈
Ω ; h′ = i, h′′ = j} and hij = ♯Ωij . The matrix A given by aii = 2 and aij = −hij − hji

is a symmetric generalized Cartan matrix, and any symmetric generalized Cartan matrix can
be realized in this way via a quiver.

Fix a finite dimensional I-graded C-vector space V =
⊕

i∈I Vi. A representation of Γ
in V is an element of EV =

⊕
h∈Ω Hom(Vh′ , Vh′′). The groups GV =

∏
i∈I GL(Vi) and

TΩ = (Gm)Ω act on the space of representations EV by (g, t)·(xh)h∈Ω = (th gh′′ xh g
−1
h′ )h∈Ω.

We’ll abbreviate E = EV .
For i = (i1, . . . , im) ∈ In, the variety of complete flags of type i is a C-scheme whose

set of C-points is the set Fi of tuples φ = (0 = φ0 ⊂ φ1 ⊂ · · · ⊂ φm = V ) where φk is
an I-graded subspace such that dim(φk/φk−1) = αik for k ∈ [1,m]. The group GV acts
transitively on Fi and TΩ acts trivially.

For x ∈ E, a flag φ ∈ Fi is x-stable if xh(φk ∩ Vh′) ⊂ φk−1 ∩ Vh′′ for each h ∈ Ω,
k ∈ [1,m]. Let F̃i be the set of pairs (x,φ) ∈ E × Fi such that φ is x-stable. The group
GV × TΩ acts diagonally on F̃i. Let πi : F̃i → E be the obvious projection. We write
L(i) = Rπi !(CF̃i

[2 dim F̃i]), a semisimple complex in the bounded GV × TΩ-equivariant
derived category Db

GV ×TΩ
(E) of sheaves of C-vector spaces on E. Set L(n) =

⊕
i∈In L(i).

The Z-graded module Ext(L(n),L(n)) =
⊕

i Ext
i(L(n),L(n)) is a Z-graded k-algebra

for the Yoneda multiplication. We call it the Yoneda algebra of L(n). Here the extension
groups are computed in the triangulated category Db

GV ×TΩ
(E).

Now, take k = H∗
TΩ

(•,C) as the base ring. We have k = C[χh ; h ∈ Ω], where χh is
the equivariant Chern class of the 1-dimensional representation of the h-th factor C× in TΩ.
Set Qij(u, v) =

∏
h∈Ωij

(v − u + χh)
∏

h∈Ωji
(u − v + χh) if i ̸= j and Qij(u, v) = 0 if

i = j. Let R(n) be the quiver-Hecke algebra of degree n ! 0 associated with the generalized
Cartan matrix A and the matrix (Qi,j)i,j∈I .

Theorem 3.7 ([42, 55]). There is a Z-graded k-algebra isomorphism

R(n) ≃ Ext(L(n),L(n))

which identifies the idempotent e(i) with the projection to the direct summand L(i) ⊂ L(n).

Now, set k = C, viewed as the quotient of C[χh ; h ∈ Ω] by the maximal ideal generated
by all elements χh. Fix a non-degenerate Cartan datum (X,Φ, X∨,Φ∨) with generalized
Cartan matrix equal to the matrix A above. Let λ ∈ X+ be a dominant weight and Uq ,
R(n), R(n)λ be the corresponding quantum group, quiver-Hecke algebra and cyclotomic
quiver-Hecke algebra. Using the previous theorem and Lusztig’s geometric realization of
the canonical bases, see [35], we obtain the following refinement of Theorem 3.4, 3.5.

Corollary 3.8.
(a) There is a bialgebra isomorphism [proj(R)] ≃ U−A which identifies the canonical

basis in the right hand side with the set of projective indecomposable self-dual modules
in the left hand side.

(b) There is a UA-module isomorphism [proj(Rλ)] ≃ LA(λ) which identifies the canon-
ical basis in the right hand side with the set of projective indecomposable self-dual
modules in the left hand side.
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Remark 3.9.
(a) The construction above can be generalized to allow quiver with loops, arbitrary partial

flags of a quiver representation, or sheaves of vector spaces over a field of positive
characteristic, see [25, 36, 49] for details. Taking a more general version of flags in
representations of the quiver yields a more general version of quiver-Hecke algebras
called weighted KLR algebras by Webster in [59].

(b) If the polynomial Qij(u, v) satisfies the conditions in Section 3.2.1, but does not sat-
isfy the conditions in Section 3.2.2, then Corollary 3.8 may not hold, see [26] for
details.

(c) It is not known how to construct the canonical basis of U−q using quiver-Hecke al-
gebras when the Cartan matrix A is not symmetric. However, one can construct the
canonical basis of U−q for any non symmetric A of finite or affine type by mimicking
the construction in [35]. More precisely, let Γ be a quiver with a compatible automor-
phism γ, i.e., a pair of automorphisms γ : I → I , γ : Ω→ Ω such that γ(h)′ = γ(h′),
γ(h)′′ = γ(h′′) for each h ∈ Ω. Assume that γ is of finite order ℓ and that h′, h′′ are
not in the same γ-orbit for each h.

Put [I] = I/γ, and for each i ∈ I let [i] ∈ [I] be its γ-orbit. Let h[i],[j] be the number
of γ-orbits in the set Ω[i],[j] = {h ∈ Ω ; h′ ∈ [i], h′′ ∈ [j]}. Put d[i] = ♯[i]. The
matrix A given by a[i],[i] = 2 and a[i],[j] = −(hij + hji)/d[i] is a symmetrizable
generalized Cartan matrix, and any generalized Cartan matrix of finite or affine type
can be realized in this way. Let Uq be the corresponding quantum group.

For any element α =
∑

i∈I ai αi in Q+ such that aγ(i) = ai for all i, the quiver-
Hecke algebra R(α) admits a natural action of γ. This yields a periodic functor on the
category proj(R(α)), with the terminology of [35, chap. 11]. Let K(proj(R(α)) be
the corresponding twisted Grothendieck group, as defined in [35, sec. 11.1.5].

Let O ⊂ C be the subring consisting of all Z-linear combinations of ℓ-th roots of
1. There is a bialgebra isomorphism K(proj(R)) ≃ U−A ⊗Z O which identifies the
canonical basis of U− with the set of projective indecomposable self-dual modules in
K(proj(R)) =

⊕
α K(proj(R(α)). A similar construction gives a realization of the

canonical basis of all integrable simple modules of Uq .

3.2.3. Affine Hecke algebras of type A : Ariki’s theorem. Consider the Cartan datum
of type An−1 with weight lattice X =

⊕n
i=1 Z ϵi ≃ Zn and simple roots given by αi =

ϵi − ϵi+1 with i ∈ [1, n). The Weyl group is the symmetric group W = Sn.
Set A = Z[t−1, t]. The affine Hecke algebra of GL(n) is the A-algebra HA

t (n) =
Ht(W,X) which is generated by elements T1, . . . , Tn−1 satisfying the braid relations of
B(Sn), the quadratic relations (Ti − t)(Ti + t−1) = 0, and commuting elements X±1

1 , . . . ,
X±1

n satisfying the relation TiXiTi = Xi+1, TiXj = XjTi if i ∈ [1, n) and j ̸= i, i+ 1.
Fix an element ζ ∈ C× such that ζ2 ̸= 1. Set HA

ζ (n) = HA
t (n)⊗A C, where χ : A→ C

is the character such that t (→ ζ. The group Z acts on C× by Z ∋ n : i (→ iζ2n. Let I be a
Z-invariant subset in C×.

Let mod(HA
ζ (n)) be the category of all finitely generated HA

ζ (n)-modules. Let
modfdI (HA

ζ (n)) be the full subcategory of all finite dimensional modules of type I , i.e., the
finite dimensional modules M such that M =

⊕
i∈In Mi where Mi = {v ∈ M ; (Xk −

ik)rv = 0 for any k and for some r ≫ 0}. Let [modfdI (HA
ζ (n))] be the Grothendieck group
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of modfdI (HA
ζ (n)), and set [modfdI (HA

ζ )] =
⊕

n!0[modfdI (HA
ζ (n))]. The group [modfdI (HA

ζ )]
is a bialgebra where the product and coproduct are given by the induction and restriction with
respect to the obvious inclusion HA

ζ (m)⊗HA
ζ (n) ⊂ HA

ζ (m+ n).
We can view I as a quiver without loops, with vertex set I and with an arrow i → iζ2

for each i ∈ C×. Let Uq be the quantum group associated with this quiver and let U be
its specialization at q = 1. We define U−, L(λ) in the obvious way. The following was
observed by Grojnowski. It follows from the Kazhdan-Lusztig and Ginzburg works [32],
[10].

Theorem 3.10 ([22]). The group [modfdI (HA
ζ )] is isomorphic to U− as a bialgebra. Under

this isomorphism, the classes of the simple modules is identified with the dual canonical
basis of U−.

If J is another Z-invariant subset in C× such that I ∩ J = ∅, then the induction yields
an equivalence of categories modfdI∪J(H

A
ζ (n)) ≃ modfdI (HA

ζ (n))×modfdJ (HA
ζ (n)). Hence

it is enough to assume that I is a Z-orbit. Then, the Cartan datum associated with the quiver
I above, see Section 3.2.2, is either of type A∞ or of type A(1)

e for some integer e > 0. We
deduce that U ⊗Z C is either the enveloping algebra of gl∞, if ζ is not a root of 1, or the
enveloping algebra of the affine Kac-Moody algebra ŝle, if ζ is a e-th primitive root of 1.

The Hecke algebra of the complex reflection group G(d, 1, n) with parameters ζ, u1, . . . ,
ud is isomorphic to the quotient HA,u

ζ (n) of the affine Hecke algebra HA
ζ (n) by the cyclo-

tomic relation (X1 − u1) · · · (X1 − ud) = 0.
Let modfdI (HA,u

ζ (n)) be the category of all finite dimensional HA,u
ζ (n)-modules of

type I . Let [modfdI (HA,u
ζ (n))] be the Grothendieck group of modfdI (HA,u

ζ (n)), and set
[modfdI (HA,u

ζ )] =
⊕

n!0[modfdI (HA,u
ζ (n))].

Assume that up = t2sp , with sp ∈ Z for each p ∈ [1, d]. Let λ =
∑d

p=1 ωup , where ωi

is the i-th fundamental weight of the Cartan datum associated with I . Let HA,λ
ζ (n) denote

the corresponding cyclotomic Hecke algebra. Composing the induction and restriction with
the functor modfd(HA,λ

ζ ) → modfd(HA
ζ ) induced by the obvious surjective algebra homo-

morphism HA
ζ → HA,λ

ζ , Ariki has obtained the following, yielding a proof of a conjecture
of Lascoux-Leclerc-Thibon.

Theorem 3.11 ([1]). There is a natural structure of U -module on [modfdI (HA,λ
ζ )] such that

[modfdI (HA,λ
ζ )] is isomorphic to the dual of the integrable highest weight U -module L(λ)

with highest weight λ. Under this isomorphism, the classes of the simple modules is identified
with the dual canonical basis of L(λ).

Let R(n), Rλ(n) be the quiver-Hecke algebra and the cyclotomic quiver-Hecke algebra
of degree n associated with the Cartan datum of the quiver I and the dominant integral
weight λ.

Now, we specialize χh to 0 for all h ∈ Ω. Let mod0(R(n)) be the category of finitely
generated modules over R(n) such that xke(i) acts locally nilpotently for each k ∈ [1, n]
and i ∈ In.

The relation between Theorems 3.10, 3.11 and Theorems 3.4, 3.5 is the following. It is
a consequence of the theory of intertwiners of affine Hecke algebras developed in [34] to
prove that affine Hecke algebras and their graded versions are Morita equivalent, see Section
2.2.4.
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Theorem 3.12 ([9, 42]). For each λ, n the following hold

(a) there is an equivalence of categories modI(H
A
ζ (n)) ≃ mod0(R(n)),

(b) there is an algebra isomorphism HA,λ
ζ (n) ≃ Rλ(n).

Remark 3.13.

(a) Historically, Theorems 3.10, 3.11 have been proved before Theorems 3.4, 3.5 and have
been one of the major motivation for the discovery of quiver-Hecke algebras.

(b) For each λ as above, Dipper-James-Mathas have defined in [12] some cyclotomic ζ-
Schur algebras SA,λ

ζ (n) with a Schur functor SA,λ
ζ (n)→ HA,λ

ζ (n) which is a highest
weight cover in the sense of Section 2.1.2, see also [38], [41]. Theorem 3.11 has been
extended conjecturally by Yvonne in [61] in the following way.

Assume that ζ is a e-th primitive root of 1. Then, there should be a natural structure
of U -module on [modfdI (SA,λ

ζ )] =
⊕

n!0[modfdI (SA,λ
ζ (n))] such that [modfdI (SA,λ

ζ )]
is isomorphic to the level d Fock space F (s) of multicharge s = (s1, . . . , sd). Un-
der this isomorphism, the classes of the simple modules is identified with the dual
canonical basis of F (s). For d = 1 this conjecture was formulated previously by
Lascoux-Leclerc-Thibon and proved in [51]. For arbitrary d it follows from the results
in Section 4.2 below.

3.2.4. Affine Hecke algebras of types B, C : the conjecture of Enomoto-Kashiwara. Fix
a non-degenerate Cartan datum with a symmetric generalized Cartan matrix A = (ai,j)i,j∈I .
Fix an involution θ of the set I such that aθ(i),θ(j) = aij for all i, j ∈ I .

Definition 3.14 ([15]). Let Bθ be the associative Q(q)-algebra with 1 generated by ei, fi,
i ∈ I , satisfying the usual Serre relations and by commuting invertible elements li, i ∈ I ,
satisfying the relations lθ(i) = li and

ljeil
−1
j = qaij+aiθ(j)ei, ljfil

−1
j = q−aij−aiθ(j)fi, eifj = q−ai,jfjei + δij + δθ(i),j li.

Lemma 3.15 ([15]). For each dominant integral weight λ =
∑

i∈I λi ωi in X+, there is a
unique irreducible Bθ-module Vθ(λ) generated by a vector vλ such that {v ∈ Vθ(λ) ; eiv =
0} = Q(q) vλ and livλ = qλi+λθ(i)vλ for all i ∈ I.

Now, set A = Z[t±1
0 , t±1

1 , t±1
2 ]. The affine Hecke algebra of type Cn is the A-algebra

HC
t (n) which is generated by elements T0, . . . , Tn−1 satisfying the braid relations of type

Bn, i.e., the elements Ti, . . . , Tn−1 satisfy the braid relations of B(Sn) and T0T1T0T1 =
T1T0T1T0, the quadratic relations (T0 − t0)(T0 + t−1

1 ) = 0 and (Ti − t2)(Ti + t−1
2 ) = 0 if

i ̸= 0, and commuting elements X±1
1 , . . . , X±1

n satisfying the relations T0X
−1
1 −X1T0 =

(t−1
1 − t0)X1 + t0t

−1
1 − 1, TiXiTi = Xi+1 and TiXj = XjTi if i ̸= 0, j ̸= i, i+ 1.

Fix ζ0, ζ1, ζ2 ∈ C× with ζ22 ̸= 1. Set HC
ζ (n) = HC

t (n) ⊗A C, where χ : A → C is
the character such that ti '→ ζi for i = 0, 1, 2. The semi-direct product {1,−1}! Z acts on
C× by (ϵ, n) : i '→ iϵζ2n2 . Let I be a {1,−1} ! Z invariant subset in C×. As above, we
may assume that I is a {1,−1}! Z-orbit. Let modI(H

C
ζ (n)) be the category of all finitely

generated HC
ζ (n)-modules and let modfdI (HC

ζ (n)) be the full subcategory of all finite di-
mensional modules of type I (as above). Let [modfdI (HC

ζ (n))] be the Grothendieck group of
modfdI (HC

ζ (n)), and set [modfdI (HC
ζ )] =

⊕
n!0[modfdI (HC

ζ (n))]. The group [modfdI (HC
ζ )]
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is a module over the bialgebra [modfdI (HA
ζ )]. The product and coproduct are given by the in-

duction and restriction with respect to the obvious inclusion HC
ζ (m)⊗HA

ζ (n) ⊂ HA
ζ (m+n).

Now, recall the following standard definition.

Definition 3.16 ([13]). A quiver with involution (or symmetric quiver) is a pair (Γ, θ), where
Γ is a quiver and θ is an involution of Γ, i.e., θ consists of a pair of involutions of the sets
I,Ω such that θ(h)′′ = θ(h′), θ(h)′ = θ(h′′) for each h ∈ Ω.

We can view the subset I ⊂ C× as a quiver with involution without loops, with vertex
set I , with an arrow i → i ζ2 for each i ∈ C× and with the involution θ : i %→ i−1.
Assume that A is the generalized Cartan matrix associated with I , see Section 3.2.2, and set
λi = δi,ζ1 + δi,−ζ0 . The following was conjectured in [15] and proved in [56].

Theorem 3.17 ([56]). Assume that 1,−1 /∈ I . Then, the Bθ-module Vθ(λ) has a canonical
basis, the vector space [modfdI (HB,λ

ζ )] ⊗Z Q is isomorphic to a specialization of Vθ(λ) at
q = 1, and the classes of the simple modules are identified with the dual canonical basis of
Vθ(λ) at q = 1.

Remark 3.18.
(a) An analogous construction in type D has been given in [29]. The corresponding con-

jectures are proved in [46].
(b) If 1 ∈ I or−1 ∈ I then [modfdI (HB,λ

ζ )]⊗ZQ is no longer irreducible as a Bθ-module.

3.2.5. Quiver-Hecke algebras of types B, C. The main ingredient in the proof of Theorem
3.17 is a Z-graded algebra which is an analogue, for affine Hecke algebras of type B,C, of
quiver-Hecke algebras.

The Weyl group of type C is the semidirect product W = Sn! {−1, 1}n. For k ∈ [1, n]
let εk ∈W be −1 placed at the k-th spot.

Fix a set I with an involution θ. The group W acts on a tuple i = (i1−n, . . . , in−1, in)
of I2n in the obvious way : the reflection sl ∈ Sn switches the entries il, il+1 and the entries
i1−l, i−l, while εk switches the entries ik, i1−k. This action preserves the subset Iθ,n =
{i ∈ I2n ; θ(ik) = i1−k for all k}. The group W also acts on algebra P = k[x1, . . . , xn] so
that sl switches xl and xl+1, while εk switches xk and −xk.

Now, fix ζ2 ∈ C× \ {−1, 1}. Let I ⊂ C× be a {1,−1} ! Z invariant subset. We view
it as a quiver with involution without loops, with vertex set I , with an arrow i → i ζ22 for
each i ∈ C×, and with the involution given by θ : i %→ i−1, compare Section 3.2.4. Assume
that A is the generalized Cartan matrix associated with I , see Section 3.2.2. Fix a dominant
integral weight λ =

∑
i∈I λi ωi in X+.

Definition 3.19. The quiver-Hecke algebra of degree n associated with Γ, θ, λ is the subal-
gebra R(n)θ,λ ⊂ Endk(

⊕
i∈Iθ,n Pe(i)) generated by the linear operators e(i), xk, σl with

i ∈ Iθ,n, k ∈ [1, n], l ∈ [0, n) such that xk(fe(i)) = xkfe(i) and

σ0(fe(i)) =

⎧
⎪⎨

⎪⎩

(2x1)−1(ε1f − f) e(i) if i1 = i0,

(x1)λi0 ε1f e(ε1i) if il = ζ22 il+1,

0 otherwise,

σl(fe(i)) =

⎧
⎪⎨

⎪⎩

(xl+1 − xl)−1(slf − f) e(i) if il = il+1,

(xl+1 − xl)f e(sli) if il = ζ22 il+1,

0 otherwise,
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where l ̸= 0. The k-algebra R(n)θ,λ is Z-graded, the grading being given by deg e(i) = 0,
deg xke(i) = 2dik , deg σ0e(i) = λi0 + λi1 − 2δi1,i0 and deg σle(i) = −dik aik,ik+1 .

The algebra R(n)θ,λ has a presentation similar to the one in [56]. It also admits a ge-
ometric realization. More precisely, fix σ ∈ {−1, 1}. For any representation x ∈ EV of
Γ, let x◦ be the representation on the I-graded vector space V ◦ such that V ◦i = V ∗θ(i) and
x◦h = σ x∗θ(h).

Definition 3.20 ([13]). A σ-orthogonal (resp. a σ-symplectic) representation of (Γ, θ) in V
is the datum of a representation x ∈ EV with an isomorphism x → x◦ such that the un-
derlying isomorphism V → V ◦ defines a symmetric (resp. antisymmetric) non-degenerate
bilinear form V × V → C.

Then, the Z-graded algebra R(n)θ,λ is isomorphic to the Yoneda algebra of a complex
of sheaves on the space Eθ,λ

V consisting of 1-symplectic representations of Γ which admit a
λ-framing in the sense of [56, sec. 4.4].

The relation between R(n)θ,λ and affine Hecke algebras is the following. Fix elements
ζ0, ζ1 ∈ C×. Let HC

ζ (n) be the corresponding affine Hecke algebra of type Cn. Set λi =
δi,ζ1 + δi,−ζ0 .

We specialize χh to 0 for all h ∈ Ω. Let mod0(R(n)θ,λ) be the category of finitely
generated modules over R(n)θ,λ such that xke(i) acts locally nilpotently for each k ∈ [1, n]
and i ∈ Iθ,n. We have the following analogue of Theorem 3.12.

Theorem 3.21 ([56]). There is an equivalence of categories

modI(H
C
ζ (n)) ≃ mod0(R(n)θ,λ).

Remark 3.22.
(a) Elements of the 2-exotic nilpotent cone in [30] can be identified with nilpotent λ-

framed 1-symplectic representations as above. Theorem 3.21 and the geometric re-
alization of R(n)θ,λ yield another proof of Kato’s theorem which parametrizes the
simple HC

ζ (n)-modules via the 2-exotic nilpotent cone.

(b) In [56] the Z-graded algebra R(n)θ,λ is realized as the Yoneda algebra of a complex
of sheaves on the space of (−1)-orthogonal representations of (Γ, θ) with a λ-framing.
The space of (−1)-orthogonal representations of (Γ, θ) is also used in [14] and yields
a geometric construction of some simple HC

ζ (n)-modules.

4. Categorical representations and rational DAHA’s

4.1. Definition. Fix a non-degenerate Cartan datum (X,Φ, X∨,Φ∨) with a symmetrizable
generalized Cartan matrix. Let Uq be the quantum group associated with (X,Φ, X∨,Φ∨).

Let {ci,j,p,q} be a family of indeterminates with i ̸= j ∈ I and p, q ∈ [0,−aij) such
that ci,j,p,q = cj,i,q,p. Set k = Z[ci,j,p,q][c−1

i,j,−ai,j ,0
] and consider the polynomials given by

Qij(u, v) =
∑

p,q!0 ci,j,p,q u
pvq if i ̸= j, and Qij(u, v) = 0 if i = j. Let R(n) be the

quiver-Hecke k-algebra associated with Qij(u, v).
Finally, let Z be a noetherian commutative k-algebra and C be a Z-linear category whose

Hom’s are finitely generated Z-modules. We’ll abbreviate R(n) for the Z-algebra Z ⊗k

R(n).
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Definition 4.1. An integrable representation of U on C is the datum of a decomposition
C =

⊕
µ∈X Cµ, an adjoint pair of Z-linear functors (Fi, Ei) with Ei : Cµ → Cµ+αi , Fi :

Cµ → Cµ−αi and elements xi ∈ End(Fi), σij ∈ Hom(FiFj , FjFi) satisfying the following
conditions

(a) Ei is isomorphic to a left adjoint of Fi,

(b) Ei, Fi are locally nilpotent,

(c) the relations of the quiver-Hecke algebra R(n) hold for xi and σij ,

(d) given µ ∈ X , there are isomorphisms of functors (EiFi)|Cµ ≃ (FiEi)|Cµ ⊕ Id
(µ,α∨i )
Cµ

if (µ,α∨i ) ! 0, and (FiEi)|Cµ ≃ (EiFi)|Cµ ⊕ Id
−(µ,α∨i )
Cµ

if (µ,α∨i ) " 0.

An integrable representation of U on C yields a representation of U on the Grothendieck
group [C] of C. We’ll say that the representation of U on C categorifies the representation of
U on [C].

Now, fix a dominant integral weight λ ∈ X+. Let cir be a family of indeterminates with
i ∈ I and r ∈ (0, s], where s = (λ,α∨i ). Set Z = k[cir] and ci0 = 1. Consider the monic
polynomial in Z[u] given by aλi (u) =

∑n
r=0 cir u

s−r. Let R(n)λ be the cyclotomic quiver-
Hecke Z-algebra associated with the quiver-Hecke Z-algebra R(n), the dominant weight λ
and the polynomials aλi .

Let proj0(Rλ(n)) be the Z-linear category of finitely generated projective modules over
Rλ(n). We abbreviate L(λ) =

⊕
n!0 proj

0(Rλ(n)). Then it is proved in[24],[27],[58] that
the induction and restriction yield functors Ei, Fi on L(λ) which satisfy the axioms above.
Hence, Theorem 3.5 can be rephrased as follows.

Theorem 4.2. The induction and restriction functors yield a categorification of the inte-
grable U -module L(λ) on L(λ).

We have the following unicity result.

Theorem 4.3 ([42]). Given an integrable categorical representation of U on a Z-linear
category C which is idempotent-closed, and an object M ∈ Cλ such that End(M) = Z and
Ei(M) = 0 for all i, there is a fully faithful functor L(λ)⊗Zλ Z → C taking the module Zλ

over Rλ(0) ≃ Zλ to M .

Remark 4.4.

(a) If C is indeed an abelian category, then the notion of a categorical representation on C
can be formulated in a simpler way, see e.g., [43].

(b) Using the A-algebra UA instead of the ring U , and using a Z-graded category (i.e., a
category enriched in Z-graded modules) instead of the abelian category C, we define
in a similar way a notion of categorification of the integrable UA-module LA(λ) such
that the action of q is given by the grade shift functor.

(c) A proof of the bi-adjointness of the functors Ei, Fi is given in [27, 58].

In the next section we consider two remarkable applications of categorical representa-
tions for RDAHA’s.
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4.2. Categorical representations and CRDAHA’s. We fix the integer d ! 1 and we allow
n to vary in N. Consider the categories Oc(d, n)’s introduced in Section 2.1.3. Since the set
S/W has exactly d elements, we can view the parameter c of the algebra Hc(d, n) as a
d-tuple. We’ll assume that this parameter c is integral, which means that the parameter
t = exp(2iπc) of the cyclotomic Hecke algebra Ht(d, n) is a tuple (q, q1, . . . , qd) where q
is a primitive e-th root of 1 and qp = qsp for some integers e, s1, . . . sd with e > 0. Here
(q1, . . . , qd) is determined modulo the diagonal action of C×.

Let F (s) be Fock space of multicharge s = (s1, . . . , sd), which was introduced in Sec-
tion 2.1.3. It is a level d integrable module over the affine Kac-Moody algebra of ŝle which
can be defined as follows.

Set N = s1 + · · ·+ sd. Let ℓ ∈ [0, d) be the residue class of N modulo d. Let L(ωℓ) be
the ℓ-th fundamental module of the Lie algebra ĝld, i.e., the simple integrable module with
highest weight the ℓ-th fundamental weight ωℓ. Recall that ĝld is a central extension of the
Lie algebra gld[ϖ,ϖ−1]. The assignment ϖ "→ ϖe yields a Lie algebra endomorphism of
ĝld which multiplies the central element by e. Pulling back L(ωℓ) by this endomorphism we
get a level e integrable representation of ĝld on L(ωℓ), which is no longer simple but only
semisimple. This level e representation admits a commuting level d action of the affine Kac-
Moody algebra of ŝle. The Fock space F (s) is the weight space of L(ωℓ) associated with
some weight γs of the level e action of ŝld ⊂ ĝld which depends on the d-tuple s. Hence, it
is a level d module of ŝle.

Theorem 4.5 ([45]). The induction and restriction functors yield a categorification of the
integrable module F (s) on

⊕
n!0 Oc(d, n).

The next step is to identify the simple modules in Oc(d, n) with some canonical basis in
F (s) and to compute their dimension, for which a conjecture was formulated in [41]. This
follows from theorem 4.7 below.

Another remarkable example of categorical representation, inspired by [6, 11], is the
following. Assume that s1, . . . , sd are non negative. We can consider the parabolic category
O of the affine Lie algebra ĝlN , denoted by O(s)ĝlN , which consists of modules of level
−e − N in the usual category O of ĝlN which are integrable with respect to the parabolic
subalgebra associated with the blocks decomposition N = s1 + · · ·+ sd.

Theorem 4.6 ([54]). The Kazdhan-Lusztig fusion product of ĝlN -modules yields a categor-
ical representation of ŝle on O(s)ĝlN .

The categorical representations of ŝle on
⊕

n!0 Oc(d, n) and O(s)ĝlN are different : the
first one categorify an integrable module of level d and the second one an integrable module
of level 0. However, using them one proves the following (see also [33] for a closely related
result), which was conjectured in [55].

Theorem 4.7 ([44]). Assume that sp ! n for each p ∈ [1, d]. Then there is a fully faithful
exact functor Oc(d, n) ⊂ O(s)ĝlN .

Note that this theorem implies that the category Oc(d, n) is Koszul by [47], and it de-
scribes its Koszul dual via the level-rank duality of I. Frenkel.

Another remarkable application of categorical representations is the following. Let H be
the Heisenberg algebra. It is an infinite dimensional Lie algebra. The inclusion of the center
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C ⊂ gld yields an inclusion H ⊂ ĝld. The Lie algebra H acts on F (s). This action lifts to
an action of H on the category

⊕
n!0 Oc(d, n). Using the latter and the level-rank duality,

which yields an explicit description of the decomposition of L(ωℓ) as a ŝld×H× ŝle-module
of level (e, de, d), one proves the theorem below which was conjecture by Etingof [17].

Since the parameter c is a d-uple of complex numbers, it can be identified with a weight
of ŝld. One defines a Lie subalgebra a ⊂ ŝld which is generated by the weight vectors of
ŝld which are integral with respect to the weight c, see [17] for details. Let La be the a-
submodule of the fundamental module L(ω0) of ĝld which is generated by the sum of all
extremal weight subspaces of L(ω0). Let δ be the smallest positive imaginary root.

Theorem 4.8 ([48]). The number of isomorphism classes of finite dimensional irreducible
Hc(d, n)-modules is equal to the dimension of the weight subspace of La associated with
the weight ω0 − nδ.

The Etingof conjecture is more general and yields indeed a characterization of the whole
filtration of the category Oc(d, n) by the dimension of the support of the modules, see [48]
for the proof. It extends also to a larger family of algebras than the Hc(d, n)’s, see [3]. These
algebras are not associated in any natural way to Hecke algebras any more. They are called
symplectic reflection algebras and have been introduced in [18].
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