Applications of equivariant cohomology
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Abstract. We will discuss the equivariant cohomology of a manifold endowed with the action
of a Lie group. Localization formulae for equivariant integrals are explained by a vanishing
theorem for equivariant cohomology with generalized coefficients. We then give applications
to integration of characteristic classes on symplectic quotients and to indices of transversally
elliptic operators. In particular, we state a conjecture for the index of a transversally elliptic
operator linked to a Hamiltonian action. In the last part, we describe algorithms for numerical
computations of values of multivariate spline functions and of vector-partition functions of
classical root systems.
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1. Introduction

The aim of this article is to show how theorems of localization in equivariant cohomol-
ogy not only provide beautiful mathematical formulae, but also stimulated progress
in algorithmic computations. I will focus on my favorite themes: quantization of
symplectic manifolds and algorithms for polytopes, and neglect many other appli-
cations. Many mathematicians have shared their ideas with me, notably Welleda
Baldoni, Nicole Berline, Michel Brion, Michel Duflo, Shrawan Kumar, Paul-Emile
Paradan and Andras Szenes. I will therefore often employ a collective “we”, instead
of anxiously weighing my own contribution.

I will describe here the theory of equivariant cohomology with generalized co-
efficients of a manifold M on which a Lie group K acts. The integral of such a
cohomology class is a generalized function /(¢) on &, with ¢ in &, the Lie algebra
of K. We wish to solve two problems. The first is to give a “localization formula”
for 1(¢) as a “short” expression. The second is: given such a short formula for 7 (¢),
compute the value I (&) of the Fourier transform of I at a point & € £* in terms of the
initial geometric data. Let me give the motivation for such questions.

By integrating de Rham cohomology classes on a manifold, one obtains certain nu-
merical quantities. For example, the symplectic volume vol; of acompact symplectic
manifold M is the integral of the Liouville form, and the Atiyah—Singer cohomologi-
cal formula for the index of an elliptic operator D on M is an integral of a cohomology
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class with compact support on 7*M. In the interplay between toric varieties and poly-
topes, these numerical quantities correspond respectively to the volume of a polytope
and to the number of integral points inside a rational polytope. Moreover, the volume
is the classical limit of the discrete version, the number of integral points in dilated
polytopes.

When the manifold is provided with the action of a compact Lie group K, similar
objects are described by integrals of equivariant cohomology classes. The equivariant
volume volys (¢) of a compact Hamiltonian manifold M is a C* function of ¢ € ¢,
obtained by integrating a particular equivariant cohomology class on M. More gen-
erally, if M is a non-compact Hamiltonian manifold with proper moment map, and
additional convergence conditions, its equivariant volume volys(¢) is a generalized
function on £. As shown by Duistermaat-Heckman, the value at & € £* of the inverse
Fourier transform of voly;(¢) is the symplectic volume of the Marsden—Weinstein
reduction of M at £&. If a K-invariant operator D is elliptic in the directions trans-
verse to the orbits of K, its index Index(D) is a generalized function on K, that is,
a series of characters of K. It can be described in terms of integrals of equivariant
cohomology classes on 7*M. The discrete inversion problem is to determine each
Fourier coefficient of Index(D). When D is an operator linked to the symplectic
structure, we think of Index(D) as the quantum version of the equivariant volume.
The Guillemin—Sternberg conjecture, now established by Meinrenken—Sjamaar for
any compact Hamiltonian manifold, is an example where such an inversion problem
has a beautiful answer in geometric terms.

In the case of a manifold with a circular symmetry, we proved a localization
formula for integrals of equivariant cohomology classes as a sum of local contributions
from the fixed points. This formula is similar to the Atiyah—Bott Lefschetz fixed point
formula for the equivariant index of an elliptic operator on M. A drawback of such
formulae is that each individual term has poles, and the Fourier transform of an
individual term is meaningless. We will describe here a more general principle of
localization for integrals of equivariant cohomology classes. Let x be a K -invariant
vector field tangent to the orbits of K. Witten showed that equivariant integrals on M
can be computed in terms of local data near the set C of zeroes of «. Furthermore,
for each connected component Cr of C, the local contribution of Cr is a generalized
function on €. Witten’s localization theorem can be best understood through Paradan’s
identity: 1 = 0 on M — C, in equivariant cohomology with generalized coefficients.
Basic definitions and Paradan’s identity are explained in Section 3.

The identity 1 = 0 on M — C has many independent applications that we describe
in Section 4. When M is a Hamiltonian manifold with moment map pu, the set of
zeroes of the Kirwan vector field is the set of critical points of the function || M||2-
According to Witten’s theorem, integrals on reduced spaces of M can be related to
equivariant integrals on M. Using a similar localization argument for transversally
elliptic operators, Paradan was able to extend the proof of the Guillemin—Sternberg
conjecture to some non-compact Hamiltonian spaces linked to representation theory of
real semi-simple Lie groups via Kirillov’s orbit method. We will state a generalization
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of the Guillemin—Sternberg conjecture for a transversally elliptic operator canonically
attached to a Hamiltonian action in Section 4.

From the localization formulae, one is led to study generalized functions which
are regular outside a union of hyperplanes. This will be the topic of Section 5. In
particular, we will relate the cohomology ring of toric manifolds to cycles in the
complement of an arrangement of hyperplanes.

As there are some relations between Hamiltonian geometry and convex polytopes,
these localization theorems have an analogue for polytopes. Such an analogue is the
local Euler—-Maclaurin formula for polytopes, which was conjectured by Barvinok—
Pommersheim. We will indicate in Section 6 how some theoretical results on in-
tersection rings can be turned into effective tools for numerical computations. We
implemented algorithms for various problems such as computing the value of the con-
volution of a large number of Heaviside distributions, the number of integral points
in network polytopes and Kostant partitions functions, with applications to the tensor
multiplicities formulae. This last section can be read independently. Indeed, these
applications to polytopes have elementary proofs, but it was through interaction with
Hamiltonian geometry that some of these tools were discovered.

For lack of space, I was only able to include central references to the topics dis-
cussed in this text. For more bibliographical comments, references and motivations,
one might consult [13], [25], [27], [49] and my home page (notably, the text called
“Exégese”) at math.polytechnique.fr/cmat/vergne/. The texts [50] and [48] are intro-
ductory and hopefully reader-friendly.

2. Simple examples

In this section, I will give simple examples of sums which can be represented by short
formulae, and a simple example of the inverse problem we have in mind. I will also
give a sketch of the proof of the stationary phase formula as similar stationary phase
arguments will be our fundamental tools.

2.1. Geometric series. Some formulae in mathematics condense a large amount of
information in short expressions. The most striking formula perhaps is the one that
sums a very long geometric series:

10000 10000

. 1
qu_ + -2 T

1l-q 1-—g-

1=l

For a straightforward calculation of the left hand side for a given value g, one needs
to know the value of the function ¢’ at all the 10001 integral points of the interval
[0, 10000], while for the right hand side one needs only the value of this function
at the end points 0, 10000. Note that each term of the right hand side has a pole at

qg=1.
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The short formula (here A, B, i are integers)

B -
; qA qB qA 1 qB-‘rl
D B T R A M
izA q q q q
is related to the following equalities of characteristic functions:
x([A, B]) = x([A, 00D + x(1 = 00, B]) = x(R)
= x®R) — x( — o0, A) — x (B, o).
We draw the picture of the last equality.
[ 1 — I I . _ 1 —
A B A B A B

Figure 1. Decomposition of an interval.

Then to sum ¢’ from A to B, we first sum ¢’ from —o0 to oo and subtract the
two sums over the integers strictly less than A and over the integers strictly greater
than B. Thus, if

00 _ A—1 ) 00 _
So 1= Z q'. Sa :=Zq’, Sp :=Zq’,
—00

i=—00 B+1

we obtain formally, or, setting ¢ = ¢'?, in the sense of generalized functions on the
unit circle,
S=S0—Sa— Ss. 2

For a value g # 1, the first sum Sy is 0 as follows from (1 — g)Sy = 0, while Sg4,
Sp are just geometric progressions and we come back to the short formula (1).

The reader may recognize in Formula (1) a very simple instance of the Atiyah—
Bott Lefschetz fixed point formula on the Riemann sphere. Formula (2) illustrates
Paradan’s localization of elliptic operators, which we describe in Section 4.2. Indeed,
Formula (2) is an example of the decomposition of the equivariant index of an elliptic
operator on the Riemann sphere in a sum of indices of three transversally elliptic
operators (see Example 13).

2.2, Inverse problem. The inverse problem may be described as follows: given a
short expression for a sum, compute an individual term of the sum.
Here is an example. Consider the following product of geometric series G :=

( Y2 qi)3( Z;io q‘zi )3( Y rco q{‘qé‘)3 given by the short expression:
1 1 1
(1—=g3 (1 —=g2)3 (1 —qiq2)?

S(q1, q2) =
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Let us compute the coefficient c(a, b) of qfqé’ in G. If a > b, an iterated application
of the residue theorem in one variable leads to

e 1ebX2 gyt dx, >

c(a, b) = resg,=0 <resx1:0 (1 —e=*1)3(1 — e=*2)3(] — e~ (1+x2))3

If we set

(b+1D)(b+2)(b+3)(b+4)(b+5)(Ta> —Tab +2b*> +21a — 9b + 14)

) b = )
8(@.b) 1451
we obtain the following equalities.
Ifa > b, then c(a, b) = g(a, b). 3)
Ifa < b, then c(a,b) = g(b, a). 4

We will discuss in Section 5.1 a residue theorem (Theorem 18) in several variables,
which gives an algorithmic solution to this type of inversion problem.

The Guillemin—Sternberg conjecture (see Section 4.3) gives a geometric interpre-
tation of the Fourier coefficients of series for similar inversion problems.

2.3. Stationary phase. Let M be a compact manifold of dimension n, f a smooth
function on M and dm a smooth density. Consider the function

F(t) :=/ MM gy
M

The dominant contribution to the value of this integral as ¢ tends to infinity arises from
the neighborhood of the set C of critical points of f. We indicate a proof of this fact,
as similar arguments will be employed later on. Consider the image of M by the map
x = f(m) and the push-forward of the density dm. Then F(t) = fR et fo(dm).
Choose a smooth function y on M, equal to 1 in a neighborhood of the set C and
supported near C. Then F(t) = Fc(t) + R(t), where

Fe () 2=/R€”xf*(xdm), R(1) =/R€”xf*((1—x)dM)-

R(t) is the Fourier transform of a smooth compactly supported function, and thus
decreases rapidly at infinity. It is not hard to show that, if f has a finite number of
non-degenerate critical points, then

o
F(l) ~ Fc(t) ~ Zel’l‘f(p) Zap,kt_%—’_k’
peC k>0

where the constants a,, ; can be computed in terms of f and dm near p € C. We can
say that asymptotically, the integral “localizes” at a finite number of points p.
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v

Figure 2. Projecting the sphere x% + y2 + 72 = A2

Example 1. Let M be the sphere {x? + y% + z2 = A?} of radius A endowed with the
Liouville volume form dm := % Let our function f be the projection onto the
x-axis: f = x. We immediately see that f,(dm) is the characteristic function of the

interval [—A, A]. Thus we obtain the formula

A p—iAl Al
F(t)=/ edx = —— 4+ —.
—_A —1t it

Observe that here F(¢) is not just asymptotically, but exactly equal to the local
expression. The reason is that in this example the function f is the Hamiltonian of
an action of the circle group S! := {¢/?} on a compact symplectic manifold, and dm
is the Liouville measure. In such a case, the Duistermaat—-Heckman exact stationary
phase formula [26] implies that f,(dm) is locally polynomial on f (M) and that

F(t)=>) e Pa, 1. (5)
peC

We will interpret the Duistermaat—Heckman formula as an example of the abelian
localization formula (Theorem 7) of integrals of equivariant forms in Section 3.5.

3. Equivariant differential forms

Our motivation to study equivariant differential forms came from representation the-
ory.

Let M be a manifold with an action of the circle group S'. The Atiyah-Bott fixed
point formula [3] describes the equivariant index of an elliptic operator on M in terms
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of local data near the fixed points of the action. One of the applications of the formula
was a geometric interpretation of the Weyl formula for the characters of irreducible
representations of compact Lie groups.

The character formula has continuous analogues: the formulae for the Fourier
transforms of coadjoint orbits, which are linked to representation theory via Kirillov’s
orbit method. For compact groups, this is the Harish-Chandra formula; for non-
compact semi-simple groups, Rossmann gave a fixed point formula in the case of
discrete series characters.

In joint work with Nicole Berline, I found a geometric interpretation of Ross-
mann’s formula using equivariant forms [14]. The cohomological tool behind our
computation was a deformation of the de Rham complex with the use of vector fields.
A similar formalism was described by Witten [51] with different motivation. There
were earlier results which condensed certain integrals on M in short formulae local-
ized near “fixed points”, such as Bott’s residue formulae [19], its generalization by
Baum—Cheeger [11] and the Duistermaat—-Heckman exact stationary phase formula
[26]. As explained by Atiyah and Bott [4], our result was related to localization in
topological equivariant cohomology. However, this revival of “de Rham” theory of
equivariant cohomology in terms of differential forms turned out to be very fruitful,
especially in applications to non-compact spaces and stationary phase type arguments.

3.1. Equivariant de Rham complex. Notation. I keep the notation N for not
necessarily compact manifolds, and M for compact manifolds. Similarly a compact
group will be denoted by the letter K, while G will be an arbitrary real Lie group.
The letters 7', H will be reserved for tori, which are compact connected abelian Lie
groups, and therefore are just products of circle groups {e/%}. In this case, I take as
basis of the Lie algebra t, elements J, such that exp(6,J,) := e%a (6, € R). The
gothic german letters g, £, t, h denote the corresponding Lie algebras, g*, £*, t*, h*
the dual vector spaces, J¢ the dual basis to a basis J,. If s € G, I denote by N; the
set of fixed points of the action of s on the G-manifold N. The letter ¢ denotes an
element of g. If g = RJ is the Lie algebra of S', Iidentify g and R. I denote by S(g*)
the algebra of polynomial functions on g, by C°°(g) the space of C*° functions on g
and by C~*°(g) the space of generalized functions on g. An element v € C~°°(g) is
denoted by v(¢) although the value at ¢ € g of v may not be defined. By definition,
it is always defined in the distributional sense: if F(¢) is a C* function on g with
compact support (a test function), then (v, Fd¢), denoted by f g v(p)F (¢)do, is well
defined.

Let us first define the equivariant cohomology algebra with C*° coefficients of a
G-manifold N.

Let G be a Lie group acting on a manifold N. For ¢ € g, we denote by V¢ the
vector field on N generated by the infinitesimal action of —¢: for x € N, V¢ =
% exp(—&@) - x|g—o. If N is provided with an action of S', we simply denote by J the
vector field VJ. Let A(N) be the algebra of differential forms on N with complex
coefficients, and denote by d the exterior derivative. If V is a vector field, let ¢(V)
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be the contraction by V. If v := YW Ny is a differential form on an oriented
manifold N, then the integral of v over N is by definition the integral of the top
degree term of v: f NV = f ~ VIdim N1, provided that this last integral is convergent.

A smooth map «: g — A(N) is called an equivariant form, if « commutes with
the action of G on both sides. The equivariant de Rham operator D ([14], [51]) may
be viewed as a deformation of the de Rham operator d with the help of the vector
field V¢. It is defined on equivariant forms by the formula

(D(@))(9) :=d(a($)) — L(VP)a(e).

Then D> = 0. An equivariant form « is equivariantly closed if Do = 0. The
cohomology space, denoted by #H°°(g, N), is, as usual, the kernel of D modulo its
image. This is an algebra, Z/27Z-graded in even and odd classes. If G := {1}, this is
the usual cohomology algebra #(N).

The integral of an equivariant differential form may be defined as a generalized
function. Indeed, let F'(¢) be a test function on g; then f g (d) F (¢)d¢ is adifferential
form on N. If this differential form is integrable on N for all test functions F, then

[y « is defined by
</ a, Fd¢> ::/ /a(¢)F(¢)d¢-
N NJg

Of course if N is compact oriented, f ya@isaC * function.

3.2. Hamiltonian spaces. Examples of equivariantly closed forms arise in Hamil-
tonian geometry.

Let N be a symplectic manifold with symplectic form 2. We say that the action
of G on N is Hamiltonian with moment map u: N — g¢* if, for every ¢ € g,
d({¢, u)) = «(V¢) - Q2. Thus the zeroes of the vector field V¢ (that is, the fixed
points of the one parameter group exp(z¢)) are the critical points of (¢, ).

The equivariant symplectic form Q(¢) := (¢, u) + Q is a closed equivariant
form. Indeed,

(d—1(VP) (¢, n) +2) =d (P, 1)) — (V) - Q +d()
and this is equal to 0 as both equations
dQ2=0, d((¢,u) =u(Ve)-Q

hold.

The two basic examples of Hamiltonian spaces with an Hamiltonian action of S!
are:

(1) R? if the action of S! has a fixed point.

(2) The cotangent bundle T*S 1 if the action of S is free.
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(1) Let N := R? with coordinates [x, y]. The circle group S! acts by rotations
with isolated fixed point [0, 0]. The symplectic form is Q2 := dx A dy. The function
2 2
X4 s the Hamiltonian function for the vector field J := yd, — xdy. Thus the
equivariant symplectic form is

)c2+y2

sz(¢)=¢< >+dxAdy.

(2) Let N := T*S' = S! x R. The circle group S! acts freely by rotations
on S!. If [¢/?, t] is a point of T*S! with ¢ € R, the symplectic form is Q := dt A df.
The function ¢ is the Hamiltonian function for the vector field J := —dy. Thus the
equivariant symplectic form is

Q(p) = ¢t +dt A db.

A particularly important closed equivariant form is /%@ . If dim N := 2¢, then

L2 .y
@ = (ilon) (1+isz+ (lg) R (’?‘) )

3.3. Equivariant volumes. Let M be a compact K-Hamiltonian manifold of di-
mension 2¢. By definition, the equivariant symplectic volume of M is the function of
¢ < £ given by

0
VOIM(¢) = 1 [ eiQ(¢) — / ei((b,u(m)) Q2 '
Qim)t Jy M 2Q2m)t

Note that vol,s (0) is the symplectic volume of M. The last integral, according to the
Duistermaat—Heckman-formula [26], localizes as a sum of integrals on the connected
components of the set of zeroes of V¢. If this set of zeroes is finite,

ol (®.1(p))
it /ety L,(¢)

voly () = Y 6)

pe zeroes of Vo

where L,(¢) is the endomorphism of 7, M determined by the infinitesimal action
of ¢ at p. As K is compact, there is a well-defined polynomial square root of the
function ¢ — dety,m L, (¢), the sign being determined by the orientation.

Example 2. Consider, as in Example 1, Section 2.3, the sphere M with § Laction
given by rotation around the x-axis and €2 := % Then f := x is the Hamiltonian
function of the vector field J := (yd; — zdy). The equivariant volume is the C*
function

, oiAd A
voly () = / b =
M —i¢ i¢
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Let us point out some examples of non-compact manifolds N where the equivariant
symplectic volume exists in the sense of generalized functions. We will use the
following generalized functions:

00 0
Yt () :=/ edr, Y (¢) :=/
0

—00

. oo .
ede,  So(¢) = / e?ds.
—0oQ

Note that the generalized function ¥ ™ (¢) is the boundary value of the holomor-
phic function $¢ defined on the upper-half plane, so that it satisfies the relation

(—i¢)Y 1 (¢) = 1. The generalized function 8y(¢) satisfies the relation ¢ 8o(¢p) = 0.
Return to our two basic examples R? and 7*S! with action of S'.
(1) N := R2. We have

1 i &2tyD) * i +
voly (¢) = T /2 e T dxdy = /0 edr =Y (¢). @)
R

When ¢ # 0, we have voly(¢) = fq& This coincides with what would be the
Duistermaat—Heckman formula in the non-compact case: there is just one fixed point
[0, O] for the action.

(2) N :=T*S'. We have

voly (¢) = 1 / e drdo = f e dt = 8o(¢).
27 Jrxs! R
Thus voly(¢) is always O when ¢ # 0. This is consistent with the fixed point
philosophy: the action of S' on T*S! is free, thus the set of zeroes of V¢ is empty
when ¢ #£ 0.
The next example illustrates our original motivation to introduce the equivariant
differential complex.

Coadjoint orbits. Let G be a real Lie group. Recall [30] that when N := GA is
the orbit of an element A € g* by the coadjoint representation, then N has a G-
Hamiltonian structure, such that the moment map is the inclusion N — g*. The
equivariant volume voly (¢) is defined as a generalized function on g, if the orbit GA
is tempered. This is just the Fourier transform of the G-invariant measure supported
on GA C g*.

When N is a coadjoint orbit of a compact Lie group K, Harish-Chandra gave a
fixed point formula for voly (¢). Now this is seen as a special case of the Duistermaat—
Heckman formula (6). Rossmann [41] and Libine [32] extended the Harish-Chandra
formula to the case of closed coadjoint orbits of reductive non-compact Lie groups,
involving delicate constants at fixed points at “infinity” defined combinatorially by
Harish-Chandra and Hirai and topologically by Kashiwara.

Here is an example. Consider the group SL(2, R) with Lie algebra g with basis

1 0 0 1 0 1
J1 = (0 _1>, Jr = (1 0) , J3:= (_1 0).
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The one-parameter group generated by J3 is compact, while those generated by
J1 and J; are non-compact. Let A > 0. The manifold

N :={6J' +6J2+ &% - - =12 & > 0)

is a coadjoint orbit. Then the generalized function voly (¢1J1 + ¢2J2 + @3 J3) is given
by an invariant locally L-function, analytic outside ¢12 + qﬁ% — ¢33 =0.

o3 e~ 121l
-, voly(¢1J1) = .
2ig3 2|1

The formula for the generator J3 of a compact group action is in agreement with
the “fixed point formula philosophy”. The formula for J; is difficult to explain within
a general framework. Indeed, the non-compact group exp(¢;J1) acts freely on N;
however, the value of the function voly (¢1J1) is non-zero even though there are no
fixed points on N. In [32], N is embedded in the cotangent bundle of the Riemann
sphere M := P1(C), and a subtle argument of deformation to fixed points of J; in M
“explains” the formula for voly (¢1J1).

voly (¢3J3) = —

3.4. Equivariant cohomology groups. After having defined #*°(g, N), 1 will
move on to the definition of two other equivariant cohomology groups.

Cartan’s complex. Here we consider, for a K -manifold N, the space APOL(E N) =
(S(E*) ® A(N))K of equivariant forms a(¢) depending polynomially on ¢. The
corresponding cohomology space #P°!(¢, N) is a Z-graded algebra, where elements
of £* have degree two, and differential forms their exterior degree. If N is a vector
space with linear action of K, then HPol(e, N) = S*)K. A basic theorem of
H. Cartan says: if K acts on a compact manifold M with finite stabilizers, then
FHPOUe, M) = H*(M/K).

If N is non-compact, we can also consider the space AP°MP (¢, N) := (S(£*) ®
APYN))K of equivariant forms a(¢) which are compactly supported on N. We
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denote by FPOLP (¢, N) the corresponding cohomology space. Integration is well
defined on it if N is oriented and the result of integration f n @(¢@) is a polynomial
function on &, invariant under the adjoint action of K on £.

If N is a vector space, there exists a unique element Thom(¢) € FHPO-P (¢, N)
with integral equals to 1.

Let us give the formula for N := R? with action of S'.

e N := R2. Let x be any smooth compactly supported function on R such that
x(0) = 1. Then

—1
Thom, (¢) == —— (@ x (2 + 3% +2x' (x* + yHdx A dy) (8)

is a representative of Thom(¢).

If N is a vector space, a representative of Thom(¢) with “Gaussian look™ is given
by Mathai—Quillen in [33].

Details on Cartan’s theory and further developments can be found in the stern
monograph (which contains treasures) [25], or in the attractive book [27]. This de
Rham point of view for topological equivariant cohomology seems to be adapted only
to smooth spaces. However, the use of equivariant Poincaré dual allows us to work
on algebraic varieties, where the Joseph polynomials and the Rossmann localization
formula (see [42]) are important tools. For lack of space, I will not pursue this topic.
Let me also mention the theory of equivariant Chow groups for algebraic actions
on algebraic varieties defined over any field, initiated by Totaro and developed by
Edidin—Graham and Brion.

Generalized coefficients ([25]). An equivariant form a(¢) with C~%° coefficients is
a generalized function on g with values in 4 (N). Thus for any smooth function F on
g with compact support, the integral [ GU(DF (¢)d¢ is a differential form on N. We
denote by A~°°(g, N) the space of such forms. If N := e is a point, an equivariant
form with C~°° coefficients is just an element of (C~(g))Y, that is, an invariant
generalized function on g. The operator D is well defined on A~°(g, N), and we
denote the corresponding cohomology space by F#~°°(g, N). It is a module over
FH>®(g, N). If K acts freely on N, the natural image of F°°(¢, N) in H~°°(¢, N) is
equal to 0.

Example 3. Let M := S' = {¢!}. The group S' := {e/?} acts freely on M by
rotations. Let g := RJ be the Lie algebra of S!. Then #~*°(g, M) = Cv, where
¢v = 0. A representative of v, still denoted by v, is the closed equivariant form

V() := 8o(¢)db.

Note that fM v(g) = 2m)do (o).
On the other hand, we have 1 = —i D(Y T (¢)d#0) so that

1=0 in #H (g, M).
Thus the image of #*°(g, M) = C - 1 in #~°°(g, M) vanishes.
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3.5. Localization or 1 = 0. Let N be a K-manifold and let ¥ be a K-invariant
vector field, tangent to K -orbits. If v: N — £is a K-invariant map, then «, defined
by
d
Km 1= ——exp(ev(m)).mle=0 &)
de
is such a vector field.

Let C be the set of zeroes of k. Via a K-invariant Riemannian structure (e, @)
on N, identify « with the K -invariant I-form on N: (k, e) := («, ). Witten considers
the exact equivariant form D« (¢) = —(k, V ¢) +d«. From our tangential hypothesis,
¢ — (K, V) is a non-zero element of £* when m is not in C.

Let a(¢p) € H° (¢, N), compactly supported on N. For any test function F(¢)
on ¢ and any a in R, we have the equality

f / a(p)F(p)dp = / / e 14D @D g (p)F (¢)dp. (10)
N xt N JE

When a tends to infinity, standard estimates on Fourier transforms shows that the
differential form [, e"*P*@q (¢) F (¢)d¢p becomes very small outside C.

Inspired by Witten’s deformation argument, Paradan proves that outside C, the
constant 1 is equal to 0 in H~°(¢, N — C).

Theorem 4 (Paradan, [37]). On N — C, the integral
Oo .
B(¢) =i f e PP g
0

is a well defined element of A~°°(t, N — C) and we have 1 = D(B(¢)). Thus

1=0 inH > N-C).

Indeed, intuitively B(¢) = #tb)’ so that DB(¢p) = gz% =1
Multiplying an element a(¢) of F°°(€, N) by 1, we see that a(¢) vanishes on
N — C. In the next proposition, we give an explicit representative of o with support

near C.

Proposition 5 ([37]). Let x be a K-invariant function on N supported on a small
neighborhood of C and such that x = 1 on a smaller neighborhood of C. Let

P(¢) :=x +dx N B(®).

Then P(¢) is a closed equivariant form in A~°° (¥, N) supported near C. Further-
more, we have the equation in A~ (¢, N):

P=1+D((x — 1)B).

Thus, if a(¢p) € H>(t, N), then P(¢d)a(p) is supported near C and equal to a(¢p)
in J¢~°, N).
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In the basic examples R? or 7*S! with action of S!, and x appropriately chosen,
the forms B(¢) and P(¢) are easy to calculate.

e Consider N := R? with k := Y0y —xdy. On RZ — {[0, 0]}, in polar coordinates
r, 6, we compute that B(¢) = —iY 1 (¢)df. Thus, if x is a smooth function with
compact support on R and equal to 1 in a neighborhood of 0, then

P(¢) = 2im)Y " (¢)Thom, (¢),
where Thom,, (¢) is defined by Formula (8). Note that the integral of P(¢) on N is
Qim)Y+(9).

e Consider N := T*S! with k := —t0dy. Then in coordinates ¢, 0,
B(¢) = —iY T (p)d0 ift >0,
B(¢) =iY (¢)do if t <O.

If x is a smooth function with compact support on R and equal to 1 in a neighborhood
of 0, then
P($) = x (1) + x'()dt A B(9).

Note that the integral of P(¢) on N is 2im)(Y T (¢) + Y~ (¢)) = (2im)8p(p).

For the sake of simplicity, assume that N is compact. Consider the form P €
FH (¢, N) constructed in Proposition 5 and supported near the set C of zeroes of k.
We write C = UCF where Cr are the connected components of the set C. Write
P =) p Pr where Pp is compactly supported on a small neighborhood Uf of CF.
Proposition 6 reduces the calculation of the integral of «(¢) on N to calculations
near C. We obtain the following localization theorem.

Theorem 6 ([37]). Consider an equivariant class a(¢) € H* (€, N). For any com-
ponent Cg of the set C, let ap(¢p) € H® (¥, Ur) an equivariant class equal to o (¢p)

on Uf. Then
/Na«b) _ CZfU Pr(@)ar(@).

In this localization theorem, each local contribution fUF Pr(¢p)ar(¢) is a gen-
eralized function on £*. Thus the Fourier transform of each local contribution has a
meaning, under a moderate growth condition for «.

As an application, we recover the exact stationary phase, and more generally the
“abelian” localization formula, with the following tool. For a S!-action with generator
J, we choose « := J, so that C is the set of fixed points of the one parameter group
exp(¢J). We obtain the following result that we state in the case of isolated fixed
points.

Theorem 7 ([14], [51], [4]). Let S! acting on a compact manifold M with isolated
fixed points. Let a(¢) be a closed equivariant form with C* coefficients. Then

dim M i*a(¢)
2m)T 2 = S A Sca—
(2) fM (@) pe{ﬁgpom} Gt L, @)
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4. Applications and conjectures

4.1. Integrals on reduced spaces

4.1.1. Reduced spaces. Let N be a Hamiltonian K-manifold. Assume that £ € ¢*
is aregular value of the moment map p and let K¢ be the stabilizer of £. Then K¢ acts
with finite stabilizers in ©~'(£) so that u='(€)/ K is a symplectic orbifold, called
the reduced space at £ and denoted by N¢. We denote by s¢ the number of elements of
the stabilizer of a generic point in w1 (). If € = 0, we also denote Ny = 1 (0) /K
by N//K. When N is a projective manifold, then N //K is the quotient in the sense
of Mumford’s geometric invariant theory (see chapter 8.2 [36]). By considering the
symplectic manifold N x (K - (—£)) (the shifting trick), we may always consider
reduction at 0.

If 0 is a regular value, Kirwan associates to an equivariant closed form «(¢) on N
a cohomology class areq on N //K: a($)],,-1(g) is equivalent to the pull-back of orred.
The Kirwanmap x : #g (N) — H*(N//K) is surjective, at least when N is compact.

The following result relates the equivariant volume of M to volumes of reduced
spaces.

Proposition 8 ([26]). If M is a K -Hamiltonian manifold, then
voly (¢) :f '€ vol (Mg )dE.
E*

This theorem holds also if N is a K-Hamiltonian manifold with proper moment
map, under some convergence conditions. As shown by Formula (7) (Section 3.3),
if a torus T acts on a vector space N with weights 8, € t*, all contained in a half-
space, then the equivariant volume voly (¢) is the boundary value of m Its
Fourier transform is the convolution H of the Heaviside distributions supported on
the half-lines Rt B,. Computing volumes of the reduced manifolds N is the same as
computing the value of H at a point §& € t*. In Section 5.1, we will explain how to
do it using iterated residues.

In the next section, we explain Witten’s generalization of Proposition 8.

4.1.2. Witten’slocalization theorem. Assume that M is a compact K -Hamil-tonian
manifold with moment map w: M — £*. We choose a K-invariant identification
£* — ¢ given by a K-invariant inner product. The vector field « defined by «,, :=
% exp(—eu(m))-m|c.—g is K-invariant. We refer to this particularly important vector
field as the Kirwan vector field. In this case, the set C of zeroes of « is the set of
critical points of the invariant function || w||? on M. One connected component of C
is the set =1 (0) of zeroes of the moment map (if not empty). The following theorem

follows from Witten’s deformation argument: Formula (10) in Section 3.5.
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Theorem 9 (Witten [52]). Let M be a compact Hamiltonian K -manifold and p(¢)
an equivariantly closed form with polynomial coefficients. Assume that O is a regular
value of the moment map. Then

/ ( / e"““”p(as)) do = so(2im) ™ vol(K) et p.
14 M

M//K

Let me explain the meaning of the integral on the left. Let I;(¢) := f M 2@ p(9).
This is an analytic function on ¥ with at most polynomial growth. We compute
/. ¢ ¢'&9) 1/ (¢)d ¢ in the sense of Fourier transform. This Fourier transform is a poly-
nomial near & = 0 (this is part of the theorem). The left-hand side fé Iy (¢p)d¢ is by
definition the value of this polynomial at £ = 0.

The theorem above is used to compute integrals on reduced spaces. Indeed, the
right hand side of the equality is the integral of a cohomology class over the reduced
space M//K of M, which is difficult to compute. Instead, we first compute an
equivariant integral on the original space M (easy to do thanks to the usual reduction
to the maximal torus 7' and the abelian localization formula). Then we have to
compute the value of the Fourier transform of Ij;(¢) at the point 0. This in turn
demands the computation of the value of the convolution of Heaviside distributions
at some explicit points of t*: the images by u of the fixed points of the action of T
on M.

Using different methods, other proofs and refinements to Witten’s theorem have
been given ([28], [47], [37], [43]). Let us recall Paradan’s method. We apply
Theorem 6 to the form a(¢) = €@ p(¢). Here Cr varies over the connected
components of the set of critical points of ||x||>. The image of a connected com-
ponent Cr by the moment map j is a K-orbit KA. The set Co := u~'(0) pro-
jecting on 0O is one connected component of C (if non-empty). The Fourier trans-
form of fM em("’)p(qb) Pr(¢) when CF projects on KB with 8 # 0 is supported on
€]l = |IBIl. Thus the value of the Fourier transform of f Y e'¥ @) p(¢) at 0 comes
only from || M e'¥ @) p(¢) Py(¢) and requires only local knowledge of our data near
;fl(O). To summarize, in Witten’s localization formula, the Fourier transform of
the local terms arising from components different from Cy are moved away from our
focus of attention: the point O in €*.

These facts are illustrated in the example below. This also shows that local calcu-
lations near critical points essentially reduce to R or T*S!.

Example 10. Return to Example 2 of the sphere M := {x? + y? + z2 = A?}, with
moment map i (x, y, z) = x. The critical values of x2are0, A, —A. The set of critical
points has three connected components: the circle Co drawn in black in Figure 3, {p™}
and {p~}. The normal bundle to Cy is identified with 7*S' and the normal bundles
to pT, p~ with R%. Let

1 .
voly (@) = ﬂ/ P,
M
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Figure 3. Decomposition of equivariant volumes.

Using the Kirwan vector field, we obtain a decomposition voly(¢) = vo(¢p) +
Vp— (@) + vp+(¢) with

1 .
v(@) = 5— /M e py(¢) = 80(9),
1 . .
vy~ (@) = 5 /M YO P _(¢) = —e Y (¢),
vyt () 1 = ﬁ /M YD P L (9) = — YT ().

This decomposition corresponds to the cone decomposition of the interval [—A, A]
described in Figure 1 in Section 2.1.

4.2. Index of transversally elliptic operators. Consider a compact even-dimen-
sional oriented manifold M. For the sake of simplicity, we assume M provided with
an almost complex structure. We choose an Hermitian metric || || ||2 on T*M. For
[x,&] € T*M, the symbol of the Dolbeault-Dirac operator 8 + 9" is the Clifford
multiplication c(§) on the complex vector bundle AT M. It is invertible for & # 0,
since ¢(&)2 = —||&||%. Let € be an auxiliary vector bundle over M, then cg ([x, £]) :=
c(§) ® Idg, defines an element of K(T*M), the K-theory group of T*M. Assume
that a compact group K acts on M and &. Now the topological index Index(cg)
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of ce € Kg(T*M) is an invariant function on K (which computes the equivariant
index of the K-invariant operator dg + 52). The index theorem of Atiyah—Segal—
Singer expresses Index(cg) (k) (k € K) in terms of the fixed points of k on M. We
constructed (see [13]) the equivariant Chern character ch(¢, &) of the vector bundle
& and the equivariant Todd class Todd (¢, M) such that (for ¢ small)

Index(cg)(exp ¢) = (2im)~imM)/2 / ch(¢, &)Todd(¢, M). (11)
M

For ¢ = 0, this is the Atiyah—Singer formula. Formula (11) is a “delocalization” of
the Atiyah—Segal-Singer formula. The delocalized index formula (11) can be adapted
to new cases such as:

¢ Index of transversally elliptic operators.

+ L’-index of some elliptic operators on some non-compact manifolds (as in
Narasimhan—Okamoto, Parthasarathy, Atiyah—Schmid, Connes—Moscovici).

Indeed, in these two contexts, the index exists in the sense of generalized functions
but cannot be always computed in terms of fixed point formulae.

Recall Atiyah—Singer’s definition of transversally elliptic operators (see [2]). Let N
be a K-manifold and 7§ N be the conormal bundle to K -orbits. A transversally ellip-
tic pseudo-differential operator S is elliptic in the directions normal to the K-orbits.
Thus S together with the action of the Casimir of £ defines an elliptic system, and
the space of solutions of S decomposes as a Hilbert direct sum of finite-dimensional
spaces of K -finite solutions. The symbol of S defines an element o (S) of K g (T N).
The index of the operator S is the character of K in the virtual vector space obtained
as difference of K -finite solutions of S and its adjoint. This is an invariant generalized
function on K. In[16], we gave a cohomological formula for the index of S in terms of
0(S) € Kk (TgN), as an equivariant integral on 7*N in the spirit of the delocalized
formula (11). This result was inspired by Bismut’s ideas on delocalizations [18] and
Quillen’s superconnection formalism.

The following example shows that, contrary to the melancholy remark of Atiyah
about his work on transversally elliptic operators (page 6, vol. 4, [1]), there are many
transversally elliptic bundle maps of great interest.

Consider a K-manifold N with a K-invariant vector field « tangent to orbits. As
before, we assume that N is provided with a K-invariant almost complex structure
and Hermitian metric. We still denote by c(&) the Clifford action of £ € TN on
the complex space AT N. The analogue in K -theory of Witten’s deformation is the
bundle map

cee(lx, §]) == c(E — k) ®1dg,, (12)

defined by Paradan [38]. Note that ¢, g([x, &]) is invertible except if § = k. If
furthermore [x, ] € T 1? N, then £ = 0 and «, = 0. Indeed, by our hypothesis, under
identification of T*N with TN, k, is tangent to Kx while & is normal to K x.
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When N is compact, ¢, ¢ is transversally elliptic and equal in K-theory to the
elliptic symbol cg, via the deformation c(§ — ak,) ® lg, for a € [0, 1]. Under the
conditions stated below, Paradan’s construction defines a transversally elliptic element
even if N is a non-compact manifold. See also the construction by M. Braverman
[21] of a related operator.

Proposition 11 ([38]). Assume that the set C of zeroes of k is compact. Then ¢, g is
transversally elliptic on T* N with support the zero section [C, 0].

Recall the closed equivariant form P on N supported on a neighborhood of C
constructed with the help of « in Proposition 5. Then

Theorem 12 ([40]). Near the identity element 1 of K, the index of c. ¢ is given by
the formula

Index(c.¢)(exp @) = (2imr)~imMN)/2 / ch(¢, §)Todd(¢, N)P(¢) (13)
N

and by similar integral formulae over Ng near any point s € K.

When M is compact, Formula (13) reduces to Formula (11) since P(¢) is equal
to 1 in cohomology. But even in this case, Formula (13) has important implications,
as the symbol cg is broken into several parts according to the connected components
of C: cg = ) _p ce,F Where cg r is supported on [Cf, 0]. Thus

Index(cg) = ) _ Index(ce, r).
F

Each local contribution Index(cg r) is well defined as a character of an infinite-
dimensional representation of K. This was one of the motivations of Atiyah and
Singer for introducing transversally elliptic operators.

As in the Witten localization formula, this allows in important cases to compute
the invariant part Index(cg)X through considering only the contribution of Cy. The
Fourier series attached to the other components do not interfere with our focus of
attention: the multiplicity of the trivial representation. This fact is illustrated in the
example below.

Example 13. Return to Example 10. Let A be a positive integer. We identify P;(C)
with My := {x? + y? 4+ z2 = A?} through the map

|z11% — |22/ R(z172) 3(z2122) )
lz11? + 12212 7zl 4+ 1z 2P+ 12202 )

[z1, 2] = (A

the action (¢/%z1, z0) becoming the rotation around the x-axis. We consider the

Dolbeault-Dirac operator D4 on Pi(C) with solution space @®; =24 (Cz{ zg. Twist-

ing the action by ¢/%4, its equivariant index is Zf:_ A g* with ¢ := €'®. Using the
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Figure 4. Decomposition of equivariant indices.

Kirwan vector field, we decompose D24 = Do + D)+ + D, into the sum of three
transversally elliptic operators with support [Co, 0], [p™, 0], [p~, 0], respectively. To
compute the index of Dy, we are led to compute the set of solutions of the Dolbeault
operator on the complex manifold C/Z = S! x R, the action of S! = R/27Z being
by translations, and we obtain all functions ¢’*? for any k € Z. Thus

o
Index(Dg) = Z qk.
k=—o00

Near the fixed points p™, p~, we obtain the index of the lift of the operators 5i (see
[2]) on C (shifted):

—A-1

@]
Index(Dp+) =— Y ¢, Index(D,)=— > q¢".
k=A+1 k=—00

The equality
Index(D24) = Index(Dy) + Index(D,+) + Index(D,-)

is Formula (2) in Section 2.1.
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It might happen that the integral |’ ~ ch(@, €)Todd(¢, N) over our non-compact
manifold N is already convergent in the distributional sense, and as P = 1 in co-
homology, it might happen, modulo the convergence of the boundary term, that the
following equality holds

Index(c,.¢)(exp @) = (2imr)~WimMN)/2 / ch(¢, &)Todd(¢, N).
N

This is indeed the case for discrete series. To state the result, we rephrase the
preceding constructions in the spin context. If N is an even-dimensional oriented
spin manifold, and & a twisting vector bundle, we denote by o (§) the Clifford action
of & € T} N on spinors, and by o the symbol of the twisted Dirac operator Dg. If M
is a compact K-manifold, the equivariant index of Dg is given by a formula similar
to (11):

Index(o¢)(exp ¢) = (2izr)~@mM/2 / ch(¢, 8)A(¢, M), (14)
M

where the equivariant class A replaces the equivariant Todd class.
Under the same hypothesis as in Proposition 11, the bundle map

Oc,e([x,8]) = 0 (5 —kx) Qg

is transversally elliptic and its equivariant index is a generalized function on K.

Let G be a real reductive Lie group with maximal compact subgroup K. We
assume that the maximal torus 7 of K is a maximal torus in G. Let N := GA be
the orbit of a regular admissible element A € t*. Harish-Chandra associates to A a
representation of G, realized as the L?-index of the twisted Dirac operator D;. The
moment map p for the K-action on N is the projection GA — £* and the set C of
zeroes of the Kirwan vector field « is easy to compute in this case: it consists of the
compact orbit K - A.

Theorem 14 (Paradan [39]). The character of the discrete series ©Y (L) restricted
to K is the index of the transversally elliptic element o, ¢, on N.

Here £ is the Kostant line bundle G xg) C, on N = G/G(A). A calculation
of the index of oy ¢, (which is supported on K - 1) leads immediately to Blattner’s
formula for @Y (1)| k.

4.3. Quantization and symplectic quotients. Let N be a G-manifold (N, G non-
necessarily compact), and & a G-equivariant vector bundle on N with G-invariant
connection V. We can then construct the closed equivariant form ch(¢, &) ([15],
[20]). For the sake of simplicity, I assume the existence of a G-invariant complex
structure. Then I conjectured (under additional conditions that I do not know how to
formulate exactly, see attempts in [46])
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Conjecture. There exists a representation Q(N, &) of G such that the character
Trov,e)(g) is given by the formula

Trov.6)(exp¢) = (2im)~@mM/2 f ch(g, &)Todd(¢, N) (15)
N

near | € G and by a similar integral formula over N near any elliptic point s of G.
Thus, via integration of equivariant cohomology classes, it should be possible to
define a push-forward map from a generalized K-theory of vector bundles with con-
nections on G-manifolds to invariant generalized functions on G, under some con-
vergence conditions, and assuming the existence of a suitable equivariant Todd class.

Remark 15. When N is a coadjoint admissible regular orbit of any real algebraic Lie
group G and & the Kostant half-line bundle, Formula (15), with the A class instead of
the Todd class, becomes Kirillov’s universal formula [29] for characters (proved by
Kirillov for compact and nilpotent groups, by Duflo, Rossmann, Bouaziz, Khalgui,
Vergne,... for any real algebraic group). If N, G are compact, Formula (15), with A
instead of Todd, is the equivariant index formula for the Dirac operator twisted by &.
Thus Formula (15), modified as in [46], is a fusion of the Kirillov universal character
formula and of the formulae of Atiyah—Segal-Singer for indices of twisted Dirac
operators.

Now let (M, 2) be a compact symplectic manifold with Hamiltonian action of a
compact group K. We assume the existence of a K -equivariant line bundle £ on M
with connection V of curvature equal to i€2. In other words, M is prequantizable
in the sense of [30] and we call £ the Kostant line bundle. We take an almost
complex structure compatible with 2 (see [35]). Then we denote Q (M, L) simply
by Q(M). This is a canonical finite-dimensional virtual representation Q (M) of K,
the quantization of the symplectic manifold M. The spectrum of the action of ¢ € £
in Q(M) should be the “quantum” version of the levels of energy of the Hamiltonian
function (u, ¢) on M (see [49] for survey). Guillemin and Sternberg conjectured in
1982 that the multiplicity of the irreducible representation Vg of K (of highest weight
& €t} C t")inthe representation Q (M) is equal to Q (M) and proved it for the case
of Kihler manifolds. This is summarized by the slogan: “Quantization commutes
with Reduction”. In other words, when & = 0, we should have the equality

/ Tron (K)dk = / ch(£L//K)Todd(M//K).
K M//K

Although a fixed point formula exists for Trg)(k), it is difficult to extract the
Guillemin—Sternberg conjecture directly from the Atiyah—Bott Lefschetz formula.
Thus this conjecture (fundamental for the credo of quantum mechanics) remained
unproved for years. Witten’s inversion formula [52]

/ ( / ei9(¢)p<¢>) dp = so2im) "™ vol(K) | & preg
4 M

M//K
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is in strong analogy with this conjecture. In particular, apart from factors of 2i 7, the
form e/$¥ed is equal to ch(«£//K). Meinrenken [34] used the Atiyah-Bott Lefschetz
formula and symplectic cutting in a subtle way to give a proof of Guillemin—Sternberg
conjecture for any compact K -Hamiltonian manifold. This result was extended further
to singular symplectic quotients in Meinrenken—Sjamaar [35].

Definition 16. Let N be a prequantizable Hamiltonian K -manifold with Kostant line
bundle £ such that the moment map is proper and the set of zeroes of the Kirwan
vector field « is compact. Define

Q(N) := Index(ck, £).
Thus Q(N) is a Fourier series of characters Tr(Vg).

Conjecture. The multiplicity mg of the irreducible representation Vg in Q(N) is
equal to O (Ng).
When N is compact, this is the Guillemin—Sternberg conjecture.

Paradan [39] proved this conjecture (in the spin context) when N := GA is an
admissible regular elliptic coadjoint orbit of a reductive real Lie group G and K
the maximal compact subgroup of G. Together with Theorem 14, this implies that
irreducible representations OK (&) (of highest weight £ — p¢) of K occurring in Harish-
Chandra’s discrete series @€ (1)|x are such that & lies in the interior of the Kirwan
po(l;ytope m(N) N 5. This is a strong constraint on representations appearing in
O~"M)k-

Example 17. Figure 5 is the drawing for the restriction of the representation ©° (1)
of SO(4, 1) to SO(4). The black dots are the £ such that ©X (&) occurs in ©F (1) (they
all occur with multiplicity 1). The horizontal strip is the Kirwan polytope pu(GA) Nt

Figure 5. Restriction of discrete series and the Kirwan polytope.
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5. Arrangement of hyperplanes

5.1. Convolution of Heaviside distributions and cycles in the complement of a
set of hyperplanes. Let us consider a set B := {f1, ..., B,} of linear forms 8, on
a vector space V of dimension r, all in an open half-space of V*. We assume that
the set B spans V*. By definition, an element § € V* is regular if it does not lie in a
cone spanned by (r — 1) elements of 8. A connected component of the set of regular
elements is called a chamber.

The convolution H of the Heaviside distributions of the half-lines RT3, is a
multivariate spline function on V*, that is, a locally polynomial function continuous
on the cone Cone(8) spanned by 8. Our problem is to compute H (&) at a particular
point £ € V*. In principle, H(§) is given by the following limit of integrals (on the
non-compact “cycle” V of dimension r, and in the sense of Fourier transforms):

H () = lim Qi)™ / e~HEY) ! dv
e—0 v szl(ﬂa, v+ie)
where ¢ is in the dual cone to Cone(B).
Consider the complement of the hyperplanes defined by 8B in the complexified
space V¢:
V(B) :={v e Vg; (v, B) # Oforall B € B}.

Jeffrey and Kirwan [28] introduced a residue calculus on the space of functions

defined on V(8B). A rational function on V (8B) is of the form R(v) = %
a=1\Fa>

where L(v) is a polynomial. The following theorem results from Jeffrey—Kirwan
ideas, further refined in [22] and [45]. We still denote by dv the holomorphic r-form
dvi A--- Adv, on V.

Theorem 18. Let ¢ C Cone(B) be a chamber. There exists a compact oriented cycle
Z(¢) of dimension r contained in V (8B) such that for any rational function R on V (8B)
andany & € ¢

lim | e "CYRv+ie)dv = / e HEV R(v)dw.
e—=0Jy Z(¢)

We gave in [45] arepresentative for the 7-dimensional cycle Z(¢) in C” as the set of
solutions of r real analytic equations related to quantum cohomology. Furthermore,
we gave a simple algorithm, further simplified by De Concini—Procesi [24], to compute
the homology class of Z(c) as a disjoint union of tori, so that integration on Z(c) is
simply the algebraic operation of taking ordinary iterated residues. Indeed, if 7 (¢) C
V (8B) is a compact torus of the form in some coordinates (v{, va, ..., v,) € C" 1= V¢

T(e) ={veV(B),;|v| =¢€, fork=1,...,r},

withe 1= [g] K g7 K - -+ K & ]asequence of increasing real numbers (here ] K €2
meaning that &; is significantly greater than €1, see [45] for precise definitions), then
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the integration on 7 (&) of a function F(vy, va, ..., v,) with poles on the hyperplanes
defined by B is
1
F(vi,v2,...,v.)dv =r1€8y,—0T1€Sy,_;=0 - *  1€Sy,=0 F (v, v2, ..., Vs),

Qim)" J1(e)

where each residue is taken assuming that the variables with higher indices have a
fixed, non-zero value.

Let me explain why this algorithm is efficient for computing the convolution H (£)
of a large number of Heaviside distributions in a vector space of small dimension.
The usual way to compute H (§) is by induction on the cardinal of 8. Here we fix &
in a chamber ¢ and we compute the cycle Z(c) (depending on ¢) by induction on the
dimension of V. It can be done quite quickly using the maximal nested sets of De
Concini—Procesi, at least for classical root systems [5].

5.2. Intersection numbers on toric manifolds. Let 7 be a torus of dimension r
acting diagonally on N := C" with weights 8 := [81, B2, ..., Bu]. We assume that
the cone Cone(8B) spanned by the vectors S, is an acute cone in t* with non-empty
interior. The moment map w: C* — t* for the action of T is u(zy,...,zs) =
ZZ:] |za|?Ba. The reduced space Ng = /L_l(é)/T at a point £ € Cone(B) is
a toric variety. It is an orbifold if & is regular. The space N is still provided
with a Hamiltonian action of the full diagonal group H := (S!)"” with Lie algebra

b := {>7_, vaJs}. The image of N¢ under the moment map for H is the convex

polytope
P¢) = {Zzzlxaja e b*; x4 > 0; Zzzl XaPa = é:}

Computing the volume of the polytope P (§) is the same as computing the symplectic
volume of Ng. All manifolds Ng when & varies in a chamber ¢ are the same toric
manifold N, the additional data & € ¢ being in one-to-one correspondence with the
Hamiltonian structure on N coming from its identification with the reduced space N¢.

The T-equivariant cohomology of N is S(t*). For each chamber ¢, the Kirwan
map gives a surjective map x(p) := pred from S(t*) to #*(N.). The following
theorem allows us to compute integrals on toric manifolds.

Theorem 19 ([45]). Let p € S(t*), then

o p(®)
=2 r ——d¢.
/Nc x(p) (i) /Z(c) 1_[2:1(,3m¢> ¢

Let& € candlet p(¢) := (¢, &). Thenthe cohomology class preq is the symplectic
form of N, determined by &. This way we obtain the formula:

Corollary 20. Let & € c, then
e i(E.9)

1
1(Ne) = —— — do.
voltNe) = oy fz@ T 4
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We recall that the homology class of the cycle Z(c) is computed recursively so
that the preceding integral is easily calculated using iterated residues.

6. Polytopes and computations

It is well known that many theorems on toric varieties have analogues in the world
of polytopes. With Brion, Szenes, Baldoni, Berline, we carefully gave elementary
proofs of the corresponding theorems on polytopes, even if our inspiration came from
equivariant cohomology on Hamiltonian manifolds.

Let 8 := [B1, ..., Bu] be a sequence of linear forms on a vector space V of
dimension r strictly contained in a half-space of V*. If § € V*, the partition polytope
is

Pg€):={x=[x;,x2, ..., x5, €R"; xg > 0; Y xaBa = E}.

Any polytope can be realized as a partition polytope.

Example 21 (Transportation polytopes). Consider two sequences [ry, 72, ..., Ik],
[c1, €2, ..., c¢] of positive numbers with ), r; = Zj cj. Then Transport(k, £, r, c)
is the polytope consisting of all real matrices with k rows and »n columns, with non-
negative entries, and with sums of entries in row i equal to 7; and in column j equal
to ¢j. This is a special case of a network polytope (see [6], [7]).

The volume of Pg(£) is equal to the value at & of the convolution of the Heaviside
distributions supported on the half-lines R™ 8,. This becomes computationally hard
if there is a large number of convolutions. The volume of Transport(k, £, r, ¢) neces-
sitates the convolution of k¢ Heaviside distributions in a space of dimension k +¢ — 1.
For example, Beck—Pixton [12] could compute, on parallel computers, the volume of
Transport(k, £, r, ¢) for k = 10, £ = 10, for special values r; = ¢; = 1in 17 years of
computation time (scaled on 1 Ghz processor).

Theorem 22. Let ¢ be a chamber of Cone(B) and let & € ¢. Then

1 (& v
I(Pg(§)) = (2im)~" av
vol(Pg(§)) = (2im) (n_r)yfz(c) T (B0

Using De Concini—Procesi recursive determination of Z(c), this formula is ex-
pressed as a specific sum of iterated residues.

Assume the 8, span a lattice A in V*, and that & is in A. The discrete analogue of
the volume of Pg (&) is the number N g (&) of integral points in the rational polytope
Pg(&). A fundamental result of Barvinok [8] asserts that Ng(£) can be computed in
polynomial time, when # is fixed.

The function Ng (&) associates to the vector & the number of ways to represent
the vector £ as a sum of a certain number of vectors 8,. This is called the vector-
partition function of 8. There is also a formula [44] for Ng(£) as an integral on
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the cycle Z(c). This integral formula has interesting theoretical applications, such
as information on the jumps of the partition function from chamber to chamber.
For example, the appearance of the five linear factors in g(a, b) (Formula (3) of
Section 2.2) follows from [44]. However, except for relatively good systems B, this
formula does not allow polynomial time computations. A program for the counting
of number of points in any rational polytope following Barvinok’s algorithm is done
in Latte [31]. For systems not too far from unimodularity, our programs based on
integration on Z(c), that is, on iterated residues, are more efficient. It leads to the
fastest computation of number of integral points in network polytopes [6], Kostant
partition functions, weight multiplicities cﬁ and tensor product multiplicities cX’ M of
classical Lie algebras (the bit size of the weights A, w, v can be very large [5], [23]).

Finally, let me describe the local Euler—-Maclaurin formula which was conjectured
by Barvinok—Pommersheim [10]. It was after observing the analogy of this conjecture
with the localization theorem (Theorem 6) that I fully realized the beauty of this
conjecture. Nicole Berline and I proved it by using elementary means, based on the
study of some valuations on rational cones in an Euclidean space,

Let P be a convex polytope in R%. For the sake of simplicity we assume that P has
integral vertices. Let & be the set of faces of P. For each face F of P, the transverse
cone of P along F is a cone of dimension equal to the codimension of F.

Theorem 23 (Local Euler—Maclaurin formula). For each face F, there exists a con-
stant coefficients differential operator D (of infinite order), depending only on the
transverse cone of P along F, such that, for any polynomial function ® on R?,

Y. oE) = Z/FDF@).

gePNZ4 Fe¥

The detailed statement for any rational convex polytope and what we really mean
by “depending only on” is in [17].

The operators Dr have rational coefficients and can be computed in polynomial
time when d and the order of the expansion are fixed, with the help of the Barvinok
signed decomposition of cones and the LLL short vector algorithm. The local property
of Dr means that if two polytopes P and P’ are the same in a neighborhood of a
generic point of F, then the operators Dy for P and P’ coincide.

The local Euler—Maclaurin formula gives in particular a local formula for the
number of integral points in P or in the dilated polytopes ¢ P. The Ehrhart polynomial
E(P)(¢) is defined as the number of integral points in ¢ P, for ¢ a non-negative integer.
Then E(P)(1) =Y ", ;1" with ey = vol(P). Barvinok [9] recently showed that
the (periodic) coefficients ¢; withi < k can be computed in polynomial time, when P
is a rational simplex. We hope to implement soon another polynomial time algorithm
for the same problem based on our local formula.

Even though time often prevails, in numerical computations as in life, it was
rewarding for us to see that our theoretical results could help in effective computations.
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