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0 Introduction 

0.1. Let X be a complex projective variety. Then each cohomology group of X 
admits a Hodge structure, that is a decomposition of Hk(X,C) = Hk(X,Z) ® C 
into a direct sum © H™(X), where H*«(X) ~ H^(üp

x) c Hk(X, C) is the set 
p+q=k 

of classes that can be represented by a closed fc-form everywhere of type (p, q). We 
will be concerned in this paper with the relations between Hodge structures and 
Chow groups CH\X), where CHi(X) is the group of ^-cycles (= arbitrary integral 
combinations of •£-dimensional subvarieties) modulo rational equivalence [5]. 

0.2. The simplest way to go from Chow groups to Hodge structures is to use 
the cycle class map c : CHk(X) —> H2n~2k(X), which to a cycle V = Y,niWi 
associates c(r) = T,nic(Wi), where c(Wi) is the Poincaré dual of the current of 
integration over Wi. The cycle class c(r) is easily seen to be a Hodge class; that 
is, to belong to H2k(X,Z) n Hkjk(X). The famous Hodge conjecture asserts that 
H2k(X,Q) n Hkik(X) is equal to Ime (8) Q. Not much is known except for the 
case k = 1 (due to Lefschctz) and particular cases for k > 1 (see e.g. [35], [36], 
[37]). But recently an important theoretical evidence for it was given by Cattani, 
Deligne, and Kaplan, who proved: 

0.3. THEOREM [10]. Let X —> B be an algebraic family of smooth algebraic vari-
eties X\y parametrized by a quasi-projective variety B. Then the set {(b, X), b £ B, 
X E H2k(X\),'L) nHk,k(Xi))} is a countable union of finite covers of algebraic sub-
varieties of B. 

These sets are called Hodge loci or Noether-Lefschetz loci and were studied 
in [4], [34], [IVHS,II]. 

The class of a cycle is sometimes a very poor invariant: for example the 
class of a zero-cycle Un^pi is just its degree En^ E Z. Of course a much deeper 
relation between CH(X) and Hodge structures on X is expected (see [5], [28], 
[30]); however, for Z a cycle in a family of varieties (A^)bGs, the Hodge class of 
Z carries very much information on the family of cycles Z\xb £ CH(Xb)-> and this 
will be the main topic of Section 1. 
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0.4. One way to refine the cycle class map is to consider the Deligne cycle class CD : 
CHP(X) -> H2p(X,Z(p)) (Deligne cohomology) where H%(X,Z(p)) = M2p(0 -> 
Z -> Ox -> Six -> ••• -* ft*"1 -* °) (see [20], [17]). Its restriction to the set 
of codimension p-cycles homologous to zero was first defined by Griffiths [26] and 
called the Abel-Jacobi map. It takes values into the pth intermediate jacobian: 

j2p-i(X) = H2p-1(X,£)/FpH2p-1®H2p-1(X,Z). 

(Here and in the sequel we use the notation FkHt(X) := © Hp>£-p(X).) 
P>k 

0.5. Deligne cohomology groups also appear as the targets of regulator maps, which 
are defined on higher Chow groups ([6], [27]). Regulators have the same formal 
properties, from the point of view of infinitesimal variations of Hodge structurer-
as Abel-Jacobi maps, and we will see in the next section that the result of [23] 
holds as well for them. To give an idea of what they are, consider for simplicity 
the case of K^X)^1) ~ CHp+l(X, 1) ~ Hp

ar(X, /Cp+i). Using Bloch's definition 
or using the Gersten resolution of the sheaf /Cp+i [5], this group is generated by 
sums a = Y,(Zi,ipi), where Zi C X is irreducible of codimension p and ipi is a 
non-zero rational function on Zi, subject to the condition: T,div(ipi) = 0 as a cycle 
of codimension p + 1 on X. The regulator map R will send it to an element of the 
partial torus 

H2p+1(X,Z(p+l)) ~ H2p(X,C)/Fp+1H2p(X,C) ®H2p(X,Z). 

Modulo the image of {[Zi]) ® C in this torus, R(a) is constructed as follows: 
let Z = [J Zi, U = X\Z. Because Ediv(y?i) = 0 it follows that the one forms 

i 

Wi = 2^^- on Zi satisfy: Res^nz, wi + R*esz1nzl
 wj = 0, hence determine an 

element wa of 
H2/+1(X) G^H^ZAiJZjnZ,). 

Hg (X) carries a mixed Hodge structure [14], induced by the mixed Hodge 
structure on ©Ä' 1 (Z i \ [J ZidZj), and because Wi have a class in H*(Zi\ [j ZiH 

Zj,Z) H F1H1(Zi\ [J ZiHZj), it follows that 

wa e Fp+1H2
z
p+1(x)nH2

z
p+1(x,z). 

Consider the exact sequence: 

0 —> H2p(X)/ < Zi >—-> H2p(U) —* H2p+1(X) —• H2p+1(X). 

Clearly wa vanishes in H2p^(X) because F^1H2^1(X) H H2p+1(X,Z) = 0. So 
wa admits liftings in Fp+1i?"2p(l7") and in H2p(U,Z), whose difference will give 
R(a) e H2p(X,C)/Fp+1H2p(X)®H2p(X,Z)®C[Zi). (We have made abstraction 
here of singularities but the construction works in general [27].) 
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0.6. One way to study the objects described above is to look at their variation 
when X varies in a family: suppose X -^-> B is a smooth family of complex pro-
jective varieties parametrized by a smooth complex variety B ; then the inclusions 
FpHk(Xb) C Hk(Xb,C) determine a C°°-subbundle FpHk

00 C H^ of the bundle 
TL^ with fiber Hk(Xb,C). TL^ is a flat bundle w.r.t. the Gauss-Manin connection 
V, so in particular it has a natural holomorphic structure, and we will denote by 
Hk the sheaf of its holomorphic sections. We have TLk — Rkn*C ® ÖB- The most 
important results of Griffiths are the following [25] : 

0.7. THEOREM. 

(i) FPTC^0 is a holomorphic subbundle of W^ ; we will denote by FpHk C Hk 

its sheaf of holomorphic sections. 

(ii) (Transversality) The Gauss-Manin connection V : 7ik —> TLk (8) £lB satisfies: 

vFpnk c Fp~xnk (g) nB. 

(iii) (Description of the differential of the period map): The ÖB -linear map 

V : Fp/Fp+1Hk —> Fp~1/Fpnk^nB 

np,k-P —> np-ltk-p+1^nB 

obtained from V by passing to the quotient, gives for any b E B a map: 
TBb -> Hom(^r / c~p(np

t ,J,iJf c-p + 1(np
ir1)), which identifies to the composite: 

Kodaira-Spencer , , 
TB(b) > Hl(TXb)^Rom(Hk-P(Üp

Xb), Hk-P+1{Üp-1)), 

where the last map is given by the interior product. 

0.8. To deduce consequences of this theorem, one needs to know much about the 
structure of the couplings H1^) (8) Hk~p(np

Xb) - • Hk~p+l(n^1). Their de-
scription is especially beautiful in the case of hypersurfaces {F = 0} in projective 
space P n (and more generally sufficiently ample hypersurfaces in any variety [22]). 
In this case, the spaces considered (modulo the cohomology of Pn) are homoge-
neous pieces of the jacobian ring R(F) = C[XQ, ... ,Xn]/ < dF/dXi >ì=Q}...>n, of 
F and the coupling is just multiplication [9]. [16], [21] provide a thorough study 
of the algebraic properties of these rings. 

0.9. The Transversality Theorem 0.7 (ii) has its analog for the Abel-Jacobi maps 
or regulators, known as "quasi-horizontality of normal functions" [44], [IVHS,III], 
which follows in fact from 0.7 (ii) for variations of mixed Hodge structures, if 
one constructs the Abel-Jacobi invariants as extension classes [8], [17] (see also 
0.5). Concretely it says the following: let X —> S be a smooth family and let 
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Z C X be a codimension p cycle, whose support is flat over B, and such that 
Zb C Xb is homologous to zero, Vo G B. The family of intermediate jacobians 
(J2p~1(Xb))beB has a natural complex structure, for which the sheaf of holomor-
phic sections is J2p~l = H2^1 / FpTL2p-1 © H^1. The cycle Z gives a normal 
function vz G 32p~l defined by vz(b) = $xb(Zb). (The analog of 0.7 (i) is that 
Vz is holomorphic.) 

0.9.1. The horizontality property is the following: let Vz G W2p_1 be a local lifting 
ofvz. Then Vî>z G Fp-lrK2p~x ®ftB. (Note that this is independent of the choice 
of the lifting by 0.7 (ii).) A similar statement holds for the regulator. 

0.10. In Section 1 we will explain how to exploit this property to study the Abel-
JacobLmap in families. 

In Section 2, we will state a criterion due to Green for the density of the 
Noether-Lefschetz locus (0.3), and describe its consequences on the Abel-Jacobi 
map of certain threefolds. In Section 3, we describe briefly Nori's work, which is 
the most important recent contribution in the field. 

1 Infinitesimal invariants 

1.1. Let X -^-> B be a family of smooth complex projective varieties. Let Hp,q = 
iTPftP+g/iTP+iftP+ç b e theJHodge bundles and let V : H™ -> HP'1^1 (8) UB be 
the map of 0.7 (iii). Define V( s ) : H™ ®iïs

B
1 -> ftP"1.^1 ®ÜS

B, by V(s)(cr<8>a) = 
V(o-) A a. Using the fact that V is obtained from V by passing to the quotient, 
and the integrability of V, one finds that V(B+i) o V(s) = 0. So for fixed (p, q) we 
get a complex on B\ 

Kp>q : O -> H™ ^ HP-1'"*1®^ ^ HP~2^2®VL2
B -> > H^p+q®np

B -> 0. 

This complex is in fact the pth graded piece of the De Rharn complex of (Hp^q, V) 
for the decreasing filtration (introduced by Deligne and Zucker [44]): 

Kp(DRHp+q) := 

o -> Fpnp+q ^ Fp-lrHp+q®nB ^ i Fp-2npJrq®n2
B -+ — > F°np+q®np

B -> o. 

Now, by the degeneracy of the Leray spectral sequence of TY [14], one has 
(non canonically): Hn(X,C) = © Hr(B, RsirX) and the Hodge filtration [15] 

r+s=n 
on Hn(X,C) induces on Hr(B,Rs7rX) = Mr(B,DR(Hs)) a filtration that is the 
one induced by Kp, if one imposes "logarithmic growth at infinity", that is if one 
works with the subcomplex DR(Hs)(logdB). 

1.2. The first infinitesimal invariant associated to a Hodge class on X is a holo-
morphic section of one of the cohomology sheaves of the complexes KPiQ. Pre-
cisely let a G FnH2n(X) ; (integrality of a does not play any rule here). Assume 
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a G Hk(B,R2n-kTT*C) ; so aeFnHk(B,R2n-k7rX)=^k(KnDRn2n-k(\ogdB)). 
Then the infinitesimal invariant 8a G H°(B,nk(Gr^(DRH2n-k))) is just the 
image of a under the composite map: 

Mk(KnDRH2n-k(logdB)) ->Hfc(Gr^DRH2n~k(log dB)) 

-> H°(Hk(Gr%DRH2n-k)). 

This is a local invariant of a, which can be as well obtained by looking at the 
image of a in H0(Rn7V^D,7x), and by studying the spectral sequence associated to 
the filtration of tl^ by the subbundles 7r*£lp

B A ^~p. 
Now we want to describe more concretely these invariants and explain how 

to use them: 

(A) Infinitesimal invariants of normal functions ([23], [44], [IVHS,III]): 

1.3. Let X - % B be as before and let a G H2p(X,Z) fi FpH2p(X); assuming 
H2p~1(X) = 0, a determines aD G H2p(X,Z(p)), and if a]Xb = 0 in H2p(Xb,Z), 
<*D\xb G J2p~x(Xb) C HD

p(Xb,Z(p)), and we get a section i/a of J 2 p _ 1 , (cf. 0.9), 
defined by ua(b) = aD\Xb. 

When a is the class of a cycle Z, one has va —vz- The infinitesimal invariant 
of a is in the cohomology at the middle of the sequence: 

w*-1 - ^ wp"1,p ® nB ^ i W P - 2 ' ^ 1 ® n | , 

and we construct now the infinitesimal invariant 6va of va, which lies in the same 
sheaf, as follows. Let va be a local lifting of va in H 2 p _ 1 ; then by 0.9.1 Vz>a G 
Fp-in2p-i ^ çiB m i t is then easily seen tha^the projection of Vz/Œ in H p _ 1 ' p ® ÜB 
is in Ker V(2) and well-defined modulo Im V. It is shown in [38] that 8vOL = 8a. 

1.4. Clearly the vanishing of 8vCL is equi valent to the fact that z/a has a local lifting 
Va. G TL2p~1 satisfying the stronger horizontality condition: Vva G FpH2p~1 ®Q,B. 
One can then construct a second infinitesimal invariant [23] living in 

Ker V(2) : H™'1 ®SlB-^ Up~^p ® Q2
B 

Im V : ftP+i.P-2 -> u™-1 ® ÜB ' 

which measures the obstruction to the existence of a lifting that satisfies: Vî/a G 
Fp + 17Y2 p _ 1 ® QB. Finally, if all the cohomology sheaves involved vanish, one can 
continue this process to get a flat lifting of vŒ in 7i2 p _ 1 . Under mild assumptions 
on the IVHS, this flat lifting will be unique up to a section of Hz

p~ . Now the 
necessary vanishing assumptions are true for the universal family of hypersurfaces 
of degree > 6 in P4, modulo isomorphisms (one uses there 0.8 and the symmetrizer 
lemma [16]), and a standard monodromy argument shows that flatness of normal 
functions implies their triviality mod. torsion, hence we get: 

1.5. THEOREM (Green [23], Voisin, unpublished). Let X c P4 be a general hyper-
surface of degree > 6. Then the Abel-Jacobi map of X is of torsion. 
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Green proved in fact the analogous result for all dimensions. 
Green and Müller-St ach have generalized this result to any sufficiently am-

ple linear system in any even dimensional variet}^ [24]. To be precise, they show 
that for X C Y, dimY = 2n, X a general member of a sufficiently ample lin-
ear system on Y, the image of the Deligne-Abel-Jacobi map CJJ : CHn(X) —> 
HD]l(X, Z(?7-)) is equal, up to the torsion, to the image of the composite map 
CHn(Y) -> H^l(Y,Z(n)) -> H2?(X\Z(n)) — and that the last restriction map is 
injective. 

As Bloch and Nori mentioned to me, the same argument applies as well to 
the regulator map (0.5). This gives the following: 

1.6. THEOREM. Let S be a general surface of degree at least five in P3 ; then the 
image of R : ^(^(S)) -» H2(S,C)/F2H2(S) © H2(S,Z) is of torsion modulo 

TicS-gC*r=(cf(CT5(l)))®(C*~ " " 

As in the previous theorem, the assumption d > 5 is necessary. In the case 
d = 4 (K3-surfaces), Oliva (work in progress) shows the nontriviality of R(S) mod. 
torsion, using the method of [39]. 

Theorem 1.6 disproves a conjecture of Beilinson [27], stating that the real 
Deligne cohomology is generated by the regulator. 

As for the geometric content of the infinitesimal invariant 8U, we mention the 
following result of Collino and Pirola: 

1.7. Let A^3 be the moduli space of curves of genus three and let J —> M% be 
the associated jacobian fibration. For C G M3, one can choose an Abel-Jacobi 
embedding C C Jc-, and the Abel-Jacobi image of the one-cycle C — (—C) in 
the primitive part of the intermediate jacobian of Jc does not depend on the 
embedding. The normal function so obtained on M 3 has an infinitesimal invariant 
defined as in 1.3, and one has: 

1.8. THEOREM [13]. This infinitesimal invariant at C lives in a space naturally 
isomorphic to SAH°(Kc), and for C non-hyperelliptic, it is non-zero and gives the 
equation of C in its canonical embedding. 

(B) Infinitesimal invariants for families of zero-cycles on surfaces: 

1.9. Let S —> B be a family of smooth regular projective surfaces, and let Z C S 
be a codimension two cycle, Z = Y>mZi, with Z7; —> B flat and T>nid°Zi/B = 0. The 
class [Z] of Z has then an infinitesimal invariant 8[Z] in H°i2®iï2

B/V(2)('H1,1®ïï>B). 
If Z satisfies the assumption: Vu G B, Zb is rationally equivalent to zero in Sb, a 
multiple of Z is homologous to a cycle supported over a proper Zariski closed 
subset of B, and we conclude that 5[Z] vanishes on a Zariski open set of B. 

1.10. Now, using Serre's duality one finds an isomorphism: 

(H0'2 ® n!/imv( 2 )) ( 6 ) * (H°(n»Sb ®v*Kel/oSb)Y, 
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where N = dim B. The geometric content of 8[Z] is then the following. Suppose 
Z = T^riiai(B), where ai : B —> S are sections, and Er^ = 0. At b G B one 
has of : (^s\s )*»(&) ~> ^B(b) ~ ^B(b)i a n d ^I^L as a n element of H°(Q%S ® 
rr^Kß1)*, is given by 8[Z] = Era* of > which factors through the quotient H°(Q,g,s ® 
ir^Kß1 /ösb) by the assumption £r^ = 0. 

1.11. In [43] it is shown that if Sn —> B is the family of smooth hypersurfaces of 
P3 of degree > 7, modulo isomorphism, the bundle S7^5 I^^B{b) is v e r v ample 
on Sb, Vb G B. Prom 1.9, 1.10, 1.11 one deduces: 

1.12. THEOREM [43]. Let S c P3 be general of degree > 7. Then two distinct 
points of S are not rationally equivalent. 

2 Green's iruinitesiinal criterion and the nontriviality of the Abel-Jacobi map 

2.1. Consider a family of surfaces cS —> B. Inside B, we have the Noether-Lefschetz 
loci, characterized by the existence of a certain Hodge class in H2 of the fiber; 
that is, by the Lefschetz theorem, by the presence of an "extra" line bundle on 
the fiber. It is better to consider as in 0.3, the NL loci as contained in the C°° 
vector bundle H^1, with fiber i ï " 1 , 1 ^ ) n H2(Sb,R) at 6 G B. The NL locus will 
be then defined as the set {(A,ò)/A G Hlìl(Sb)nH2(Sb,Q)}. Green's lemma gives 
the following purely algebraic criterion for the density of this locus: 

2.2. LEMMA (Green, [29]). Suppose that for some b G B, A G i f ^ f ì s j , the map 
V(A) : TB(b) —> H2(Osb) is surjective. Then the Noether-Lefschetz locus is dense 
in TL^ . 

2.3. In [40], the criterion was checked for sufficiently ample hypersurfaces in Calabi-
Yau threefolds. 

2.4. Now this lemma gives a way to produce interesting cycles in threefolds: if 
S - > X a n d A e H^(S) n Ker(iJ2(5, Z) -^ HA(X, Z)), A determines an element 

3 

of Pic S (assuming S regular), hence a one-cycle on S, which will be homologous to 
zero in X. The next question is to decide whether the cycles Z\ so obtained have 
non-trivial Abel-Jacobi invariants. If the expected dimension of the components S\ 
of the NL locus is strictly positive, it is possible to study formally the differential 
of the Abel-Jacobi map $ : S\ —> JX, ®(S, A) = ^X(Z\), and to show that it is 
nonzero. This method was used in [41] to solve the generalized Hodge-Grothendieck 
conjecture for certain sub-Hodge structures on certain threefolds. (See [2] for a 
more geometric solution of a similar example.) 

2.5. In the case of a Calabi-Yau threefold, the expected dimension of the NL locus 
is zero, but one can deform X together with the zero-dimensional components 
of this NL locus. Using the same construction as above, this will now give nor-
mal functions on the family of deformations of X, and the nonvanishing of their 
infinitesimal invariants gives: 
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2.6. THEOREM [40]. Let X be a Cala,bi-Ya,u threefold that is nonrigid; then a 
general deformation of X has a non-torsion Abel-Jacobi map. 

This theorem was known previously for the quintic threefold (see [26] and 
[12] for a much stronger statement) but the cycles in [26] were easy to get. They 
are the lines on X. 

3 Nori's theorem 

3.1. The essential point in 1.4, 1.5 was the vanishing of some cohomology sheaves of 
the complexes KPiQ, on the family of all hypersurfaces of sufficiently large degree. 
Nori realized that these vanishing statements and their generalizations to the case 
of complete intersections of large degree in any"variety are partial aspects of ~a~deep~ 
vanishing theorem for the cohomology of the universal hypersurfaces or complete 
intersections, which is the following: 

3.2. CONNECTIVITY THEOREM [32]. Let X be projective of dimension n + k. Let 
k 

L\,...,Lk be ample line bundles, and for n\,...,n^ G N; let S := YI H°(X,L1-'"). 
i 

Let Ys C X x S be the universal complete intersection. Then for Ui large enough, 
and for any submersive map T —> S, one has Hk(X x T, Yp) = 0, k — 0 , . . . , 2n. 

The most striking application of this theorem is the proof of the existence 
of cycles homologous and Abel-Jacobi equivalent to zero but not algebraically 
equivalent to zero: 

3.3. THEOREM [32]. Using notation as above, let Z be a cycle on X of codimension 
d < n: suppose that [Z] ^ 0 in H2d(X,Q), or that the Abel-Jacobi image of Z is 
not contained in the algebraic part of JX. Then for n» such that the conclusion of 
3.2 holds, Z\YS is not algebraically equivalent to zero, for general s. 

3.4. Griffiths in [26] proved the existence of cycles homologous to zero but not 
algebraically equivalent to zero, but he used the Abel-Jacobi invariant, which van-
ishes on cycles algebraically equivalent to zero when the intermediate jacobians do 
not contain a nontrivial algebraic part. 

Albano and Collino [1] have even shown that the kernel of the Abel-Jacobi 
map can be nonfinitely generated modulo algebraic equivalence. This was obtained 
as a consequence of 3.3, and of the following result (an analog of Clemens' theo-
rem [12]): 

3.5. THEOREM [1]. Let X C P8 be a general cubic sevenfold; then J7(X) has no 
algebraic part and the image of the Abel-Jacobi map Q>x '• GHs(X)]lom —> J7(X) 
is a countable infinitely generated group. 
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