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Abstract

An algebraic variety is an object which can be defined in a purely algebraic way,

starting from polynomials or more generally from finitely generated algebras

over fields. When the base field is the field of complex numbers, it can also

be seen as a complex manifold, and more precisely a Kähler manifold. We will

review a number of notions and results related to these two aspects of complex

algebraic geometry. A crucial notion is that of Hodge structure, which already

appears in the Kähler context, but seems to be meaningful and interpretable

only in the context of algebraic geometry.
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1. Introduction

1.1. From topology to geometry and vice-versa. An algebraic

variety V is defined by polynomial equations which are polynomials with coef-

ficients in some field K. For any field K ′ containing K, one considers the set

V (K ′) of solutions with coefficients in K ′. In particular, if K ⊂ C, one can con-

sider V (C) which will be a subvariety of an affine or projective space. When the

equations defining V (C) locally satisfy the Jacobian criterion, V (C) can also

be seen as a complex manifold, and in particular a topological space, which is

compact if the original V is projective. In fact, it is endowed with a so-called

Kähler metric, which happens to be extremely restrictive topologically. So we

get a first set of forgetting maps:

{Algebraic varieties overK ⊂ C}! {Algebraic varieties over C}

! {Compact Kähler manifolds}.
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Each step above can be seen as an enlargement of the category of functions used

on the space V (C): in the first case, rational functions with K-coefficients, in

the second case, rational functions with complex coefficients, and in the third

case, holomorphic functions rather than polynomials or rational functions.

That some structure is lost at each step is obvious, but it is not so clear

whether these changes of category of pairs consisting of a space plus a class of

functions, also correspond to relaxing topological restrictions. However, it was

shown by Serre [39] in the 60’s, for the first inclusion, and by the author [49]

in 2004 for the second one, that at each step we get a strict inclusion at the

level of topological spaces, even modulo homotopy equivalence. This will be the

subject of section 3.3.

Starting with a compact Kähler manifold, we can forget some of its geomet-

ric structure. Indeed, a Kähler manifold is at the same time a complex manifold,

a symplectic manifold and a Riemannian manifold, the three structures being

compatible in a very nice way. It has been known for a very long time that

compact Kähler manifolds are more restricted topologically than complex or

symplectic manifolds. We will show in section 3.2 that there are in fact many

more topological restrictions than the classical ones, obtained by introducing

and exploiting the notion of Hodge structure on a cohomology algebra intro-

duced in [54].

Continuing further, we can also forget about the complex structure or the

symplectic structure, and then keep the differentiable manifold. All these oper-

ations again enlarge the class of topological spaces considered. Finally we can

even forget about the differentiable structure and consider only the underly-

ing topological space, which is a topological manifold. Its homotopy type or

cohomology can be computed by combinatorial data: it is determined by the

combinatorics of a good covering by open balls. A major result due to Donald-

son [23] says that some topological manifolds do not admit any differentiable

structure, so that in this last step, we still enlarge the category of topological

spaces involved. Doing so, we also loose a tool which makes the essential bridge

between geometry and topology, namely the use of differential forms to com-

pute cohomology (and even homotopy, according to Sullivan [42]), which can

be summarized under the name of de Rham theory and will be a guiding theme

of this paper.

While we made a long walk from algebraic varieties to topological spaces, de

Rham theorems appear to be crucial to understand partially the cohomology of

a smooth complex algebraic variety V defined over a field K ⊂ C, using only its

structure as an algebraic variety (eg the ideal of polynomials vanishing on it),

and not the topology of V (C). The key point here is the fact that differentiating

polynomial or rational functions is a formal operation. This way we can speak

of algebraic differential forms and use them to “compute” the cohomology of

our algebraic variety (cf. [29]).

A very mysterious and crucial fact is the following: according to whether we

consider our complex algebraic variety over K ⊂ C as a topological space with
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its complex of singular cochains, or as a differentiable manifold with its complex

of differential forms, or as a K-variety with its complex of algebraic differential

forms withK-coefficients, we compute the “same” cohomology groups, but with

different coefficients (Q -coefficients for Betti cohomology, R or C-coefficients for

differentiable de Rham cohomology, K-coefficients for algebraic de Rham co-

homology). Comparing these various groups is crucial in the theory of motives,

or of periods (cf. [1]).

We will put the emphasis in this text on the following fact: Hodge theory

on a compact Kähler manifold X provides beautiful objects attached to X,

namely a Hodge structure of weight k on its rational cohomology of degree k,

for any k ≥ 0. We will show how to extract from the existence of such Hodge

structures topological restrictions on X. When X is projective, it is furthermore

expected that these Hodge structures reflect faithfully certain algebro-geometric

properties of X, related to the structure of its algebraic subvarieties. The sim-

plest example of such expectation is the Hodge conjecture, which predicts from

the shape of the Hodge structure on H2k(X,Q ) which degree 2k rational co-

homology classes are generated over Q by classes of algebraic subvarieties of

codimension k of X. This conjecture cannot be extended in the Kähler context

(cf. [47] and section 2.1), which suggests that this is not a conjecture in complex

differential topology, and that some extra structure existing on the cohomol-

ogy of algebraic varieties, compatible with Hodge theory, has to be exploited.

We will try to give an idea of what can be done in this direction in section 4.

The rest of this introduction makes more precise the various tools and notions

alluded to above.

1.2. De Rham theorems and Hodge theory. The degree i Betti

cohomology Hi(X,A) of a reasonable topological space (say a topological mani-

fold) with value in any abelian group A can be computed in several ways, which

correspond to various choices of acyclic resolutions of the constant sheaf A on

X. Concretely, one can choose a triangulation of X and consider the simpli-

cial cohomology of the associated simplicial complex. A more general approach

uses singular cohomology, built from continuous cochains and their boundaries.

The last one involves a good covering by open balls and the associated Čech

complex.

The last approach, which is also the most natural from the viewpoint of

sheaf cohomology, led Weil [56] to a new proof of the fundamental de Rham

theorem [22], which says that in the differentiable case, cohomology with real

coefficients can be computed using the complex of differential forms:

Theorem 1.1. (de Rham) If X is a differentiable manifold, one has

Hi
(X,R) =

{closed real i−forms on X}

{exact real i−forms on X}

. (1.1)

An important point however is the fact that de Rham cohomology does not

detect cohomology with rational coefficients.
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The next step in relating topology and geometry is the major advance in

differential topology due to Hodge (cf. [27], [48, Chapter 5]), which provides

canonical representatives for the cohomology of a compact differentiable mani-

fold endowed with a Riemannian metric.

For a general oriented Riemannian manifold (X, g), with corresponding vol-

ume form V olg, one has the Laplacian ∆d acting on differential forms, pre-

serving the degree, and given by the formula ∆d = dd∗ + d∗d, where d∗ is

the formal adjoint of d with respect to the L2-metric (α,β)L2 :=
∫

X
⟨α,β⟩V olg

on compactly supported forms. A differential form α is said to be harmonic

if ∆gα = 0, or equivalently in the compact case, dα = d∗α = 0. When X is

compact, a harmonic form on X has thus a de Rham cohomology class.

Theorem 1.2. (Hodge) Let X be a compact orientable differentiable manifold.
Then the map H

i(X)→ Hi(X,R) from the space of harmonic i-forms on X to
real cohomology of degree i, which to a harmonic form associates its de Rham
class, is an isomorphism.

1.3. Kähler geometry and algebraic geometry. A complex

manifold (of complex dimension n) is a differentiable manifold of real dimension

2n with a set of charts with values in open sets of Cn such that the transition

diffeomorphisms are holomorphic. Its tangent space has then a natural struc-

ture of complex vector bundle, given by its local identifications to the tangent

space of Cn.

A Kähler metric is a Hermitian metric on the tangent bundle of a com-

plex manifold X which fits very nicely with the complex structure on X:

The Hermitian metric h being locally written in holomorphic coordinates as
∑

i,j
hijdzi ⊗ dzj , there is the corresponding real (1, 1)-form

ω =
ι

2

∑

i,j

hijdzi ∧ dzj ,

(the Kähler form), and the Kähler condition is simply dω = 0. The closed 2-

form ω has a de Rham class [ω] ∈ H2(X,R), called the Kähler class of the

metric.

A projective complex variety X (defined over a field K ⊂ C) is the set

of solutions of a finite number of equations Pi(x) = 0, x = (x0, . . . , xN ) ∈

PN (C), where the Pi are homogeneous polynomials (with coefficients in K) in

the coordinates xi.

The Pi’s give local rational, hence holomorphic, equations for X, which is

thus a closed analytic subset of PN (C) as well. A remarkable result due to Chow

and generalized later on by Serre [38] says that any closed analytic subset of

PN (C) is in fact algebraic. When the local defining equations ofX can be chosen

to have independent differentials, X is a complex submanifold of PN (C). We

will say that X is a complex projective manifold (defined over K).

The Kodaira criterion [32] characterizes projective complex manifolds inside

the class of compact Kähler manifolds.



480 Claire Voisin

Theorem 1.3. A compact complex manifold X is projective if and only if X
admits a Kähler class [ω] which is rational, that is belongs to

H2
(X,Q ) ⊂ H2

(X,R).

The “only if” is easy. It comes from the fact that if X is projective, one

gets a Kähler form on X by restricting the Fubini-Study Kähler form on some

projective space PN in which X is imbedded as a complex submanifold. But

the Fubini-Study Kähler form has integral cohomology class, as its class is the

first Chern class of the holomorphic line bundle OPN (1) on PN .

The converse is a beautiful application of the Kodaira vanishing theorem

for line bundles endowed with a metric whose Chern form is positive.

1.4. Topology and algebraic geometry. As we mentioned already,

one way to put a topology on a complex algebraic variety is to use the topology

on the ambient space Cn or CPn. This is what we will call the classical topology.

There is however another topology, the Zariski topology, which has the property

that the closed subsets are the closed algebraic subsets of X, that is, subsets

defined by the vanishing of polynomial equations restricted to X. These sets

are closed for the classical topology, so this topology is weaker than the classical

topology.

This topology is in fact very weak. Indeed, if the variety is “irreducible”

(for example smooth and connected), any two Zariski open sets intersect non

trivially by analytic continuation. It easily follows that the cohomology of X,

endowed with the Zariski topology, with constant coefficients, (that is, with

value in a constant sheaf) is trivial. However, the Zariski topology is excellent

to compute the cohomology of X with values in other softer sheaves, namely

the “coherent sheaves”: There is the notion of algebraic vector bundle on X,

and even algebraic vector bundle defined over K if X is. Namely, in some

Zariski open cover (defined over K), it is trivialized, and the transition matrices

are matrices of algebraic functions with K-coefficients. The simplest coherent

sheaves are sheaves of algebraic sections of such vector bundles. The general

ones allow singularities.

Let us assume that K = C and let E be such an algebraic vector bundle.

There are two things we can do to compute the “cohomology of X with value

in E”.

1) X is endowed with the Zariski topology and one considers the sheaf E

of algebraic sections of E. Then we compute cohomology of the sheaf E

by general methods of sheaf cohomology, using acyclic resolutions. Con-

cretely, it suffices to compute Čech cohomology with respect to an affine

covering. Let us denote these groups H l(XZar, E).

2) We put on X the classical topology and consider the sheaf of holomorphic
sections E

an of E in the classical topology. Let us denote these groups

H l(Xcl, E
an).
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It is a remarquable fact (the “GAGA principle”, [38]), proved by Serre, that

the resulting cohomology groups are the same.

Theorem 1.4. (Serre) For any algebraic coherent sheaf E on X, one has a
canonical (inverse image) isomorphism H l(XZar, E)→ H l(Xcl, E

an).

Why then to care about the Zariski topology and the algebraic vector bun-

dles? One reason is the fact that staying in the algebraic geometry setting allows

to take care of the fields of definition of a variety X and a vector bundle E on

it; such a field of definition contains the coefficients of defining equations of

X, or the coefficients of rational functions involved in the transition matrices

of E. If X, E are defined over a subfield K ⊂ C, then we can compute the

cohomology of XK , endowed with the “K-Zariski topology” (for which closed

subsets are closed algebraic subsets defined by polynomial equations with K-

coefficients), with value in EK (the sheaf of sections defined over K), and there

is an isomorphism (which is called a K-structure on Hi(X, E)):

Hi
(X, E) = Hi

(XK , EK) ⊗ K C.

We already mentioned that the Zariski topology is not good at all to com-

pute Betti cohomology of X endowed with its classical topology. However, holo-

morphic de Rham theory combined with GAGA allows in fact to compute Betti

cohomology of X, at least with complex coefficients, using algebraic differen-

tials and the Zariski topology. This result due to Grothendieck [29] is crucial

to understand the notion of absolute Hodge class [19] that will be discussed in

section 4.2.

Étale cohomology invented by Grothendieck is another way of constructing

an intrinsic cohomology theory, not depending on the topology of the field

C. It depends on introducing étale topology which is a refinement of Zariski

topology, and is not actually a topology: Roughly speaking, one adds to the

Zariski open sets their étale covers. Furthermore, Artin’s comparison theorems

allow to compare it to Betti cohomology. However, this theory does not allow

to recover Betti cohomology with rational coefficients (see for example [13]) of

our classical topological space X, but only its Betti cohomology with finite or

l-adic coefficients.

The presence of various cohomology theories with comparison theorems be-

tween them is at the heart of Grothendieck’s theory of Motives (cf. [1]).

Our last topic in section 4.4 will be another way to go around the fact

that the Zariski topology is too weak to compute Betti cohomology of the

corresponding complex manifold. This is by looking at the spectral sequence

associated to the obviously continuous map

Xcl → XZar

which is the identity on points. This study is done by Bloch-Ogus [8] and leads

to beautiful results when combined with algebraic K-theory.
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2. Hodge Theory in Kähler or Projective

Geometry

2.1. Hodge structures. Let us start with the notion of cohomology

class of type (p, q) on a complex manifold X. On such an X, we have the

notion of differential form of type (p, q): these are the complex differential forms

α (say of class C
∞), which can be written in local holomorphic coordinates

z1, . . . , zn, n = dimCX, and in the multiindex notation:

α =

∑

I,J

αI,JdzI ∧ dzJ , |I| = p, |J | = q,

where αI,J are C
∞ functions. Let us denote Ap,q(X) the space of (p, q)-forms

on X. Thus Ap,q(X) ⊂ Ak(X), p + q = k, where Ak(X) is the space of C∞

complex differential k-forms on X. The cohomology Hk(X,C) with complex

coefficients can be computed by de Rham theorem as

Hk
(X,C) =

{closed complex k−forms on X}

{exact complex k−forms on X}

,

and it is natural to define for a complex manifold X and for each (p, q) the

space of cohomology classes of type (p, q) by the formula

Hp,q
(X) :=

{closed forms of type (p, q) on X}

{exact forms of type (p, q) on X}

.

The following result is a famous result due to Hodge.

Theorem 2.1. (The Hodge decomposition theorem) Let X be a compact Kähler
manifold. Then for any integer k, one has Hk(X,C) =

⊕

p+q=k
Hp,q(X).

The proof of this theorem uses the representation of cohomology classes by

harmonic forms (Theorem 1.2 above), together with the fact that the (p, q)-

components of harmonic forms are harmonic, a fact which is specific to the

Kähler case.

The decomposition above satisfies Hodge symmetry, which says that

Hp,q(X) = Hq,p
(X), (2.2)

where complex conjugation acts naturally on Hk(X,C) = Hk(X,R) ⊗ RC. This

is because the complex conjugate of a closed form of type (p, q) is a closed form

of type (q, p).

We have the change of coefficients theorems Hk(X,Q ) ⊗ Q C ∼= Hk(X,C).

On the other hand, Theorem 2.1 gives the decomposition Hk(X,C) =
⊕

p+q=k
Hp,q(X), satisfying Hodge symmetry (2.2). These data are summa-

rized in the following definition.
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Definition 2.2. A rational (resp. integral) Hodge structure of weight k is a
finite dimensional Q -vector space (resp. a lattice, that is a free Z-module of
finite rank) V , together with a decomposition:

VC := V ⊗ Q C = ⊕p+q=kV
p,q

satisfying Hodge symmetry.

The cohomology Hk(X,Q ), X compact Kähler, carries such a structure.

Note that the Hodge decomposition depends on the Kähler complex structure.

Furthermore, the dimensions hp,q(X) := rk Hp,q(X) are not topological invari-

ants of X, although they are constant under deformations of the Kähler com-

plex structure. However, the following classical remark shows that the Hodge

decomposition provides topological restrictions on compact Kähler manifolds.

Remark 2.3. A Hodge structure of odd weight has its underlying Q -vector

space of even dimension. Hence a compact Kähler manifold X has

b2i+1(X) := dimQ H2i+1
(X,Q )

even for any i.

Example 2.4. There is an equivalence of categories between the set of (in-

tegral) Hodge structures of weight 1 and the set of complex tori. To L,LC =

L1,0
⊕ L1,0 corresponds T :=

LC

L1,0⊕L
. In the reverse direction, associate to T

the Hodge structure on H2g−1(T,Z), g = dimT .

Example 2.5. (Trivial Hodge structure) A Hodge structure (V, V p,q) of weight

2k is trivial if VC = V k,k.

The following definition is crucial:

Definition 2.6. If (V, V p,q) is a rational Hodge structure of weight 2k, Hodge
classes of V are elements of V ∩ V k,k.

The simplest examples of Hodge classes on a compact Kähler manifold are

given by the cohomology classes of closed analytic subspaces Z ⊂ X of codi-

mension k. The singular locus Zsing of such a Z is then a closed analytic subset

of X which has codimension ≥ k+1 and thus real codimension ≥ 2k+2. Thus

one can define

[Z] ∈ H2k
(X,Z)

by taking the cohomology class [Z \ Zsing] ∈ H2k(X \ Zsing,Z) of the closed

complex submanifold

Z \ Zsing ⊂ X \ Zsing

and by observing that H2k(X \ Zsing,Z) ∼= H2k(X,Z).

The class [Z] is an integral Hodge class. This can be seen using Lelong’s

theorem, showing that the current of integration over Z \ Zsing is well defined
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and closed, with cohomology class equal to the image of [Z] in H2k(X,C). On

the other hand, this current anihilates all forms of type (p, q), p ̸= q, p + q =

2n− 2k, n = dimX, and it follows dually that its class is of type (k, k).

The Hodge conjecture is the following statement:

Conjecture 2.7. Let X be a complex projective manifold. Then the space
Hdg2k(X) of degree 2k rational Hodge classes on X is generated over Q by
classes [Z] constructed above.

It would be natural to try to formulate the Hodge conjecture in the Kähler

context. However, it seems that there is no way to do this, and this is the

reason why we will focus on the interplay between Hodge theory and algebraic

geometry in section 4. First of all, it has been known for a long time that Hodge

classes on compact Kähler manifolds are not in general generated over Q by

classes of closed analytic subsets. The simplest such example is provided by a

complex torus T admitting a holomorphic line bundle L of indefinite curvature.

This means in this case that the harmonic de Rham representative of the Chern

class c1(L) is given by a real (1, 1)-form with constant coefficients on T having

the property that the corresponding Hermitian form on the tangent space of T

is indefinite. If the torus T satisfying this condition is chosen general enough,

its space Hdg2(T ) will be generated by c1(L), as one shows by a deformation

argument. It follows that T will not contain any analytic hypersurface, hence

no non zero degree 2 Hodge class can be constructed as the Hodge class of a

codimension 1 closed analytic subset, while c1(L) provides a non zero Hodge

class on T .

However, there are two other constructions of Hodge classes starting from

analytic objects:

1) Chern classes of holomorphic vector bundles: one uses the Chern connec-

tion and Chern-Weil theory to show that they are indeed Hodge classes.

2) Chern classes of analytic coherent sheaves (that is, roughly speaking,

sheaves of sections of singular holomorphic vector bundles): the construc-

tion is much more delicate. We refer to [28] for a recent elegant construc-

tion.

In the projective case, it is known that the three constructions generate

over Q the same space of Hodge classes (cf. [38] and [9]). In the general Kähler

case, the torus example above shows that Chern classes of holomorphic vector

bundles or coherent sheaves may provide more Hodge classes than cycle classes.

The fact that Chern classes of coherent sheaves allow in some cases to construct

strictly more Hodge classes than Chern classes of holomorphic vector bundles

was proved in [47]. This is something which cannot be detected in degree 2,

as in degree 2, Chern classes of holomorphic line bundles generate all integral

Hodge classes, a fact which is known as the Lefschetz theorem on (1, 1)-classes.

To conclude, one can prove as in [9] that cycle classes are generated by Chern

classes of analytic coherent sheaves.
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If we want to extend the Hodge conjecture to the Kähler case, we therefore

are led to consider the following question:

Question 2.8. Are Hodge classes on compact Kähler manifolds generated over
Q by Chern classes of coherent sheaves?

We provided in [47] a negative answer to this question. Weil tori [57] are

complex tori T of even dimension 2n admitting an endomorphism φ satisfying

φ2 = −d IdT , d > 0 and a certain sign assumption concerning the action of φ

on holomorphic forms on T , which implies that T carries a 2-dimensional Q -

vector space of Hodge classes of degree 2n. The following result shows that they

provide a counterexample to question 2.8, thus showing that the projectivity

assumption is crucial in the statement of the Hodge conjecture.

Theorem 2.9. [47] Let T be a general Weil torus of dimension 4. Then any
analytic coherent sheaf F on T satisfies c2(F) = 0. Thus the Weil Hodge classes
on them are not in the space generated by Chern classes of coherent sheaves.

2.2. Hard Lefschetz theorem and Hodge-Riemann rela-
tions. Another very deep application of Hodge theory is the hard Lefschetz

theorem, which says the following: let X be a compact Kähler manifold of

dimension n and [ω] ∈ H2(X,R) be the class of a Kähler form ω on X.

Cup-product with [ω] gives an operator usually denoted by L : H∗(X,R) →

H∗+2(X,R).

Theorem 2.10. For any k ≤ n,

Ln−k
: Hk

(X,R)→ H2n−k
(X,R)

is an isomorphism.

A first formal consequence of the hard Lefschetz theorem 2.10 is the so-

called Lefschetz decomposition. With the same notations as before, define for

k ≤ n the primitive degree k cohomology of X by

Hk
(X,R)prim := Ker (Ln−k+1

: Hk
(X,R)→ H2n+2−k

(X,R)).

For example, if k = 1, the whole cohomology is primitive, and if k = 2, primitive

cohomology is the same as the orthogonal subspace, with respect to Poincaré

duality, of [ω]n−1 ∈ H2n−2(X,R).

The Lefschetz decomposition is given in the following theorem (it can also

be extended to k > n using the hard Lefschetz isomorphism).

Theorem 2.11. The cohomology groups Hk(X,R) for k ≤ n decompose as

Hk
(X,R) = ⊕2r≤kL

rHk−2r
(X,R)prim.
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2.2.1. Hodge-Riemann bilinear relations. We consider a Kähler compact

manifold X with Kähler class [ω]. We can define an intersection form qω on each

Hk(X,R) by the formula

qω(α,β) =

∫

X

[ω]n−k ∪ α ∪ β.

By hard Lefschetz theorem and Poincaré duality, qω is a non-degenerate bilinear

form. It is skew-symmetric if k is odd and symmetric if k is even. Furthermore,

the extension of qω to Hk(X,C) satisfies the property that

qω(α,β) = 0, α ∈ Hp,q, β ∈ Hp
′
,q

′

, (p′, q′) ̸= (q, p).

This property is indeed an immediate consequence of Lemma 3.1 and the fact

that H2n(X,C) = Hn,n(X), n = dimCX.

Equivalently, the Hermitian pairing hω on Hk(X,C) defined by

hω(α,β) = ιkqω(α,β)

has the property that the Hodge decomposition is orthogonal with respect to hω.

This property is summarized under the name of first Hodge-Riemann bilinear

relations.

It is also an easy fact that the Lefschetz decomposition is orthogonal with

respect to qω. To state the second Hodge-Riemann bilinear relations, note that,

because the operator L shifts the Hodge decomposition by (1, 1), the primitive

cohomology has an induced Hodge decomposition:

Hk
(X,C)prim = ⊕p+q=kH

p,q
(X)prim,

with Hp,q(X)prim := Hp,q(X) ∩Hp+q(X,C)prim. We have now

Theorem 2.12. The Hermitian form hω is definite of sign (−1)
k(k− 1)

2 ιp−q−k =:

ϵ(p, q, r) on the component LrHp,q(X)prim, 2r + p+ q = k, of Hk(X,C).

The Hodge-Lefschetz decomposition is particularly interesting when [ω] can

be chosen to be rational, so that X is projective by Kodaira’s embedding The-

orem 1.3. Indeed, in this case, this is a decomposition into a direct sum of

rational Hodge substructures. Furthermore the intersection form qω is rational.

On each piece of the Lefschetz decomposition, it induces up to sign a polariza-
tion of the considered Hodge substructure. This notion will come back later on.

Let us just say that we mentioned in Example 2.4 the equivalence of categories

{Weight 1Hodge structures}↔ {Complex tori}.

This can be completed by saying that there is an equivalence of categories

{Weight 1 polarized Hodge Structures}↔ {Abelian varieties}.

Indeed, an intersection form q on L,LC = L1,0
⊕ L1,0 satisfying the Hodge-

Riemann bilinear relations as in Theorem 2.12 provides an integral Kähler class

on the torus T = LC/(L
1,0
⊕ L) which is thus projective by Theorem 1.3.
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3. Hodge Structures on Cohomology Algebras

The following simple Lemma 3.1 is a direct consequence of the following two

facts:

1) Under the de Rham isomorphism (1.1), the cup-product is induced by

wedge product of differential forms.

2) The wedge product of a closed (p, q)-form and of a closed (p′, q′)-form is

a closed (p+ p′, q + q′)-form.

Lemma 3.1. If X is a compact Kähler manifold, the Hodge decomposition on
H∗(X,C) is compatible with cup-product:

Hp,q
(X) ∪Hp

′
,q

′

(X) ⊂ Hp+p
′
,q+q

′

(X).

Below, a cohomology algebra A∗ is the rational cohomology algebra of a con-

nected orientable compact manifold, or more generally any graded commutative

finite dimensional Q -algebra satisfying Poincaré duality: for some integer d ≥ 0,

A0 = Ad = Q and Ak
⊗ Ad−k

→ Ad is perfect for any k. By analogy, d will be

called the dimension of A∗.

Definition 3.2. (Voisin 2008) A Hodge structure on A∗ is the data of a Hodge
structure of weight k on each Ak (i.e. a Hodge decomposition on Ak

C
, satisfying

Hodge symmetry), such that:

A
p,q

C
∪A

p
′
,q

′

C
⊂ A

p+p
′
,q+q

′

C
.

Let us state a number of obvious properties:

1. By Remark 2.3, if A∗ admits a Hodge structure, dimA2k+1 is even, ∀k.

2. If A∗ admits a Hodge structure, then d is even. This follows from 1 because

dimAd = 1 and Ad carries a Hodge structure of weight d.

3. Any cohomology algebra with trivial odd part admits a Hodge structure,

namely the trivial one:

A2k
C = Ak,k, ∀k.

Definition 3.3. (Hodge class on A∗) A Hodge class in A∗ is an element of
A2k
∩Ak,k for some k.

Hodge classes a ∈ A2k act by multiplication on A∗, sending Al to Al+2k.

These morphisms are morphisms of Hodge structures, hence “special”. For ex-

ample, the simplest restriction on them is the following: they are of even rank

if l is odd. Indeed, the image of a morphism of Hodge structures is a Hodge

substructure (see [48, I,7.3.1]) hence, in particular, of even dimension if it has

odd weight (cf. Remark 2.3).
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3.0.2. Deligne’s lemma. This lemma implies that, given a cohomology

algebra A∗, some classes a ∈ A∗ must be Hodge classes for any Hodge structure

on A∗.

Let Z ⊂ Ak
C
be a closed algebraic subset defined by homogeneous equa-

tions depending only on the structure of multiplication on A∗. Concretely, the

following examples will be interesting for applications: fixing l and s, let

Z := {z ∈ Ak
C, rank z : Al

→ Al+k
≤ s}.

A second kind of examples is as follows: Fixing l, let

Z := {z ∈ Ak
C, z

l
= 0 in Akl

}.

Lemma 3.4. (Deligne) Let Z ′ be a an irreducible component of Z, and V :=

⟨Z ′⟩ ⊂ Ak
C
be the complex vector subspace generated by Z ′. Then V is stable

under Hodge decomposition, i.e. V = ⊕V p,q, where V p,q = V ∩Ap,q.

Corollary 3.5. Under the same assumptions, if V is defined over Q , this is a
Hodge substructure of Ak.

Corollary 3.6. Under the same assumptions, if dimV = 1 and V is defined
over Q , it is generated by a Hodge class.

3.1. Polarized Hodge structures on cohomology algebras.
Let A∗ be a cohomology algebra with Hodge structure.

Definition 3.7. A Hodge structure on A∗ admits a real polarization if some
α ∈ A

1,1

R
satisfies the hard Lefschetz property and the Hodge-Riemann bilinear

relations.

We will say that the Hodge structure on A∗ admits a rational polarization

if furthermore α can be chosen in A2
Q
∩A1,1.

Here the hard Lefschetz property and the Hodge-Riemann bilinear relations

are the analogs of their geometric counterparts described in section 2.2. The

hard Lefschetz property implies formally the Lefschetz decomposition (cf. [48,

I,6.2.2]): Ak
R
= ⊕k−2r≥0α

rAk−2r
R,prim

, k ≤ n, 2n = dimA∗. When α is real of type

(1, 1) with respect to a Hodge structure on A∗, this is a decomposition into real

Hodge sub-structures thus giving a Hodge-Lefschetz decomposition of Ak
C
into

terms of type αrA
p,q

prim
, 2r + p+ q = k.

The Hodge-Riemann relations (cf. Theorem 2.12) say in this context that

hα(a, b) := ιkαn−k
· a · b ∈ A2n

C
∼= Cαn

has a definite sign ϵ(p, q, r) on each piece of this Hodge-Lefschetz decomposition.
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In the rest of this section, we are going to apply these notions to prove the

following results:

1. There are very simple examples of compact symplectic manifolds satis-

fying all the “classical” restrictions (i.e they are formal, satisfy the hard

Lefschetz property, have abelian fundamental group), but which are topo-

logically non Kähler (that is, are not homotopically equivalent to a com-

pact Kähler manifold). Such manifolds can be constructed as complex

projective bundles over complex tori.

2. (The Kodaira problem) There exist compact Kähler manifolds which are

not homeomorphic (and, in fact, not homotopically equivalent) to complex

projective manifolds.

The criterion that we will use to prove that the constructed examples as in

1 are topologically non Kähler is the following:

Criterion 3.8. The cohomology algebra of a compact Kähler manifold carries
a Hodge structure. (We can also use as a strengthened criterion the existence
of a Hodge structure with real polarization to get more sophisticated examples,
eg simply connected examples).

The criterion that we will use to prove that the constructed examples as in

2 are topologically non projective is the following version of criterion 3.8, where

the rational polarization plays now a crucial role, as in Kodaira’s embedding

Theorem 1.3:

Criterion 3.9. The cohomology algebra of a complex projective manifold car-
ries a Hodge structure with rational polarization.

3.2. Symplectic versus Kähler manifolds. There is a close ge-

ometric relation between symplectic geometry and Kähler geometry. If X is

compact Kähler, forgetting the complex structure on X and keeping a Kähler

form provides a pair (X,ω) which is a symplectic manifold.

On the other hand, numerous topological restrictions are satisfied by com-

pact Kähler manifolds, and not by general symplectic manifolds (cf. [44]). For

example, very strong restrictions on fundamental groups of compact Kähler

manifolds have been found (see [2]) while Gompf proves in [24] that funda-

mental groups of compact symplectic manifolds are unrestricted in the class of

finitely generated groups.

Hodge theory provides two classical restrictions which come directly from

what we discussed in section 2.

1. The odd degree Betti numbers b2i+1(X) are even for X compact Kähler

(see Remark 2.3).

2. The hard Lefschetz property (cf. Theorem 2.10), saying that the cup-

product maps [ω]n−k∪ : Hk(X,R) ∼= H2n−k(X,R), 2n = dimRX are

isomorphisms, is satisfied.
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Another topological restriction on compact Kähler manifolds is the so-called for-

mality property [17]. A number of methods to produce examples of symplectic

topologically non Kähler manifolds were found by Thurston [43], McDuff [34],

Gompf [24]. On these examples, one of the properties above was not satified.

We want to exhibit here further topological restrictions on compact Kähler

manifolds, coming from Criterion 3.8. One of the difficulties to exploit this

criterion is the fact that the hp,q-numbers of the Hodge decomposition are not

determined topologically. Thus we have to analyse abstractly the constraints

imposed by the existence of a polarized Hodge structure on the cohomology

algebra without knowing the hp,q-numbers or the set of polarization classes.

Let us give a sample of results in this direction. The proofs, which are purely

algebraic, are all based on Deligne’s lemma 3.4.

We start with an orientable compact manifold X and consider a complex

vector bundle E onX. We denote by p : P(E)→ X the corresponding projective

bundle.

We make the following assumptions on (X,E):

H∗(X) generated in degree ≤ 2 and c1(E) = 0.

As a consequence of Leray-Hirsch theorem, one has an injection (of algebras)

p∗ : Hk(X,Q ) ↪→ H∗(P(E),Q ) (cf. [48, 7.3.3]).

Theorem 3.10. [54] If H∗(P(E),Q ) admits a Hodge structure, then each sub-
space Hk(X,C) ⊂ Hk(P(E),C) has an induced Hodge decomposition (and thus
the cohomology algebra H∗(X,Q ) also admits a Hodge structure).

Furthermore each ci(E) ∈ H2i(X,Q ), i ≥ 2, is of type (i, i) for this Hodge
structure on H2i(X,Q ).

This allows the construction of symplectic manifolds with abelian funda-

mental group satisfying formality (cf [17]) and the hard Lefschetz property,

but not having the cohomology algebra of a compact Kähler manifold. These

manifolds are produced as complex projective bundles over compact Kähler

manifolds (eg complex tori), which easily implies that all the properties above

are satisfied. We start with a compact Kähler manifold X having a given class

α ∈ H4(X,Q ) such that for any Hodge structure on H∗(X,Q ), α is not of

type (2, 2). Then if E is any complex vector bundle on X satisfying c1(E) = 0,

c2(E) = Nα, for some integer N ̸= 0, P(E) is topologically non Kähler by

Theorem 3.10, using Criterion 3.8.

The simplest example of such a pair (X,α) is obtained by choosing for X a

complex torus of dimension at least 4 and for α a class satisfying the property

that the cup-product map α∪ : H1(X,Q ) → H5(X,Q ) has odd rank. Indeed,

if α was Hodge for some Hodge structure on the cohomology algebra of X, this

morphism would be a morphism of Hodge structures, and its kernel would be

a Hodge substructure of H1(X,Q ), hence of even rank by Remark 2.3.
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3.3. Kähler versus projective manifolds. Kodaira’s characteriza-

tion Theorem 1.3 can be used to show that certain compact Kähler manifolds

X become projective after a small deformations of their complex structure. The

point is that the Kähler classes belong to H1,1(X)R, the set of degree 2 coho-

mology classes which can be represented by a real closed (1, 1)-form. They even

form an open cone, the Kähler cone, in this real vector subspace of H2(X,R).

This subspace deforms differentiably with the complex structure, and by Ko-

daira’s criterion we are reduced to see whether one can arrange that, after a

small deformation, the Kähler cone contains a rational cohomology class.

Example 3.11. Complex tori admit arbitrarily small deformations which are

projective.

The following beautiful theorem of Kodaira is at the origin of the work [49].

Theorem 3.12. [33] Let S be a compact Kähler surface. Then there is an
arbitrarily small deformation of the complex structure on S which is projective.

Kodaira proved this theorem using his classification of complex surfaces.

Buchdahl ([10], [11]) gives a proof of Kodaira theorem which does not use

the classification. His proof is infinitesimal and shows for example that a rigid

compact Kähler surface is projective.

3.3.1. Various forms of the Kodaira problem. Kodaira’s theorem 3.12

immediately leads to ask a number of questions in higher dimensions:

Question 3.13. (The Kodaira problem) Does any compact Kähler manifold
admit an arbitrarily small deformation which is projective?

In order to disprove this, it suffices to find rigid Kähler manifolds which

are not projective. However, the paper [21] shows that it is not so easy: if a

complex torus T carries three holomorphic line bundles L1, L2, L3 such that

the deformations of T preserving the Li are trivial, then T is projective. The

relation with the previous problem is the fact that from (T, L1, L2, L3), one

can construct a compact Kähler manifold whose deformations identify to the

deformations of the quadruple (T, L1, L2, L3).

A weaker question concerns global deformations.

Question 3.14. (The global Kodaira problem) Does any compact Kähler man-
ifold X admit a deformation which is projective?

Here we consider any deformation parameterized by a connected analytic

space B, that is any smooth proper map π : X → B between connected analytic

spaces, with X0 = X for some 0 ∈ B. Then any fiber Xt will be said to be a

deformation of X0. In that case, even the existence of rigid Kähler manifolds

which are not projective would not suffice to provide a negative answer, as there

exist families of compact Kähler manifolds π : X → B all of whose fibers Xt

for t ̸= 0 are isomorphic but are not isomorphic to the central fiber X0.
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Note that if X is a deformation of Y , then X and Y are diffeomorphic,

because the base B is path connected, and by the Ehresmann theorem (cf. [48,

9.1.1]), the family of deformations X → B can be trivialized in the C∞-category

over any path in B.

In particular, X and Y should be homeomorphic, hence have the same

homotopy type, hence also the same cohomology ring. Thus Question 2 can be

weakened as follows:

Question 3.15. (The topological Kodaira problem) Is any compact Kähler
manifold X diffeomorphic or homeomorphic to a projective complex manifold?

Does any compact Kähler manifold X have the homotopy type of a projective
complex manifold?

The following theorem answers negatively the questions above.

Theorem 3.16. There exist, in any complex dimension ≥ 4, compact Kähler
manifolds which do not have the rational cohomology algebra of a projective
complex manifold.

Our first proof used the integral cohomology ring. Deligne provided then

us with lemma 3.4, which allowed him to extend the result to cohomology

with rational coefficients, and even, after modification of our original example,

complex coefficients, (see [49]). We in turn used this lemma to construct simply

connected examples.

The examples in [49] were built by blowing-up in an adequate way compact

Kähler manifolds which had themselves the property of deforming to projec-

tive ones, namely self-products of complex tori, or self-products of Kummer

varieties. This left open the possibility suggested by Buchdahl, Campana and

Yau, that under bimeromorphic transformations, the topological obstructions

we obtained above for a Kähler manifold to admit a projective complex struc-

ture would disappear. However we proved in [50] the following result.

Theorem 3.17. In dimensions ≥ 10, there exist compact Kähler manifolds,
no smooth bimeromorphic model of which has the rational cohomology algebra
of a projective complex manifold.

The following questions remain open (cf. [30]):

1. What happens in dimension 3?

2. Do there exist compact Kähler manifolds whose π1 is not isomorphic to

the π1 of a complex projective manifold ? (See [55] for one step in this

direction.)

3. Is it true that a compact Kähler manifold with nonnegative Kodaira di-

mension has a bimeromorphic model which deforms to a complex projec-

tive manifold?
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3.3.2. Construction of examples. The simplest example of a topologically

non projective compact Kähler manifold is based on the existence of endo-

morphisms of complex tori which prevent the complex tori in question to be

algebraic. Let Γ be a rank 2n lattice, and let φ be an endomorphism of Γ.

Assume that the eigenvalues of φ are all distinct and none is real. Choosing n

of these eigenvalues λ1, . . . ,λn, so that no two of them are complex conjugate

to each other, one can then define Γ1,0
⊂ ΓC as the eigenspace associated to

the λi’s, and T = ΓC/(Γ
1,0
⊕ Γ). Clearly, the extended endomorphism φC of ΓC

preserves both Γ1,0 and Γ, and thus descends to an endomorphism φT of T .

Our first example was the following. Let (T,φT ) be as above a complex

torus with endomorphism. Inside T × T , we have the four subtori

T1 = T × 0, T2 = 0 × T, T3 = Diagonal, T4 = Graph(φT ),

which are all isomorphic to T . These tori meet pairwise transversally in finitely

many points x1, . . . , xN . Blowing-up these points, the proper transforms ˜Ti are

smooth and do not meet anymore. We can thus blow-up all the ˜Ti’s to get a

compact Kähler manifold X. This is our example.

Theorem 3.18. [49] This compact Kähler manifold X does not have the coho-
mology algebra of a projective complex manifold. More precisely, the cohomology
algebra H∗(X,Q ) does not admit a Hodge structure with rational polarization.

Let us give an idea of the proof. The degree 2 cohomology of the manifold

X contains the classes ei of the exceptional divisors over the ˜Ti. The first step

is to use Deligne’s Lemma 3.4, or rather its corollary 3.6 to show that these

classes have to be Hodge classes for any Hodge structure on H∗(X,Q ). The

second step consists then in examining the morphisms of Hodge structures

∪ei : H
1
(X,Q )→ H3

(X,Q )

given by cup-product with the ei’s. The conclusion is the following: For any

Hodge structure on H∗(X,Q ), the weight 1 Hodge structure on H1(X,Q ) is

the direct sum of two copies of a weight 1 Hodge structure L, which admits

an endomorphism conjugate to tφ. One concludes then with the following easy

result:

Proposition 3.19. [49] If n ≥ 2 and the Galois group of the splitting field
of Q (φ) acts as the full symmetric group S2n on the eigenvalues of φ, then a
weight 1 Hodge structure admitting an endomorphism conjugate to tφ does not
admit a rational polarization.

4. Cohomology of Algebraic Varieties;

Algebraic Data

4.1. Algebraic de Rham cohomology. Let X be a smooth pro-

jective variety defined over a field K of characteristic 0. One has the sheaf of
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Kähler (or algebraic) differentials ΩX/K which is a locally free algebraic coher-

ent sheaf on X, locally generated by differentials dfi, where the fi are algebraic

functions on X defined near x, the relations being given by da = 0, a ∈ K and

Leibniz rule d(fg) = fdg + gdf .

We can form the locally free sheaves Ωl

X/K
:=
∧l

ΩX/K and, by the def-

inition of ΩX/K and using Leibniz rule, we get the differentials d : OX →

ΩX/K , d : Ωl

X/K
→ Ω

l+1
X/K

satisfying d ◦ d = 0.

Definition 4.1. The algebraic de Rham cohomology of X is defined as the hy-
percohomology of the algebraic de Rham complex: Hk

dR
(X/K) := Hk(X,Ω∗

X/K
).

Note that this finite dimensional K-vector space depends on K. However,

when K ⊂ L (field extension), one has Hk
dR

(XL/L) = Hk
dR

(X/K) ⊗ K L. This

construction led Grothendieck to the following remarkable conclusion: The co-

homology with complex coefficients of a smooth complex projective variety (en-

dowed with its classical topology)Xcl can be computed as an algebraic invariant

of the algebraic variety X.

Note that this is not at all true if we change the field of coefficients or

the definition field. Even with R instead of C, and even if the variety X is

defined over R, the cohomology H∗(Xcl,R) cannot be computed by algebraic

means. It is furthermore known by work of Serre (see also [13], [40] for fur-

ther refined versions of this phenomenon) that the homotopy types (and even

the real cohomology algebra) of Xcl indeed is not determined by the abstract

algebraic variety X. In fact, a field automorphism of C will provide another

complex algebraic variety, thus another complex manifold, which is usually not

homeomorphic or even homotopically equivalent to the original one.

The precise statement of Grothendieck’s Theorem is the following:

Theorem 4.2. [29] Let X be a smooth algebraic variety defined over C. Then
there is a canonical isomorphism

Hk
dR(X/C) = Hk

(Xcl,C). (4.3)

When X is projective, this is a direct consequence of Serre’s theorem 1.4 and

of the fact that the holomorphic de Rham complex Ω∗
X
, which is the analytic

counterpart of the algebraic de Rham complex, is a resolution of the constant

sheaf C on Xcl. The quasi-projective case involves a projective completion X of

X with a boundary D = X \X which is a normal crossing divisor, and the in-

troduction of the logarithmic (algebraic and holomorphic) de Rham complexes

Ω∗
X
(logD).

Remark 4.3. What makes Theorem 4.2 striking is the fact that the algebraic

de Rham complex, unlike the holomorphic de Rham complex in the classical

topology, is not at all acyclic in positive degree in the Zariski topology, so that

the proof above is completely indirect. In fact, by the affine version of Theorem

4.2, its degree i cohomology sheaf is the complexified version of the sheaf Hi

studied by Bloch and Ogus [8], (cf. Section 4.4).
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4.1.1. Cycle classes. Let X be a smooth projective variety defined over K

and Z ⊂ X be a local complete intersection closed algebraic subset of X, also

defined over K. Following Bloch [7], one can construct an algebraic cycle class

[Z]alg ∈ H2k
dR(X/K).

Assume now that X is defined over C. We denote by Hdg2k(X) the set of

Hodge classes of the corresponding complex manifold. This is naturally a sub-

space of H2k(Xcl,Q ), hence of H2k(Xcl,C). We mentioned in section 2.1 that

one can define for any closed algebraic or analytic subset Z ⊂ X of codimension

k a topological cycle class [Z] ∈ Hdg2k(X). The following result compares the

algebraic and topological constructions.

Theorem 4.4. Via the isomorphism (4.3) in degree 2k, one has

[Z]alg = (2ιπ)k[Z].

Remark 4.5. The coefficient (2ιπ)k is not formal there, or just a matter of

definition. It is forced on us, due to the fact that the algebraic cycle class is

compatible with definition fields (eg, if Z, X are defined over K, so is [Z]alg),

while the topological cycle class is rational for the Betti cohomology theory.

4.2. Absolute Hodge classes. Here we enter one of the most fascinat-

ing aspects of the Hodge conjecture, which seriously involves the fact that the

complex manifolds we are considering are algebraic.

Let us first introduce the notion of (de Rham) absolute Hodge class (cf.

[19]). First of all, let us make a change of definition: a Hodge class of degree

2k on X will be in this section a class α ∈ (2ιπ)kH2k(X,Q ) ∩ Hk,k(X). The

reason for this shift is the fact that we want to use the algebraic cycle class [Z]alg

introduced in section 4.1.1, which takes value in algebraic de Rham cohomology,

and which, by Theorem 4.4, equals (2ιπ)k[Z] via the isomorphism (4.3).

Let Xcl be a complex projective manifold endowed with its classical topol-

ogy and α ∈ Hdg2k(X) be a Hodge class. Thus α ∈ (2ιπ)kH2k(Xcl,Q ) ⊂

H2k(Xcl,C) and we can use Theorem 4.2 to compute the right hand side as

the hypercohomology of the algebraic variety X with value in the complex of

algebraic differentials:

H2k
(Xcl,C) ∼= H2k

(X,Ω∗
X/C

). (4.4)

For each field automorphism σ of C, we get a new algebraic variety Xσ de-

fined over C, obtained from X by applying σ to the coefficients of the defining

equations of X. The corresponding complex manifold Xσ,cl is called a “conju-

gate variety” of Xcl(cf. [39]). It is in general not homotopically equivalent to

Xcl. However, as an algebraic variety, Xσ is deduced from X by applying σ,

and it follows that there is a natural (only σ(C)-linear) isomorphism between

algebraic de Rham cohomology groups:

H2k
(X,Ω∗

X/C
) ∼= H2k

(Xσ,Ω
∗

Xσ/C
).
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Applying the comparison isomorphism (4.4) in the reverse way, the class α thus

provides for each σ a (de Rham or Betti) complex cohomology class

ασ ∈ H2k
(Xσ,Ω

∗

Xσ
) = H2k

(Xσ,cl,C).

Definition 4.6. (cf [19]) The class α is said to be (de Rham) absolute Hodge
if ασ is a Hodge class for each σ. Concretely, as ασ has the right Hodge type,
it suffices to check that ασ = (2ιπ)kβσ, for some rational cohomology class
βσ ∈ H2k(Xσ,cl,Q ).

The main reason for introducing this definition is the following, which is an

immediate consequence of the comparison theorem 4.4 and of the naturality of

the algebraic cycle class:

Proposition 4.7. If Z ⊂ X is an algebraic subvariety of codimension k, then
(2ιπ)k[Z] ∈ (2ιπ)kH2k(X,Q ) is an absolute Hodge class.

Proposition 4.7 shows that the Hodge conjecture contains naturally the

following subconjectures:

Conjecture 4.8. Hodge classes on smooth complex projective varieties are
absolute Hodge.

Conjecture 4.9. Let X be smooth complex projective. Absolute Hodge classes
on X are generated over Q by algebraic cycles classes.

Conjecture 4.8 is solved affirmatively by Deligne for Hodge classes on abelian

varieties (cf. [19]). An important but easy point in this proof is the fact that

Weil classes (cf. section 2.1) on Weil abelian varieties are absolute Hodge.

To conclude this section, let us mention a crucial example of absolute Hodge

class. It plays an important role in the theory of algebraic cycles (cf. [31]) and is

not known in general to be algebraic (that is to satisfy the Hodge conjecture).

Example 4.10. Let X be smooth projective of dimension n. Recall from

Theorem 2.10 that if h = c1(H), where H is an ample line bundle on

X, there is for each k ≤ n an isomorphism of Hodge structures hn−k
∪ :

Hk(X,Q ) ∼= H2n−k(X,Q ). Consider now the inverse of the Lefschetz isomor-

phism above: (hn−k
∪)−1 : H2n−k(X,Q ) ∼= Hk(X,Q ). By Poincaré duality and

Künneth decomposition, the space Hom (H2n−k(X,Q ), Hk(X,Q )) is contained

in H2k(X × X,Q ). The corresponding Hodge of degree 2k on X × X is absolute

Hodge, and is not known in general to be algebraic.

4.3. Hodge loci and absolute Hodge classes. The key point in

which algebraic geometry differs from Kähler geometry is the fact that a smooth

complex projective variety X does not come alone, but accompanied by a full

family of deformations π : X → T , where π is smooth and projective (that

is X ⊂ T × PN over T , for some integer N), and where the base T is quasi-

projective smooth and defined over Q (T is not supposed to be geometrically
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irreducible). Indeed, one can take for T a desingularization of a Zariski open

set of the reduced Hilbert scheme parameterizing subschemes of PN with same

Hilbert polynomial asX. The Hilbert scheme and its universal family are known

to be defined over Q . The existence of this family of deformations is reflected

in the transformations X 4→ Xσ considered above. Namely, the variety T being

defined over Q , σ acts on its complex points, and if X is the fiber over some

complex point 0 ∈ T (C), then Xσ is the fiber over the complex point σ(0) of

T (C).

The total space X is thus an algebraic variety defined over Q (and in fact

we may even complete it to a smooth projective variety defined over Q ), but

for the moment, let us consider it as a family of smooth complex varieties, that

is, let us work with π : Xcl → Tcl.

Associated to this family are the Hodge bundles H l on T , which are de-

scribed set theoretically as follows: H l = {(t,αt), t ∈ T, αt ∈ H l(Xt,C)}.

Using a relative version of Grothendieck’s theorem 4.2, one can show that H l

is an algebraic vector bundle on T , defined over Q .

Definition 4.11. (cf [12]) The locus of Hodge classes for the family X → T

and in degree 2k is the subset Z ⊂ H2k consisting of pairs (t,α) where t ∈ T (C)

and αt is a Hodge class on Xt.

This locus is thus the set of all Hodge classes in fibers of π. For α ∈ Z we

shall denote by Zα the connected component of Z passing through α and by

Tα the projection of Zα to T . Tα is the Hodge locus of α, that is the locus of

deformations of X where α deforms as a Hodge class.

Observing that the transport map H l(Xt,C) ∋ αt 4→ αt,σ ∈ H l(Xt,σ,C)

associated to a field automorphism σ of C in the previous section is nothing

but the action of AutC on the complex points of the total space of the vector

bundle H l, seen as a variety defined over Q , we get the following “geometric”

interpretation of the notion of absolute Hodge class.

Lemma 4.12. (cf. [52]) i) To saying that Hodge classes of degree 2k on fibers
of the family X → T are absolute Hodge is equivalent to say that the locus Z is
a countable union of closed algebraic subsets of H2k defined over Q .

ii) To saying that α ∈ Hdg2k(X) is an absolute Hodge class is equivalent
to say that Zα is a closed algebraic subset of H2k defined over Q and that its
images under Gal (Q : Q ) are again components of the locus of Hodge classes.

This lemma rephrases Conjecture 4.8 as a structure statement for the locus

of Hodge classes. The following result, due to Cattani, Deligne and Kaplan,

establishes part of the predicted structure of the locus of Hodge classes. It is a

strong evidence for Conjecture 4.8, hence for the Hodge conjecture itself.

Theorem 4.13. [12] The connected components Zα of Z are closed algebraic
subsets of H2k. Hence the Hodge loci Tα are closed algebraic subsets of T .

Let us now investigate the arithmetic aspect of the notion of absolute Hodge

class, exploiting its relation with the definition field of the component of the
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Hodge loci. The following result is obtained in [52] as a consequence of Deligne’s

global invariant cycle theorem (cf. [18]). This result says that for absolute Hodge

classes, or under the much weaker assumption ii), the Hodge conjecture can be

reduced to the case of Hodge classes on varieties defined over a number field.

Theorem 4.14. [52] i) Let α ∈ Hdg2k(X) be an absolute Hodge class. Then
the Hodge conjecture is true for α if it is true for absolute Hodge classes on
varieties defined over Q .

ii) Let α ∈ Hdg2k(X) be a Hodge class, such that the Hodge locus Tα is
defined over Q . Then the Hodge conjecture is true for α if it is true for Hodge
classes on varieties defined over Q .

The second statement of Theorem 4.14 is one motivation to investigate the

question whether the Hodge loci Tα are defined over Q , which by Lemma 4.12

is weaker than the question whether Hodge class are absolute.

We have the following criterion, proved in [52]:

Theorem 4.15. Let α ∈ H2k(X,C) be a Hodge class. Suppose that any locally
constant Hodge substructure defined along Tα, say L ⊂ H2k(Xt,Q ), t ∈ Tα,
is purely of type (k, k). Then Tα is defined over Q , and its translates under
Gal(Q /Q ) are again of the form Tβ.

The assumptions in the theorem are reasonably easy to check in practice,

for example by infinitesimal methods. On the other hand, they are clearly not

satisfied in the case where the component Tα of the Hodge locus consists of one

isolated point, if the Hodge structure on H2k(X) is not trivial. In this case,

what predicts the Hodge conjecture is that this point should be defined over

Q . But our criterion does not give this: in fact our criterion applies only when

we actually have a non trivial variation of Hodge structure along Tα.

4.4. Bloch-Ogus theory and K-theory. Let X be a smooth com-

plex algebraic variety. As before Xcl denotes X(C) endowed with the classical

topology, while XZar denotes X(C) endowed with the Zariski topology. We de-

note π : Xcl → XZar the identity map, which is continuous. Bloch-Ogus theory

is the study of the spectral sequence associated to π. It appears to be one of

the best ways to relate the cohomology of Xcl to the structure of its spaces of

subvarieties or rather algebraic cycles.

Let us start with a notation: Let A be an abelian group; the sheaves Hi
X
(A)

are the sheaves on XZar defined by H
i
X
(A) := Riπ∗A. More concretely, Hi

X
(A)

is the sheaf on XZar associated to the presheaf U 4→ Hi(Ucl, A). The Leray

spectral sequence for π starts at E2

E
p,q

2 = Hp
(XZar,H

q

X
(A))⇒ Hp+q

(Xcl, A).

There is one simple thing that can be said about the sheaves Hi
X
(A): namely

they vanish for i > n = dimC X. Indeed, this is a consequence of the fact that
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the homotopy type of a smooth complex affine algebraic variety of dimension

n is a CW complex of real dimension ≤ n (cf. [48, II,1.2.1]).

However, much more can be said about the shape of the above spectral se-

quence, as a consequence of Bloch-Ogus theorem providing a Gersten-Quillen’s

type resolution for the sheaves Hi
X
.

Theorem 4.16. (Bloch-Ogus, [8]) One has Hp(XZar,H
q

X
(A)) = 0 for p > q.

Another spectacular consequence of this resolution is the following formula

due to Bloch-Ogus for groups of cycles modulo algebraic equivalence:

Theorem 4.17. [8] One has, for any p ≥ 0, the formula Hp(XZar,H
p(Z)) =

Z
p(X)/alg.

Here Z
p(X) is the free abelian group with basis the irreducible closed al-

gebraic subsets of X of codimension p. The algebraic equivalence relation is

generated by the deformation relation: two closed algebraic subsets of X are

deformation equivalent if they are the fibers over two points of a codimension

p closed algebraic subset Z ⊂ C × X, parameterized by a smooth connected

curve C.

Finally, the most impressive applications of Bloch-Ogus theory are ob-

tained via the Bloch-Kato conjecture which had been partially established by

Merkur’ev and Suslin in [35], [36], by Voevodsky in [46], and is now fully an-

nounced by Voevodsky [45]. This conjecture relates Milnor K-theory of a field

modulo n to Galois cohomology of this field with twisted Z/nZ-coefficients.

Combined with Bloch-Ogus resolution for finite coefficients and in the étale

setting on one hand, and with the Gersten-Quillen resolution for K-theory on

the other hand, it leads to beautiful results concerning groups of algebraic cy-

cles modulo certain equivalence relations, and more precisely to their torsion

part or their version with finite coefficients (we refer to [15], [37] for reviews of

them).

The following beautiful consequence of Bloch-Kato conjecture was obtained

by Bloch and Srinivas [6].

Theorem 4.18. The Bloch-Kato conjecture implies that the sheaves H
i
X
(Z)

have no torsion, which is also equivalent to the fact that for any i and n, there
are exact sequences:

0→ H
i
X(Z)

n
→ H

i
X(Z)→ H

i
X(Z/nZ)→ 0.

Let us state a simple application, which is related to the defect of the Hodge

conjecture for integral Hodge classes (already observed by Atiyah and Hirze-

bruch [3] in 1962). We introduce first the following invariant, which is shown

in [14] to be a birational invariant, allowing to detect non rationality of cer-

tain unirational varieties. Here we use the following notions: A rational variety
is birationally equivalent to a projective space, while a unirational variety X

admits a rational dominating map PN ""# X. Deciding whether a unirational
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variety is rational or not is a version of the Lüroth problem, which has a long

history [5].

Definition 4.19. The i-th unramified cohomology group of X with coefficients
in A is defined by the formula Hi

nr(X,A) = H0(XZar,H
i
X
(A)).

On the other hand, the defect of the integral Hodge conjecture for X is

measured by the groups Z2i(X) := Hdg2i(X,Z)/⟨[Z], codimZ = i⟩. The group

Z4(X) was shown by Kollár to be non trivial for very general hypersurfaces of

high degree in P4. However it was shown in [51] that Z4(X) is trivial if X is

a threefold swept-out by rational curves, i.e curves isomorphic to P1. In higher

dimensions, the question whether Z4(X) = 0 for rationally connected varieties

(i.e. varieties for which any two points can be joined by a rational curve) was

asked in [53]. We disprove this using the main result of [14] and comparing

H3
nr(X,Z/nZ) and the n-torsion of Z4(X) (see also [4]).

Theorem 4.20. [16] There exist rationally connected (and even unirational)
varieties of dimension 6 for which Z4(X) ̸= 0.
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(2004).

[2] J. Amorós, M. Burger, K. Corlette, D. Kotschick, D. Toledo. Funda-
mental groups of compact Kähler manifolds, Mathematical Surveys and Mono-

graphs, 44. American Mathematical Society, Providence, RI, (1996).

[3] M. Atiyah, F. Hirzebruch. Analytic cycles on complex manifolds, Topology 1

(1962), 25–45.

[4] L. Barbieri-Viale. Cicli di codimensione 2 su varietà unirazionali complesse,
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