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Abstract. We give detailed analysis of the returns to zero of the “determin-

istic random walk” Sn(x) =
∑n−1
k=0 f(x+kα) where α is a quadratic irrational,

f(x) = 1[ 1
2
,1)({x})− 1[0, 1

2
)({x}), and x is sampled uniformly in [0, 1].

The method is to find the asymptotic behavior of the ergodic sums of L1

functions for linear flows on the infinite staircase surface.

Our methods also provide a new proof of J. Beck’s central limit theorem
for Sn(0) where n ∈ {1, . . . , N} is uniform and N → ∞, and they allow us

to determine the generic points for certain infinite measure preserving skew
products (“cylinder maps”).

1. Introduction and overview

The simple random walk (SRW) can be generated from a dynamical system as
follows. Pick x in T := R/Z uniformly, and iterate the angle doubling map

τ : T→ T, τ(x) = 2x mod 1.

Place a “walker” at 0 ∈ Z. At time step k (k ≥ 1), ask the walker to make one
step to the left if τk(x) ∈ [0, 1

2 ), and one step to the right if τk(x) ∈ [ 1
2 , 1). This

procedure generates the the simple random walk, because the k-th step is (−1)xk+1

where 0.x1x2x3 · · · is the binary expansion of x, and if x ∈ T is chosen uniformly,
then xi are i.i.d. equal to +1 or −1 with probability 1

2 .
The angle doubling map is the standard example of a “chaotic” map. It is natural

to ask what happens if we replace it by an (ergodic) “non-chaotic” map, such as
the irrational rotation

Rα : T→ T, Rα(x) = x+ α mod 1 (α ∈ R \Q fixed).

Whereas τ is mixing, has positive entropy, and has countable Lebesgue spectrum,
properties associated with “chaos”, Rα is non-mixing, has zero entropy, and has
discrete spectrum, properties associated with “determinism” (see [Pet] page 245).

If we replace τ by Rα we obtain the a stochastic process called the deterministic
random walk [AK]. To define it formally, let B denote the Borel σ–algebra of T,
let mT be the normalized Lebesgue measure on T thought of as the unit interval
mod 1, and define f : T→ Z by

f(x) =

{
−1 x ∈ [0, 1

2 )

+1 x ∈ [ 1
2 , 1).
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The deterministic random walk (DRW) with angle α ∈ R \ Q is the sequence
S0 = 0, Sn =

∑n
k=1 f ◦ Rkα (n ≥ 1) on the probability space (T,B,mT). The

following table compares it with the simple random walk:

Simple RW Deterministic RW
A.e. orbit returns to zero. A.e. orbit returns to zero [At]

Recurrence The set of exceptions has The set of exceptions is
positive Hausdorff dim. [BS] finite [Ra].

Trace Z for a.e. x. Z for a.e. x [C],[CK],[Sch],
{Sn(x) : n ≥ 0} but not for all x [BR],[Pe].
Drift A.e. orbit has zero drift. All orbits have zero drift
lim
n→∞

Sn(x)/n The set of exceptions has by Weyl’s Theorem

positive Hausdorff dim. [BS] ([KN, chapter 1])
Central No, by the Denjoy–Koksma
Limit Yes Ineq. [Her, page 73]. Other
Theorem choices of f may have CLT

[BD],[V]. See also [Hu],[B1]

In this paper we contribute to the study of the visits to zero of the deterministic
random walk: Nn(x) = Nn(x;α) := (#{0 ≤ k ≤ n− 1 : Sk(x) = 0}.

For the simple random walk, if the number of visits to zero up to time n is

N̂n, then E(N̂n) ∼
√

2n/π (de Moivre–Laplace Theorem), and 1√
n
N̂n

dist−−−−→
n→∞

Θ(1),

where Θ(t) is Brownian local time [Bor]. The determinstic random walk behaves
differently. Aaronson and Keane showed in [AK] that if α is a quadratic irrational,
then there are constants c1, c2 > 0 s.t. c1( n√

lnn
) ≤ E(Nn) ≤ c2( n√

lnn
).

We show, among other things, that if α is a quadratic irrational, then there is a
positive constant c(α) with the following properties:

(1) E(Nn) ∼ c(α)( n√
lnn

) =: an(α) as n→∞.

(2) 1
an(α)Nn

dist−−−−→
n→∞

√
2 exp[− 1

2χ
2], where χ has the standard normal distribution.

(3) 1
ln lnn

∑n−1
k=0

1
n lnn

(
1

an(α)Nn

)
−−−−→
n→∞

1 almost surely.

(4) c(α) =
√
| lnλ|
4πσ2 where λ, σ2 ∈ Q[α] can be calculated explicitly. For example,

c(
√

2) =

√√
2

3π ln(17 + 12
√

2).

These results should be contrasted with Kesten’s work [Kes] which says that if
α is also randomized (i.e. (x, α) chosen uniformly in [0, 1]2), then the right scaling
for Nn(x;α) is n/ lnn.

Our main tool is the cylinder map Tα(x, ξ) = (x+α mod 1, ξ+ f(x)) on T×Z,
together with the (infinite) invariant measure m0 := mT × mZ (mT=normalized
Lebesgue measure on T, mZ =counting measure on Z). To see the connection to
the DRW, write Tnα := Tα ◦ · · · ◦Tα (n times) and observe by direct calculation that

• Sn(x) is the second coordinate of Tnα (x, 0), and

• Nn(x) =
∑n−1
k=0 1T×{0}(T

k
α(x, 0)), where 1E is the indicator function of E.

We will analyze the asymptotic behavior of the Birkhoff sums
∑n−1
k=0 G ◦ T kα for

general non-negative functions G ∈ L1(T× Z). The results for Nn follow from the
special case G = 1T×{0}.
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Figure 1. (a) The infinite staircase St; (b) The translation surface
St0 it covers; (c) St0 is a punctured torus
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A by-product of the analysis is a characterization of the generic points of m0,
which partially answers a question in [Sa]. See §7 for precise statements.

Our methods also allow us to give a new proof of a result of J. Beck on the
central limit theorem for

∑n−1
k=0 f({kα}) where n is chosen randomly uniformly in

{1, . . . , N}, and N →∞ [B1, B2]. See §5 for precise statement.
To study the cylinder map, we use a remarkable geometric construction due

to Pat Hooper, Pascal Hubert & Barak Weiss [HHW] (see also [HW]). They
constructed the infinite staircase surface, St, described in figure 1. The rectangles
are 2×1 rectangles with the short side in the direction of the positive y–axis (“up”).
Edges with identical labels are identified by translations.

The vertices split into four infinite classes of identified points, called the singu-
larities of St. We let St∗ := St \ {singularities}, and think of the singularities of
St as of punctures in St∗. Each singularity is the meeting point of infinitely many
rectangles, and the angle around it is infinite.

The linear flow at direction θ ∈ (−π2 ,
π
2 ) is the flow ϕtθ which moves a point on

St∗ in the direction
(

sin θ
cos θ

)
t units of distance respecting identifications (θ = 0 is

moving “up”). The definition makes sense for the set of full measure of points p
whose orbit does not hit a singularity.

The connection to the cylinder map is explained by the following observation
from [HHW]. Recall that a Poincaré section for ϕθ is a set S ⊂ St s.t. for a.e. p ∈
St there is a minimal positive time r(p) > 0 s.t. ϕ

r(p)
θ (p) ∈ S, and infp∈S r(p) > 0.
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The function r : S → (0,∞) and the map T : S → S, T (p) = ϕ
r(p)
θ (p), are called

the roof function and Poincaré map of S.

Lemma 1.1. For θ 6= ±π2 +2πk, the union of the horizontal sides of the horizontal
rectangles in figure 1 is a Poincaré section for ϕθ with constant roof function. The
Poincaré map is isomorphic to the cylinder map Tα where α = 1

2 tan θ + 1
2 .

The isomorphism is very simple: Divide St into horizontal rectangles, call one of
them “rectangle zero” and tag the remaining rectangles by ξ ∈ Z in such a way that
the rectangle directly above rectangle ξ is rectangle ξ+ 1. The point (x, ξ) ∈ T×Z
corresponds to the point ω(x) on the top horizontal side of rectangle ξ, and located
2x units of distance away from the left end.

Since Tα is a Poincaré map for ϕθ with constant roof function, there is a standard
way to reduce the study of the Birkhoff sums of Tα to the analysis of the Birkhoff
integrals of ϕθ. This is what we will do.

The gain is that St has many symmetries, and for special directions θ, it is
possible to find a “nice” automorphisms ψ : St→ St s.t.

ψ ◦ ϕtθ = ϕλtθ ◦ ψ (∗)

for some 0 < λ < 1. This is what happens for the θ whose corresponding α is a
quadratic irrational. (∗) is the key to the asymptotic behavior of the Birkhoff sums
of ϕθ and Tα, and therefore also to the asymptotic behavior of Nn.

2. The infinite staircase and its automorphisms

Z–cover. St∗ is a regular Z–cover of a finite area surface St∗0 (figure 1). Let

π : St∗ → St∗0

be the covering map. St∗0 is a twice punctured torus (Figure 1(c)). Let St0 denote
its completion. It is a torus, and π : St∗ → St∗0 extends continuously to a map
π : St→ St0. The extension is two-to-one on the singularities of St and infinite-to-
one elsewhere.

The group of deck transformations of the covering is generated by an obvious
translation. We denote it by

D : St→ St.

D2 fixes the singularities.

Z–coordinate. Choose a bounded connected set R ⊂ St∗ s.t. St∗ =
⊎
k∈ZD

k(R),
for example one of the horizontal rectangles in figure 1 with the vertices and bottom
horizontal side removed. The Z–coordinate of p ∈ St∗ (relative to R) is

ξ(p) := unique k s.t. p ∈ Dk(R).

Notice that ξ ◦D = ξ+ 1. This definition depends on the choice of R. We will refer
to this as “choosing a Z–coordinate.”

Homogeneous automorphisms. St has an obvious atlas of charts whose change
of coordinates transformations are euclidean translations. This allows us to identify
the tangent spaces of St at different points with R2 (and therefore with each other)
consistently. We will use the convention that direction “up” in figure 1 is

(
0
1

)
∈ R2.

Once we have identified the tangent spaces at different points with R2, we can
view the differential dψp : Tp(St) → Tψ(p)(St) of a smooth map ψ : St → St
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(p ∈ St∗) as a linear map R2 → R2. The matrix representing this map is called the
derivative at p.

A map ψ : St → St is an automorphism, if ψ : St → St is a homeomorphism;
ψ(St∗) = St∗; ψ : St∗ → St∗ is differentiable; ψ : St∗ → St∗ is orientation preserv-
ing; and ψ has constant derivative.

An automorphism ψ : St→ St is called homogeneous, if it commutes with D and
preserves the D–orbits of the singularities of St. Notice that in this case, ψ2 fixes
the singularities.

Every homogeneous automorphism ψ : St→ St is the lift of a toral automorphism
ψ0 : St0 → St0: Take

ψ0(p) = π[ψ(p̃)] for some (any) p̃ ∈ π−1(p).

The definition is proper, because π−1(p) is an orbit of D, ψ ◦ D = D ◦ ψ and
π ◦D = π. It is easy to see that ψ0 is invertible and has constant derivative.

We call ψ0 the projection of ψ. The assumption that ψ preserves the D–orbits
of singularities means that ψ0 fixes the punctures of St∗0.

Proposition 2.1. All homogeneous automorphisms are area preserving.

Proof. Let J, J0 denote the Jacobian functions of a homogeneous automorphism ψ
and its projection ψ0 . Since π ◦ ψ = ψ0 ◦ π and π is a local isometry, J = J0 ◦ π.
The Jacobian of ψ is constant (ψ has constant derivative), therefore the Jacobian
of ψ0 is constant. Since ψ0 is a self-bijection of a surface of finite area, this constant
equals one. So J = J0 ◦ π ≡ 1, and ψ is area preserving. �

Frobenius functions and drifts. Fix some Z–coordinate ξ : St→ Z. The Frobe-
nius function of a homogeneous automorphism ψ : St→ St is

Fψ : St∗0 → Z , Fψ(p) = ξ[ψ(p̃)]− ξ[p̃] for some (any) p̃ ∈ π−1(p).

The definition is proper because π−1(p) = {Dn(p) : n ∈ Z}, ϕ ◦ D = D ◦ ϕ, and
ξ ◦ D = ξ + 1. Fψ depends on the choice of the Z–coordinate. If we change the
Z–coordinate, Fψ changes by a coboundary of ψ0, see below.

The average drift (or just drift) of a homogenous automorphism ψ : St→ St is

δ(ψ) :=
1

area(St0)

∫
St0

Fψ(p)dp, (dp =area measure).

We will see later that δ(ψ) is the drift of a certain random walk associated to ψ.

Lemma 2.2. The average drift is independent of the choice of the Z–coordinate,
and δ(ψ ◦ φ) = δ(ψ) + δ(φ) for any homogeneous automorphisms ψ, φ.

Proof. Let ψ0 : St0 → St0 be the projection of ψ, and suppose ξ, η are two choices

of Z–coordinates with Frobenius functions F ξψ, F
η
ψ . We claim that

∫
F ξψ =

∫
F ηψ .

Define ∆ : St0 → Z , ∆(p) = ξ(p̃) − η(p̃) for some (any) p̃ ∈ π−1(p). The
definition is proper since π−1(p) is aD–orbit, and (ξ−η)◦D = (ξ+1)−(η+1) = ξ−η.

A simple calculation shows that F ξψ − F ηψ = ∆ ◦ ψ0 − ∆. Since ψ0 is measure

preserving,
∫

(F ξψ − F
η
ψ) =

∫
(∆ ◦ ψ −∆) = 0, and

∫
F ξψ =

∫
F ηψ .

Next suppose ψ, φ are two homogeneous automorphisms. It is easy to see that
ψ ◦ φ is a homogeneous automorphism, and for every p ∈ St0 and p̃ ∈ π−1(p),

Fψ◦φ(p) = ξ[ψ(φ(p̃))]− ξ[p̃] = ξ[ψ(φ(p̃))]− ξ[φ(p̃)] + ξ[φ(p̃)]− ξ[p̃]
= (Fψ ◦ φ0)(p) + Fφ(p), where φ0 is the projection of φ.



6 A. AVILA, D. DOLGOPYAT, E. DURIEV, AND O. SARIG

Since φ0 is area preserving, δ(ψ ◦ φ) =
∫
Fψ ◦ φ0 +

∫
Fφ = δ(ψ) + δ(φ). �

By [HHW] the set of derivatives of homogeneous automorphisms equals

Γ = {A ∈ SL(2,Z) : A =
(

1 0
0 1

)
or
(

0 1
−1 0

)
mod 2}

Here is a refinement of this statement. The proof is in the appendix.

Proposition 2.3 (Classification of homogeneous automorphisms).

(1) If A ∈ SL(2,Z), A =
(

1 0
0 1

)
mod 2 and δ0 ∈ Z, then there is a unique homo-

geneous automorphism with derivative A and drift δ0.
(2) If A ∈ SL(2,Z), A =

(
0 1

−1 0

)
mod 2 and δ0 ∈ 1

2 + Z, then there is a unique
homogeneous automorphism with derivative A and drift δ0.

(3) No other homogeneous automorphisms exist.

Renormalizing hyperbolic automorphisms. A homogeneous automorphism of
St is called hyperbolic if its derivative matrix has two real eigenvalues, λ, λ−1, where
0 < |λ| < 1.

Definition 2.4. A hyperbolic homogeneous automorphism ψ renormalizes α ∈ R,
if α = 1

2 + 1
2 tan θ(mod 1) where

(
sin θ
cos θ

)
is an eigenvector of the derivative of ψ. In

this case we say that α is renormalized by ψ.

The motivation is that if α = 1
2 + 1

2 tan θ(mod 1), then Tα is the Poincaré map of
the linear flow in direction θ, ϕθ : St→ St, and

ψ ◦ ϕtθ = ϕλtθ ◦ ψ

where λ is the eigenvalue of
(

sin θ
cos θ

)
.

There is no loss of generality in assuming that (a) the eigenvalues are positive,
(b) ψ fixes the singularities of St, (c) ψ has zero drift, and (d) 0 < λ < 1: We saw
above that homogeneous automorphism ψ has drift in 1

2Z, so 2δ(ψ) is always an

integer. One of the automorphisms D−4δ(ψ)ψ4, D4δ(ψ)ψ−4 satisfies (a),(b),(c),(d).

We characterize the irrational numbers α which possess renormalizing automor-
phisms. Recall that a quadratic irrational is an irrational α s.t. aα2 + bα + c = 0
for some a, b, c ∈ Z not all equal to zero.

Proposition 2.5. α is renormalized by a hyperbolic homogeneous automorphism
iff it is a quadratic irrational.

Proof. The derivative of a hyperbolic homogeneous automorphism belongs to SL(2,Z).
The eigenvalues of such matrices are quadratic irrationals, and the slopes of the
eigenvectors of such matrices are quadratic irrationals. It follows that all irrationals
with renormalizing hyperbolic automorphisms are quadratic.

For the conversem suppose that α is a quadratic irrational. We prove that a
renormalizing automorphism exists. Let α′ := 2α − 1. This is also a quadratic
irrational.

By Lagrange’s Theorem, the continued fraction expansion of α′ is eventually

periodic. So there is a map ϕ(z) = a′z+b′

c′z+d′ with
(
a′ b′

c′ d′
)
∈ SL(2,Z) s.t. the

continued fraction expansion of ϕ(α′) is (completely) periodic:

ϕ(α′) = [a0, . . . , an−1, a0, . . . , an−1, · · · ]. (2.1)
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Let pk
qk

denote the principal convergents of β := ϕ(α′). By the theory of continued

fractions, det
(
pn pn−1
qn qn−1

)
= (−1)n+1, and β is a fixed point of ψ(z) = pnz+pn−1

qnz+qn−1
.

So ψ[ϕ(α′)] = ϕ(α′), whence (ϕ−1ψϕ)(α′) = α′.
Let φ := ϕ−1ψϕ, then φN (α′) = α′ for all N . We claim that for some N , φN is

a Möbius transformation with matrix belonging to

Γ(2) := {A ∈ SL(2,Z) : A = Id mod 2}.

Let A be the matrix which represents φ2. Obviously, φ2 ∈ SL(2,Z). Let [A]2 ∈
SL(2,Z2) denote the residue class of A mod 2. The group SL(2,Z2) is finite,
therefore [AN ]2 = ([A]2)N = Id for some N . So φ2N is represented by a matrix in
Γ(2), proving the claim.

Write φ2N (z) = c+dz
a+bz for

(
d c
b a

)
∈ Γ(2), then(

a b
c d

)(
1

α′

)
=

(
a+ bα′

c+ dα′

)
=

1

a+ bα′

(
1

φ2N (α′)

)
=

1

a+ bα′

(
1

α′

)
, (2.2)

proving that
(

1
α′

)
is an eigenvector of

(
a b
c d

)
∈ Γ(2). This matrix is hyperbolic,

because its trace is bigger than two: a + d = tr
[
φ2N

]
= tr

[(
pn pn−1
qn qn−1

)2N]
,

and every 2× 2 matrix with determinant one and all of whose entries are positive
integers, has trace bigger than two.

By (2.2), the homogeneous automorphism with zero drift and derivative
(
a b
c d

)
renormalizes α = 1

2 + 1
2α
′. �

The previous proof is constructive, but it does not provide a convenient tool for
calculating renormalizing automorphisms. This is the purpose of the next result.

Proposition 2.6. Any quadratic irrational α equals 1
2 +

k+
√
q(q+1)

2n (mod 1) for

some k, q, n ∈ Z satisfying q(q + 1) 6= 0 and n|k2 − q(q + 1). In this case there is a
renormalizing homogeneous automorphism ψ with zero drift and derivative

dψ =

(
2(q − k) + 1 2 · k

2−q(q+1)
n

−2n 2(q + k) + 1

)
. (2.3)

Example: For α =
√

2, we can take k = n = 3, q = 8, and get the homogeneous
automorphism with zero drift and derivative

(
11 −42
−6 23

)
.

Similar formulas can be obtained for
√

3 (k = n = 1, q = 3),
√

5 (k = n = 1, q =

4),
√

7 (k = n = 12, q = 63) etc.

Proof. Since α is a quadratic irrational, it has a hyperbolic renormalizing automor-
phism with zero drift. Let A be the derivative. By proposition 2.3, A =

(
a b
c d

)
with a, d odd and b, c even, and ad− bc = 1.

We claim that tr(A) = 2 (mod 4). Since a, d are odd, they are equal to±1 (mod 4).
Write a = 4α+ε, d = 4β+η, c = 2γ, c = 2δ with α, β, γ, δ ∈ Z and ε, η = ±1. Since
1 = det(A) = εη(mod 4), ε = η. It follows that a = d(mod 4) and trA = a + d =
4(α+ β)± 2 ∈ 4Z + 2.

Write tr(A) = 4q + 2 with some q ∈ Z. Since a, d are odd and a + d = 4q + 2,
we can put a, d in the form a = 2(q − k) + 1 and d = 2(q + k) + 1 with k ∈ Z.
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Since c is even, c = −2n with some n ∈ Z. Since ad− bc = 1, either n = 0 and

A = Id, or n 6= 0 and b = 2 · k
2−q(q+1)

n . So A =

(
2(q − k) + 1 2 · k

2−q(q+1)
n

−2n 2(q + k) + 1

)
with q, n, k ∈ Z s.t. n 6= 0 and n|k2 − q(q + 1). Every choice of k, q, n like that

determines a matrix in SL(2,Z) equal to
(

1 0
0 1

)
mod 2.

The characteristic polynomial of A is x2 − x trA + detA = x2 − (4q + 2)x +

1. The eigenvalues are (2q + 1) ± 2
√
q(q + 1). A is hyperbolic iff q(q + 1) 6= 0.

The eigenvectors are proportional to (
k±
√
q(q+1)

n , 1), so the automorphism with

derivative A renormalizes α := 1
2 +

k±
√
q(q+1)

n . Playing with the signs of k, n we

see that there is no loss in taking α := 1
2 +

k+
√
q(q+1)

n . �

Markov partitions and symbolic dynamics. Every hyperbolic homogeneous
automorphism ψ : St→ St covers a hyperbolic toral automorphism ψ0 : St0 → St0.
Adler and Weiss introduced in [AW] a technique for coding ψ0 : St0 → St0 as the
action of the left shift map on the collection of two sided infinite paths on a finite
directed graph. This is done using Markov partitions. The purpose of this section
is to describe this method.

The original work of Adler & Weiss applies to general hyperbolic automorphisms.
It is important to our purposes to carry out the Adler–Weiss construction in a way
which respects that fact that ψ0 fixes the punctures of St0 and has derivative matrix

A ∈ Γ(2) := {A ∈ SL(2,Z) : A =
(

1 0
0 1

)
mod 2}.

We will assume for simplicity that A has positive eigenvalues, 0 < λ < 1 and
λ−1 > 1. Then there are vectors v =

(
1
v

)
, w =

(
1
w

)
such that Av = λ−1v and

Aw = λw. Since A ∈ Γ(2), v, w are irrational. We call w the stable direction and v
the unstable direction (of ψ0).

The first step in the Adler–Weiss construction is to divide the torus into two
parallelograms Q1, Q2 with sides parallel to v, w. They cut the torus along two line
segments emanating from a single fixed point. We prefer to use one segment passing
through the first puncture, and the other passing through the second puncture: this
simplifies the analysis of the coded Frobenius function, see §6 below.

Suppose first that−1 < w < 0, v > 1 (case 1), or 0 < w < 1, v > 1 (case 2). Then
Q1, Q2 can be constructed as in Figure 2. Notice that one of the parallelograms
(which we call Q1) contains one or no punctures in its closure, and the other (which
we call Q2) contains both punctures in its closure.

The general case can be reduced to case 1 or 2 by working with θ ◦ ψ0 ◦ θ−1

or θ ◦ ψ−1
0 ◦ θ−1 for a suitable toral automorphism θ : St0 → St0 which fixes

the punctures. The derivative matrix of θ is produced from the following lemma,
applied to the irrational numbers ξ = v−1, η = w−1 (see the appendix for proof):

Lemma 2.7. For every ξ, η ∈ R \ Q s.t. ξ 6= η there exists
(
a b
c d

)
∈ Γ(2) such

that s1 := aξ+b
cξ+d , s2 := aη+b

cη+d satisfy one of the following: One of s1, s2 is in (0, 1)

and the other is in (1,∞); Or one of s1, s2 is in (−1, 0) and the other is in (1,∞).

θ itself can be produced using Proposition 2.3 by projecting the homogeneous auto-
morphism with zero drift and derivative

(
a b
c d

)
to St0. Homogeneity guarantees

that θ fixes the punctures.



A RANDOM WALK DRIVEN BY AN IRRATIONAL ROTATION 9

Q1 Q2

-1

+1

-1

Q1 Q2

-1

+1
-1

(a)

(b)

Figure 2. Partition of the torus

We call R := Q1∪Q2 the fundamental polygon of ψ0. The sides of R in direction
w (resp. v) are called stable (resp. unstable). Let ∂sR :=union of stable sides of
R and ∂uR :=union of unstable sides of R. Since ∂sR, ∂uR are linear segments
containing fixed points of ψ0 and in the direction of eigenvectors of dψ0, we have
ψ0(∂sR) ⊂ ∂sR and ψ−1

0 (∂uR) ⊂ ∂uR.
A u–fibre is a linear segment in direction v with endpoints in ∂sR. Since

ψ0(∂sR) ⊂ ∂sR and Av = λv, the ψ0–image of a u–fibre is a finite union of u–
fibres. Similarly, an s-fibre is a linear segment in direction w and endpoints in ∂uR.
The ψ0–image of an s–fibre is a subset of an s–fibre. We orient u/s–fibres in the
direction of v, w.

Thus ψ0(Qi) is a finite union of non-overlapping parallelograms Qi1, . . . , QiNi ⊂
R with sides in the stable and unstable directions, and with s–sides contained in
∂sR. We use the following convention for the order Qi1, . . . , QiNi (i = 1, 2): Recall
that u–fibres are oriented in the direction of u, then every parallelogram Qij has a
bottom s–side, and a top s–side. The ordering is done so that the top side of Qij is
identified with the bottom side of Qi,j+1 (j = 1, . . . , Ni − 1).

The interior of Qij is completely contained in the interiors of Qk for k = 1 or 2.

Otherwise, ψ0(int(Qi)) intersects ∂uR, in contradiction to ψ−1
0 (∂uR) ⊂ ∂uR.

Let P := {Qij : i = 1, 2; 1 ≤ j ≤ Ni}. Since ψ0 is bijective, P is a partition of
St0. By the previous paragraph, P is a refinement of {Q1, Q2}. P is the Adler–
Weiss Markov partition.

The dynamical graph of P is the directed graph G with set of vertices P and
edges Pi → Pj for any pair of Pi, Pj ∈ P s.t. int(Pi ∩ ψ−1

0 (Pj)) 6= ∅. Let Σ(G )
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Figure 3. The Z–coordinate associated to the canonical renor-
malizing automorphism of

√
2

denote the collection of bi-infinite paths on G :

Σ(G ) := {(Pk)k∈Z ∈ PZ : Pk → Pk+1 for every k ∈ Z}.

Equip Σ(G ) with the metric d(x, y) := exp(−min{|k| : xk 6= yk}). Let σ : Σ(G )→
Σ(G ) denote the left shift map, σ : (xi)i∈Z 7→ (xi+1)i∈Z.

Theorem 2.8 (Adler and Weiss). For every (Pi)i∈Z ∈ Σ(G ), there is a unique point
π0[(Pi)i∈Z] ∈

⋂
i∈Z ψ

−i
0 (Pi), and π0 : Σ(G )→ St0 has the following properties:

(1) π0 : Σ(G )→ St0 is onto and |π−1
0 (p)| = 1 for Lebesgue almost every p ∈ St0

(2) π0 is Hölder continuous and π0 ◦ σ = ψ0 ◦ π0

(3) Let m0 denote the normalized Lebesgue measure on St0, then m0 ◦ π−1
0 is a

mixing stationary Markov measure on Σ.
(4) m0 ◦ π−1

0 is the measure of maximal entropy for σ : Σ(G )→ Σ(G ).

See [AW] for proof. Additional information on the combinatorial structure of G
can be found in §6.

Let R̃ denote a connected lift of the fundamental polygon Q1 ∪ Q2 to St. The
corresponding Z–coordinate ξ : St→ Z is called the Z–coordinate associated to the
automorphism ψ, see figure 3.

The main advantage of the associated Z–coordinate is the following fact, whose
proof we defer for reasons of exposition to §6 (Lemma 6.8): If Fψ is the Frobenius
function of ψ with respect to the associated Z–coordinate of ψ, then

Fψ is P ∨ ψ−1
0 (P)–measurable or P ∨ ψ0(P)–measurable. (2.4)

This means there exists a function g : P×P→ Z s.t. the coded Frobenius function

F := Fψ ◦ π0 : Σ(G )→ Z

takes the form F [P ] = g(P0, P1) or F [(Pi)i∈Z] = g(P−1, P0) (P = (Pi)i∈Z ∈ Σ(G )).

The following additional property of F is proved in the appendix.

Lemma 2.9 (Aperiodicity Lemma). If eitF = zh/h ◦ σ where |z| = 1, t ∈ R, and
h : Σ(G )→ C is continuous , then z = 1, t ∈ 2πZ, and h = const.
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This is called the aperiodicity condition in [GH], and should be viewed as a strong
way of saying that F does not take values in a set of the form a + bZ “up to a
coboundary.” The aperiodicity condition is used in §3.

The twist at a singularity. The contents of this section are only used in §5.
Suppose ψ is a homogeneous hyperbolic automorphism of the infinite staircase,

and let p denote one of the four singularities of St. Recall that D2(p) = p and
ψ2(p) = p.

Let w be some non-zero vector. There are infinitely many rays emanating from
p in direction w: one for each horizontal rectangle with vertex congruent to p such
that the vector w based at p points into the rectangle. Let Li(p, w) denote the ray
which starts at horizontal rectangle number i. So D(Li(p, w)) = Li+1(D(p), w).

Now suppose w is an eigenvector of dψn for some n. Then dψ2n(w) = λw with
λ > 0, and ψ2n(p) = p. It follows that ψ2n[Li(p, w)] = Lj(p, w) for some j = j(i).
It is not difficult to see that (j − i)/2n is independent of the choice of i and n.

Definition 2.10. The twist of w at p is τψ(p, w) := 1
2n (j − i).

Lemma 2.11. τψ(p, w) ∈ 1
2Z. If ψ is hyperbolic with positive eigenvalues, then

τψ(p, w) ∈ Z.

Proof. The first statement is because if dψ(w) = λw then we can take n = 1.
Now suppose in addition that λ > 0. If ψ(p) = p, then ψ[Li(p, w)] = Li+k(p, w)

for some integer k, and therefore ψ2[Li(p, w)] = Li+2k(p, w) and τψ(p, w) = k ∈ Z.
If ψ(p) 6= p, then by homogeneity, φ := D◦ψ fixes p, and by the previous paragraph
τφ(p, w) ∈ Z. So τψ(p, w) = τφ(p, w)− 1 ∈ Z. �

Example 1. Let ψ be the homogeneous automorphism with derivative
(

0 1
−1 0

)
and

drift 1
2 (see figure 5). Let p :=lower left corner of horizontal rectangle #0. For any

vector w with positive coordinates, ψ2[Li(p, w)] = Li+1(p,−w). So τψ(p, w) = 1
2 .

Example 2. Let ψ denote the renormalizing automorphism of
√

2 with with zero

drift and derivative
(

11 −42
−6 23

)
, and let w :=

(
1+2
√

2
1

)
be its contracted eigenvector.

Let p be one of the singularities at the bottom left corner of one of the horizontal
rectangles, say rectangle #0. We show below (Theorem 6.3) that τψ(p, w) = 1.

Lemma 2.12. Suppose ψ is a hyperbolic homogeneous automorphism with zero drift
and positive eigenvalues. Let p be a singularity, and w an eigenvector of dψ, then
τψ(p, w) =minus the drift of φ, where φ is the unique homogeneous automorphism
which fixes L0(p, w), and which has the same derivative as ψ.

Proof. As in the proof of the previous lemma, there exist k ∈ Z and ` = 0, 1 s.t.
ψ[Li(p, w)] = D`[Li+k(p, w)]. Let φ := D−(k+`) ◦ ψ, then φ fixes Li(p, w) and
has the same derivative as ψ. This determines φ uniquely, because every other
homogeneous automorphism with the same derivative has the form Dn ◦ φ with
n 6= 0.

By the definition of k and `, τψ(p, w) = k + `. By the definition of φ and
Proposition 2.2, δ(φ) = δ(ψ)− (k + `) = −(k + `). �
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3. Estimates of Birkhoff sums

In this section we find pointwise asymptotic estimates for the Birkhoff sums of
the cylinder map Tα : T× Z→ T× Z

Tα(x, t) = (x+ α(mod 1), t+ f(x)),

where α is a quadratic irrational, and f = 1[ 1
2 ,1) − 1[0, 12 ).

By proposition 2.5, there is a hyperbolic homogeneous automorphism ψ with zero
drift s.t. α = 1

2 + 1
2 tan θ(mod 1), where

(
sin θ
cos θ

)
is an eigenvector of the derivative

of ψ, with eigenvalue 0 < λ < 1.
Recall that the infinite staircase is made from a Z–array of 2 × 1 horizontal

rectangles. Declare one of these rectangles to be “rectangle zero” and let ω : T→ St
be the function which associates to ω(x) the unique point on the top horizontal side
of rectangle zero, located 2x units of distance from its lower left corner.

In what follows log∗ := logλ−1 , m0 = mT×mZ, and ξ : St→ Z is some (any) Z–
coordinate on the infinite staircase. Cc(·) denotes the space of continuous functions
with compact support.

Theorem 3.1. There exists σ2 > 0 such that for every (x, `) ∈ T × Z for which
1
k ξ[ψ

k(ω(x))] −−−−→
k→∞

0, for every non–negative G ∈ Cc(T× Z),

n−1∑
i=0

(G◦T i)(x, `) =
[1 + o(1)]n

∫
Gdm0

2σ
√
π log∗n

·
√

2 exp

−1 + o(1)

2σ2

(
ξ[ψ[log∗n](ω(x))]√

log∗n

)2
 .

The following uniformity in x is observed: ∀ε > 0 ∃δ,N > 0 (which depend on G
but not x) s.t. if | 1k ξ[ψ

k(ω(x))]| < δ and n > N , then the o(1) terms are in [−ε, ε].

Notice that the right hand side is oscillatory, and that oscillatory term (the expo-
nential) does not depend on G.

We will show in the next section that 1
k ξ[ψ

k(ω(x))] −−−−→
k→∞

0 almost everywhere

in T×Z. Thus Theorem (3.1) describes the almost sure behavior of Birkhoff sums
for non-negative G ∈ Cc(T × Z). By the ratio ergodic theorem, this is the almost
sure behavior of every L1 function with non-zero integral.

The constant σ2 has meaning. We will see in §4 that ξ[ψk(ω(x))]√
k

converges to the

centered normal distribution with variance σ2. Thus
∑n−1
i=0 G ◦ T i grows a.e. like

a constant times n√
logn

, but if we normalize by this growth rate, then we get os-

cillatory behavior. The oscillations are driven by the renormalizing automorphism.
Similar results were proved for horocycle flows on Zd covers of hyperbolic surfaces
of finite area in [LS1], [LS2], and for Hajian-Ito-Kakutani skew products in [AS].

We will obtain Theorem 3.1 from a study of the Birkhoff integrals of the linear
flow in direction θ on the infinite staircase. Denote this flow by ϕθ. We will show:

Theorem 3.2. There exists σ2 > 0 s.t. for every ω ∈ St s.t. 1
k ξ[ψ

k(ω)] −−−−→
k→∞

0,

and for every G ∈ Cc(St) such that
∫
Gdm > 0 (m =area measure),∫ n

0

G[ϕtθ(ω)]dt =
1

2
·

[1 + o(1)]n
∫
Gdm

2σ
√
π log∗n

·
√

2 exp

−1 + o(1)

2σ2

(
ξ[ψ[log∗n](ω)]√

log∗n

)2
 .

The extra 1
2 is because m([0, 2]× [0, 1]) = 2 whereas m0(T× {0}) = 1.
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Notation. Let ψ0 : St0 → St0 denote the projection of ψ : St→ St to the covered
torus St0, and let P denote the Adler–Weiss Markov partition of ψ0.

Let v =
(

1
v

)
and w =

(
1
w

)
denote eigenvectors of the derivative of ψ with eigen-

values λ and λ−1. They define the stable and unstable directions.
Linear segments in St or St0 the direction of ±w will be called stable. For

example, {ϕtθ(ω0) : a < t < b} is a stable linear segment in St.
The following is a particularly useful way to generate stable linear segments. Let

π0 : Σ(G ) → St0 denote the Adler Weiss coding map given by Theorem 2.8. Let
Σ+ := {(x0, x1, . . .) ∈ PN : xi → xi+1 for all i ≥ 0}. For every x ∈ Σ+, let

W s(x) := π0{y ∈ Σ(G ) : yi = xi (i ≥ 0)}.

Lemma 3.3. W s(x) is a stable linear segment. It is the s–fibre through π0(x) in
rectangle x0 ∈ P. Let h(x) := `s(x0) be its length, then

∑
σ(y)=x h(y) = λ−1h(x),

where the sum ranges over y ∈ Σ+ and σ(y0, y1, . . .) := (y1, y2, . . .).

Proof. By the Markov property of ψ0, Cn := x0 ∩ ψ−1
0 (x1) ∩ · · · ∩ ψ−(n−1)

0 (xn−1)
is a decreasing intersection of compact parallelograms with s–side of length `s(x0)
and u–side of length O(λn). The intersection is necessarily an s–fibre in x0, which
passes through π0(x). This is a stable linear segment.

The Markov property also implies that ψ−1
0 [W s(x)] =

⋃
σ(y)=xW

s(y). Since ψ0

contracts s–fibres linearly by factor λ,
∑
σ(y)=x h(y) = λ−1h(x). �

Let W s(x, k) :=lift of W s(x) to St so that π0(x) lifts to a point in ξ = k. This is
a stable segment in St, and it has length h(x0). W s(x, k) ⊆ [ξ = k], because W s(x)
lies completely inside an element of P, and such sets lift in their entirety to subsets
of Di(F )(i ∈ Z) where F is the fundamental polygon of ψ.

Proof of Theorem 3.2. We begin with some reductions.
Any two Z–coordinates are within uniformly bounded distance from one another,

therefore if the theorem holds with one choice of a Z–coordinate, then it holds with
all other possible choices. We will work with the Z–coordinate associated to ψ.

With this choice of ξ, the Frobenius function is either P ∨ ψ−1
0 (P)–measurable,

or P ∨ ψ0(P)–measurable. We will carry out the proof in the first case, and leave
to the reader the (routine) modifications needed for the second case.

A cylinder is a set of the form `[P`, . . . , P`′ ] :=
⋂`′
i=` ψ

−i
0 (Pi), where Pi ∈ P. This

is a parallelogram with sides parallel to v and w. Cylinders are subsets of St0.
Instead of working with G ∈ Cc(St), we will work with indicators of lifts of

cylinders to St0. Any non–negative continuous function with compact support can
be sandwiched between linear combinations of such functions, so this suffices for
our purposes.

Here is the precise definition of the sets which we will work with:

`[P`, . . . , P`′ ]
k := lift to {ξ = k} of `[P`, . . . , P`′ ] :=

`′⋂
i=`

ψ−i0 (Pi) .

Here `′ < ` and P`′ , . . . , P` ∈ P are arbitrary. In fact most of our calcula-
tions will be done in the special case ` = k = 0. This is enough, because ∃i, j
s.t. `[P`, . . . , P`′ ]

k = (Di ◦ ψj)(0[P`, . . . , P`′ ]
0) where D is a deck transformation,

and Di ◦ ψj preserves the area measure and does not affect the asymptotic drift
lim ξ[ψn(ω)]/n.



14 A. AVILA, D. DOLGOPYAT, E. DURIEV, AND O. SARIG

Similarly we may assume without loss of generality that ξ(ω) = 0. From now

on, fix ω ∈ St s.t. ξ(ω) = 0 and ξn(ω)
n → 0, and let

E := 0[P0, . . . , P`−1]0.

We analyze
∫ n

0
1E [ϕtθ(ω)]dt.

In what follows `[·] is the euclidean length measure, and n0 ∈ N is a free param-
eter that will be calibrated at the end of the proof. For every n, let

n∗ := blogλ−1(n/n0)c.

Notice that λn
∗ · n ∈ [λn0, n0].

Let An(ω) := {ϕtθ(ω) : 0 < t < n}. This a stable linear segment, and we are
interested in

∫ n
0

1E [ϕtθ(ω)]dt = `[An(ω) ∩ E].

Let Bn(ω) := ψn
∗
[An(ω)]. Since ψ contracts stable linear segments by factor λ,

Bn(ω) is a stable linear segment with length `[Bn(ω)] ∈ [λn0, n0]. Break Bn(ω)
into a finite union of lifted s–fibres W s(x(1), ξ∗1), . . . ,W s(x(n1), ξ∗n1

) plus two pieces

of stable fibres W s(x(0), ξ∗0), W s(x(n1+1), ξ∗n1+1) to take care of edge effects:

n1⊎
i=1

W s(x(i), ξ∗i ) ⊆ Bn(ω) ⊆
n1+1⊎
i=0

W s(x(i), ξ∗i ). (3.1)

Even though n1, x
(i) and ξ∗i depend on n, some uniformities are observed:

(1) λn0

maxh − 2 ≤ n1 ≤ n0

λminh (∵ λn0 ≤ `[Bn] ≤ n0, `[W s(x(i), ξ∗i )] = h(x
(i)
0 )).

(2) |ξ∗i − ξ(ψn
∗
(ω))| < n0

minh for all i, because ξ∗0 , . . . , ξ
∗
n1+1, ξ(ψ

n∗(ω)) are Z coor-
dinates of points in Bn(ω), `[Bn(ω)] ≤ n0, and because it takes at least minh
units of distance to cross the fundamental polygon of ξ when moving in the
stable direction.

By the definition of Bn(ω),
∫ n

0
1E(ϕtθ(ω))dt = `[E ∩ ψ−n∗(Bn(ω))], so (3.1)

translates to

n1∑
i=1

J(x(i), ξ∗i ) ≤
∫ n

0

1E [ϕtθ(ω)]dt ≤
n1+1∑
i=0

J(x(i), ξ∗i ), (3.2)

where Jn(x(i), ξ∗i ) := `[E ∩ ψ−n∗(W s(x(i), ξ∗i ))]. The remainder of the proof is
dedicated to the analysis of Jn(x(i), ξ∗i ).

We start by asking when does a point ω′ ∈ W s(x(i), ξ∗i ) belong to ψn
∗
(E). We

claim that ψ−n
∗
(ω′) ∈ E iff ψ−n

∗

0 [π(ω′)] ∈ π(E) and
(n∗−1∑
j=0

Fψ ◦ψj0
)
[ψ−n

∗

0 (π(ω′))] =

ξ∗i , where π is the covering St→ St0.

Explanation: By the definition of Fψ, if ω′ ∈W s(x(i), ξ∗i ), then ξ∗i−ξ[ψ−n
∗
(ω′)] =

ξ(ω′) − ξ[ψ−n
∗
(ω′)] ≡ Fψ[ψ−n

∗

0 (π(ω′))] + · · · + Fψ[ψ−1
0 (π(ω′))]. It follows that

ξ[ψ−n
∗
(ω′)] = 0⇔

(∑n∗−1
j=0 Fψ ◦ ψj0

)
[ψ−n

∗

0 (π(ω′))] = ξ∗i .

Writing ω′′ := ψ−n
∗

0 [π(ω′)] (a point in St0), we see that

Jn(x(i), ξ∗i ) = `{ω′′ ∈ 0[P0, . . . , P`−1]0 : ψn
∗

0 (ω′′) ∈W s(x(i)),

and

n∗−1∑
j=0

Fψ[ψj0(ω′′)] = ξ∗i }.
(3.3)
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We write this in more convenient form. Let σ : Σ+ → Σ+ denote the one–sided
shift defined before Lemma 3.3. The assumption that Fψ is P∨ψ−1

0 P–measurable
allows us to view F := Fψ◦π0 as a function on Σ+, F (x) = g(x0, x1). By the Markov

property, ψ−n
∗

0 [W s(x(i))] =
⊎
σn∗ (y)=x(i) W s(y), and since F (y) = g(y0, y1),

Fn∗(y) := F (y) + F (σ(y)) + · · ·+ F (σn
∗−1(y))

is constant on W s(y). It follows that

Jn(x(i), ξ∗i ) =
∑

σn(y)=x(i)

h(y0)1[P ](y)δ0(Fn∗(y)− ξ∗i ).

Here h(y0) is the length of the stable side of the parallelogram y0, 1[P ](y) equals
one when (y0, . . . , y`−1) = (P0, . . . , P`−1) and zero otherwise, and δ0(k) equals one
if k = 0 and zero otherwise.

We will use the methods of Babillot & Ledrappier [BL1],[BL2] to estimate this
sum.

For every w ∈ T, u ∈ R define the operator (Lu+iwϕ)(x) =
∑

σ(y)=x

e(u+iw)F (y)ϕ(y)

on L := {ϕ : Σ+ → C : ‖ϕ‖ := ‖ϕ‖∞ + Lip(ϕ)}. No matter which u we choose,

Jn(x(i), ξ∗i ) = h(P0)
∑

σn(y)=x(i)

1[P ](y)
1

2π

∫ π

−π
e(u+iw)(Fn∗ (y)−ξ∗i )dw

=
h(p0)

2π

∫ π

−π
e−(u+iw)ξ∗i (Ln

∗

u+iw1[P ])(x
(i))dw.

The parameter u does not affect the value of the integral, but a judicious choice
u = u(ξ∗i , n

∗) will facilitate the analysis of the integrand.

Lz : L → L (z = u+ iw) has the following properties ([PP] chapter 4):

(1) L0 has leading eigenvalue λ−1, with eigenprojection Pϕ = hν(ϕ) where h is
given by Lemma 3.3, and ν satisfies hdν = m0 ◦ π−1

0 (cf. Theorem 2.8).
(2) The eigenvalue λ−1 is simple and isolated. All other eigenvalues are strictly

smaller in absolute value.
(3) For all u real, Lu has spectral radius exp p(u) where

p(u) = Ptop(uF ) := sup{hµ(σ) + u

∫
Fdµ : µis a σ–inv. prob. measure}.

(4) For all u,w real, w 6∈ 2πZ, Lu+iw has spectral radius strictly smaller than
exp p(u). This uses the Aperiodicity Lemma (Lemma 2.9).

(5) There is εpert > 0 such that for every |z| < εpert, Lz = λ(z)[P (z) + N(z)]
where λ(z) ∈ C, P (z) is a projection with one–dimensional image, and N(z)
is an operator with spectral radius strictly less than one s.t. PN = NP = 0.
The maps z 7→ λ(z), P (z), N(z) are analytic.

(6) p(z) := log λ(z) is an analytic extension of p(u) to U = {z : |z| < εpert}. On U ,
p(z) = − log λ + 1

2σ
2z2 + o(z2), where σ > 0. This also uses the Aperiodicity

Lemma.

Part (6) implies that the image of p′(·) is a neighborhood of zero. Suppose
ξ∗i
n∗

belongs to this neighborhood, and choose u s.t. p′(u) =
ξ∗i
n∗ . The closer

ξ∗i
n∗ is to



16 A. AVILA, D. DOLGOPYAT, E. DURIEV, AND O. SARIG

zero, the closer u is to zero. Since, by construction, ξ∗i = ξ(ψn
∗
(ω)) + O(1), there

exists ε0 > 0 so small and n0 so large that for all n∗ > n0∣∣∣∣ξ(ψn∗(ω))

n∗

∣∣∣∣ < ε0 =⇒ |u| < εpert.

The condition will be satisfied for all n large enough, because of the assumption

that ξ[ψk(ω)]/k −−−−→
k→∞

0. Henceforth we assume that
∣∣∣ ξ(ψn∗ (ω))

n∗

∣∣∣ < ε0 and take

|u| < εpert s.t. p′(u) =
ξ∗i
n∗ .

Let ρ(Lu+iw) denote the spectral radius of Lu+iw. Since u + iw 7→ Lu+iw is
continuous, u + iw 7→ ρ(u + iw) is upper semi-continuous. Therefore, by part (4),
there exists 0 < κ < 1 s.t. sup{e−p(u)ρ(Lu+iw) : dist(w, 2πZ) > εpert} < κ.

Similar reasoning gives (perhaps for a slightly larger 0 < κ < 1)

sup{|e−p(u)ρ(N(u+ iw))| : |u+ iw| ≤ εpert} < κ.

It is not difficult to see, using the spectral radius formula and the continuity of z 7→
Lz, that ‖Ln∗u+iw1[p]‖ = O(en

∗p(u)κn
∗
) uniformly on {w ∈ (−π, π) : |w| ≥ εpert},

and ‖N(u+ iw)n
∗
1[p]‖ = O(en

∗p(u)κn
∗
) uniformly on (−εpert, εpert).

If we split the domain of integration in the integral which defines Jn(x(i), ξ∗i )
into (−εpert, εpert) and its complement and then substitute L = λ(P +N) into the

first piece, then we get the following (where Jn = Jn(x(i), ξ∗i ), x = x(i), ξ∗ = ξ∗i ):

Jn =
h(P0)

2π

εpert∫
−εpert

e−(u+iw)ξ∗
[
λ(u+ iw)n

∗
(P (u+ iw)1[P ])(x)

]
dw

+O(en
∗p(u)−uξ∗κn

∗
).

The error bound can be simplified using the Legendre transform. Let H(v)
denote minus the Legendre transform of p(u), namely H(v) := p(u)−up′(u) for the
u = u(v) s.t. p′(u) = v. By the choice of u, n∗p(u)− uξ∗ = n∗H(ξ∗/n∗), whence

Jn =
h(P0)

2π

εpert∫
−εpert

e−(u+iw)ξ∗+n∗p(u+iw)(P (u+ iw)1[P ])(x)dw +O(en
∗H( ξ

∗
n∗ )κn

∗
).

The next step is to use the Taylor expansion of p(z) at z = u to see that the
exponential term in the integrand equals

en
∗[p(u)−u ξ

∗
n∗ ] · ein

∗w[p′(u)− ξ∗
n∗ ] · en

∗[− 1
2p
′′(u)w2+O(w3)].

The first term is exp[n∗H( ξ
∗

n∗ )], and the second term is 1 by the choice of u. So

Jn =
en
∗H( ξ

∗
n∗ )h(P0)

2π

 εpert∫
−εpert

e−n
∗[ 1

2p
′′(u)w2+O(w3)](P (u+ iw)1[P ])(x)dw +O(κn

∗
)


=
en
∗H( ξ

∗
n∗ )h(P0)

2π

 εpert
√
n∗∫

−εpert
√
n∗

e
− 1

2p
′′(u)v2+O( v3

√
n∗

)
(P (u+ iv√

n∗
)1[P ])(x)

dv√
n∗

+O(κn
∗
)

 .
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We discuss the asymptotic behavior of this expression as n∗ → ∞, subject to
the assumption that 1

n∗ ξ[ψ
n∗(ω)]→ 0. Since ξ∗ ≡ ξ∗i = ξ[ψn

∗
(ω)] +O(1),

ξ∗

n∗
−−−−→
n∗→∞

0, and therefore u −−−−→
n∗→∞

0.

Since ‖P (z)− P‖ −−−−→
|z|→0

0 and P1[P ] = hν[P ] is bounded away from zero,

(P (u+i v√
n∗

)1[P ])(x) = [1+o(1)]h(x)ν[P ] = [1+o(1)]`[W s(x)]ν[P ] unif. as n∗ →∞.

(But caution! x = x(i) varies as n∗ →∞ so the term on the right side fluctuates.)
If εpert and |u| are small enough then |p′′(u)| > 1

2p
′′(0) = 1

2σ
2 and |O(w3)| ≤

1
8σ

2|w|2 for |w| < εpert. We see that the exponential term is bounded by const ·e− 1
8v

2

.
By the dominated convergence theorem,

Jn = [1 + o(1)]
en
∗H( ξ

∗
n∗ )

2π
h(P0)ν[P ]`[W s(xi)]

 1√
n∗

∞∫
−∞

e−
1
2σ

2v2

dv +O(κn
∗
)


= [1 + o(1)]

en
∗H( ξ

∗
n∗ )

√
2πσ2n∗

h(P0)ν[P ]`[W s(xi)] = [1 + o(1)]
en
∗H( ξ

∗
n∗ )

√
2πσ2n∗

m(E)`[W s(xi)].

Notice that h(P0)ν[P ] = (m0◦π−1
0 )(E) = 1

2m(E), where m is the (non–normalized)
area measure.

Next we analyze the exponent. Since H(·) is minus the Legendre transform of

p(·) and p(z) = − log λ+ 1
2σ

2z2 +o(z2), H(v) = − log λ− v2

2σ2 +o(v2). In particular

H ′(0) = 0 and H ′′(0) = − 1
σ2 . Recalling that ξ∗ = ξ[ψn

∗
(ω)] +O(1) and expanding

H(u) around u0 = ξ[ψn
∗

(ω)]
n∗ , we obtain

n∗H( ξ
∗

n∗ ) = n∗
[
H( ξ[ψ

n∗ (ω)]
n∗ ) +H ′( ξ[ψ

n∗ (ω)]
n∗ ) ξ

∗−ξ[ψn
∗

(ω)]
n∗ + o( ξ

∗−ξ[ψn
∗

(ω)]
n∗ )

]
= n∗H( ξ[ψ

n∗ (ω)]
n∗ ) + n∗[H ′(0) + o(1)]

O(1)

n∗
+ n∗o

(
O(1)

n∗

)
(∵ ξ[ψn

∗
(ω)]

n∗ → 0)

= n∗H( ξ[ψ
n∗ (ω)]
n∗ ) + o(1) (∵ H ′(0) = 0).

Now we expand H around zero to see that

n∗H( ξ
∗

n∗ ) = −n∗ log λ− 1

2σ2
[1 + o(1)]

(
ξ[ψn

∗
(ω)]√
n∗

)2

+ o(1).

This and the definition of n∗ give

Jn(x(i), ξ∗i ) = [1 + o(1)]
λ−n

∗
m(E)`[W s(xi)]

2
√

logλ−1 n
×

× 1√
2πσ2

exp

[
− 1

2σ2
[1 + o(1)]

(
ξ[ψn

∗
(ω)]√
n∗

)2
]
.

By (3.2), the sum of these expressions over i = 1, . . . , n1 gives a lower bound for∫ n
0

1E [ϕtθ(ω)]dt, and the sum over 0, . . . , n1 + 1 gives an upper bound. The only

term which depends on i is `[W s(x(i))]. Since by (3.1),

`[Bn(ω)]− 2 maxh ≤
n1∑
i=1

`[W s(x(i))] ≤
n1+1∑
i=0

`[W s(x(i))] ≤ `[Bn(ω)] + 2 maxh,
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and since both sides are `[Bn(ω)][1 +O( 1
n0

)] = λn
∗
n[1 +O( 1

n0
)], we have∫ n

0

1E [ϕtθ(ω)]dt ≤
n(1 + o(1))(1 +O( 1

n0
))

2
√

logλ−1 n
m(E) · 1√

2πσ2
e
− 1+o(1)

2σ2

(
ξ[ψn

∗
(ω)]√

n∗

)2

,

∫ n

0

1E [ϕtθ(ω)]dt ≥
n(1 + o(1))(1 +O( 1

n0
))

2
√

logλ−1 n
m(E) · 1√

2πσ2
e
− 1+o(1)

2σ2

(
ξ[ψn

∗
(ω)]√

n∗

)2

.

We now remember that n0 is a free parameter, and can be chosen arbitrarily
large. The asymptotic expansion of the theorem follows in the case G = 1E .

The case G ∈ Cc(S) is treated by decomposing G = G+ −G− with G± ∈ Cc(S)
non–negative, and approximating G± from above an below by linear combinations
of indicators of cylinders. �

Proof of Theorem 3.1. It is enough to prove the asymptotic statement for func-
tions of the form G(x, k) = γ(x)1T×{0}(x, k) with γ ∈ C(T) s.t.

∫
γ(t)dt > 0. The

case of G ∈ Cc(T× Z) then follows by approximation.
The infinite staircase case be decomposed into an infinite collection of horizontal

2 × 1 rectangles. Fix one of them, calling it “rectangle zero”, and identify it with

[0, 2]× [0, 1]. Define G̃ on rectangle zero by

G̃(x′, y′) = π cos θ · γ( 1
2 (x′ − y′ tan θ)) · sin(πy′).

This is designed so that
∫ 1/ cos θ

0
(G̃◦ϕtθ)(ω(x))dt = G(x, 0). The upper limit 1/ cos θ

is the time it takes ϕtθ(ω(x)) to reach the upper side of [0, 2]× [0, 1].

Extend G̃ to the rest of the infinite staircase surface by setting it equal to zero

outside rectangle zero. Since G̃(x′ + 2, y′) = G̃(x′, y′) and G̃(∗, 0) = G̃(∗, 1) = 0,

this is a continuous function. A calculation shows that
∫
G̃dm = 2 cos θ

∫
T×ZGdm0,

where m is the (non-normalized) area measure on St and m0 = mT ×mZ.
The orbit {ϕtθ(ω(x)) : 0 < t < n/ cos θ} can be split into segments of length

1/ cos θ which go across horizontal rectangles. The j–th segment enters the bottom

side of rectangle
∑j−1
i=0 f(x+iα) at distance 2x+2jα mod 2 from the left endpoint.

Only the segments s.t.
∑j−1
i=0 f(x + iα) = 0 contribute to

∫ n/ cos θ

0
G̃[ϕtθ(ω(x))]dt.

The contribution is G(x+ jα, 0) = (G ◦ T jα)(x, 0).

It follows that
∫ n/ cos θ

0
G̃(ϕtθ(ω(x)))dt =

∑n−1
j=0 G

(
x + jα,

∑j−1
i=1 f(x + iα)

)
=∑n−1

j=0 (G ◦ T j)(x, 0).The theorem now follows from Theorem 3.2. �

4. Stochastic properties of Birkhoff sums

Theorem 3.1 expresses the Birkhoff sums of the cylinder map Tα asymptotically
in terms of 1√

k
(Ξk(x)) where Ξk(x) := ξ[ψk(ω(x))], ψ is a renormalizing automor-

phism of α with zero drift, ξ is its associated Z–coordinate, and ω : T → St is the
map which associates to x ∈ T the point on the top side of a (fixed) horizontal
rectangle at distance 2x from its left endpoint.

To determine the stochastic properties of the Birkhoff sums of the cylinder map,
it is sufficient to understand the stochastic process {Ξk(x)}k≥1, when x ∼ U [0, 1].
In this section we prove the following.

Theorem 4.1. Choose x ∈ [0, 1] uniformly, then

(1) Ξk/k −−−−→
k→∞

0 a.e.
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(2) ∀ε > 0 ∃I(ε) > 0 s.t. P
[
|Ξk/k| > ε

]
= O(e−kI(ε)) (k →∞).

(3) Ξk/
√
k

dist−−−−→
k→∞

N(0, σ2). Moreover, there is a probability space (Ω,F , µ) equipped

with two continuous time stochastic processes Ξ̃t, B̃t : Ω→ R s.t. {Ξ̃n}n≥1
dist
=

{Ξn}n≥1, {B̃t}t≥0
dist
= standard Brownian motion, and for some 0 < δ < 1

2 ,

|Ξ̃t − σB̃t| = o(tδ) a.s. as t→∞.

(4) If f, f̂ ∈ L1(R), then lim
n→∞

1
lnn

∑n
k=1

1
kf
(
Ξk/
√
k
)

= E[f(N)] almost surely,

where N is the standard gaussian, and f̂ is the Fourier transform of f .

Lemma 4.2. There are a stationary mixing Markov chain {Xi}∞i=1 with finite set
of states S, g : S×S → R s.t. E[g(X0, X1)] = 0, and a uniformly bounded sequence

of random variables εk s.t. Ξk
dist
= g(X0, X1) + · · ·+ g(Xk−1, Xk) + εk (equality of

stochastic processes). The function g is not of the form H(x) − H(y) + const for
any Borel H : S → R.

Proof. Define ξk : St0 → Z as follows: given p ∈ St0,

ξk(p) := ξ[ψk(p̃)]− ξ(p̃) for some (all) p̃ ∈ π−1(p).

This can be easily seen to be independent of the choice of p̃.
Next define x : St0 → [0, 1] as follows: given p ∈ St0, lift p to a point p̃ ∈ St in

rectangle #0, and project p̃ to the top side of this rectangle in the stable direction.
The result has the form ω(x) for some unique x = x(p) ∈ [0, 1].

Claim. If p is chosen uniformly in St0, then x(p) is distributed uniformly in [0, 1],
and εk(p) := ξk(p)− ξ[ψk(ω(x(p)))] are uniformly bounded on St0.

The first statement is because rectangle zero can be identified with the parallel-
ogram with a horizontal side of length 2 and a side in the stable direction. The
second statement is because p̃− ω(x) ∝ w where w is in the stable direction of the

derivative of ψ, so dist(ψk(p̃), ψk[ω(x)]) ≤ λk
√

1 + tan2 θ ≤ 1/ cos θ.

It follows that ξ[ψk(ω(x))]
dist
= ξk + εk, where |εk| ≤ 1/ cos θ and ξk is the

stochastic process

ξk(p) := ξ[ψk(p)], where p is distributed uniformly in St0,

We will use the Adler–Weiss Theorem to represent ξk as a random walk driven by
a Markov chain.

Let P denote the Adler–Weiss Markov partition, and G the dynamical graph
of P, see §2. Let π0 : Σ(G ) → St0 denote the symbolic coding of the projected
automorphism ψ0, given by Theorem 2.8, then P := m0 ◦π−1

0 is a Markov measure.
It follows that Xk : Σ(G ) → P , Xk[{Pi}i∈Z] = Pi is a finite state Markov chain.
Since hyperbolic toral automorphisms are mixing area preserving maps, P is a
mixing shift invariant measure. So {Xk}k∈Z is stationary and mixing.

By the definition of the Frobenius function,

ξk(p) = ξ[ψk(p̃)]− ξ(p̃) for some (all) p̃ ∈ π−1(p)

=

k−1∑
j=0

ξ[ψj+1(p̃)]− ξ[ψj(p̃)] =

k−1∑
j=0

ξ[ψ(p̃j)]− ξ[p̃j ], where p̃j ∈ π−1[ψj0(p)].

So ξk(p) =
∑k−1
j=0 (Fψ ◦ ψj0)(p).
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At the end of §2, we saw that F := Fψ◦π0 can be expressed in the form g(X0, X1)

or g(X−1, X0) for some function g : P×P→ Z. Since m0 ◦ π−1
0 = P,

k−1∑
j=0

Fψ ◦ ψj0
dist
=

k−1∑
j=0

F ◦ σj =

k−1∑
j=0

g(Xj , Xj−1) or

k−1∑
j=0

g(Xj−1, Xj).

Since {Xj}j∈Z is stationary, ξk(p)
dist
= g(X0, X1) + · · ·+ g(Xk−1, Xk) as required.

E[g(X0, X1)] =
∫
Fψdm0 = 0, because ψ has zero drift. There is no function

H : P→ R s.t. g(X0, X1) = H(X0)−H(X1) + const, because of Lemma 2.9. �

Proof of Theorem 4.1. Let Skg := g(X0, X1) + · · ·+ g(Xk−1, Xk).

(1) By the ergodic theorem, Skg/k −−−−→
k→∞

E[g(X0, X1)] = 0 a.s.

(2) By the Gärtner–Ellis Theorem, P
[
|Skg/k| > ε

]
= O(e−kI(ε)) as k → ∞

where I(·) is the Legendre transform of lim
n→∞

1
n logE[exp(uSng)] = p(u) =

topological pressure of uF. Since g 6= H(X0) − H(X1) + const, p(t) is ana-
lytic and strictly convex. So I(ε) is strictly convex. Since p′(0) = E(g) = 0,
I(ε) > 0 for all ε > 0. See §6 for a calculation of p(u) in a special case.

(3) By the central limit theorem for finite state Markov chains, 1√
k
Skg

dist−−−−→
k→∞

N(0, σ2
0) for σ2

0 := lim
n→∞

1
nVar[Sng]. Since g 6= H(X0)−H(X1) + const, σ0 6= 0

(Leonov’s Theorem). By Philipp & Stout’s Almost Sure Invariance Principle
([PS], chapter 4), there is a probability space (Ω,F , µ) equipped with two

continuous time stochastic processes Ξ̃t, B̃t : Ω → R s.t. {Ξ̃n}n≥1
dist
= {Sng +

εn}n≥1, {B̃t}t≥0
dist
= standard Brownian motion, such that for some 0 < δ < 1

2 ,

|Ξ̃t − σ0B̃t| = o(tδ) a.s. as t→∞.

By Theorem 4.13 in [PP], σ2
0 = p′′(0). It follows that σ0 = σ where σ is the

constant appearing in Theorems 3.1 and 3.2.

(4) If f, f̂ ∈ L1(R), then lim
n→∞

1
lnn

∑n
k=1

1
kf
(
Skg/

√
k
)

= E[f(N)] almost surely,

where N is the standard gaussian, and f̂ is the Fourier transform of f . This
follows from (3) as in Lemma 2 in [LS1] (see also [Fi1]).

The theorem follows, since {Ξk}k≥1
dist
= {Skg + εk}k≥1 with εk = O(1). �

Application to the Cylinder map. Theorems 3.1 and 4.1 combine to give the
following statement. Let χ be a standard gaussian random variable.

Theorem 4.3. Suppose α is a quadratic irrational. There are σ2 > 0 and 0 < λ < 1

s.t. if an :=
√
| lnλ|
4πσ2

(
n√
lnn

)
, then for every G ∈ L1(T× Z) s.t.

∫
Gdm0 = 1,

(1) 1
an

n−1∑
k=0

G ◦ T kα
dist−−−−→
n→∞

√
2 exp(− 1

2χ
2)

(2) lim
N→∞

1
ln lnN

N∑
n=2

1
n lnn

(
1
an

n∑
k=1

G ◦ T kα
)

= 1 a.s.

(3) if in addition G ∈ Cc(T× Z), then
∫

T×{0}

(n−1∑
j=0

G ◦ T jα
)
dm = [1 + o(1)]an.

Part 2 is a “higher order ergodic theorem” in the sense of A. Fisher [Fi1],[Fi2],[ADF].
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Proof. (1) and (2) are immediate.
For (3) let Aδ(n) := {(x, 0) : |Ξn(x)/n| ≤ δ}, Bδ(n) := {(x, 0) : |Ξn(x)/n| > δ}.

We break the integral into the main part
∫
Aδ(n)

and the remainder
∫
Bδ(n)

. The

remainder is O(ne−nI(δ)) = o(an), because of Theorem 4.1(2) and the boundedness
of G. The main term is sandwiched between two bounds of the form

(1 + ε(δ))an ·
√

2E[exp(− 1−ε(δ)
2σ2 (Ξ[log∗ n]/[log∗ n])2]

(1− ε(δ))an ·
√

2E[exp(− 1+ε(δ)
2σ2 (Ξ[log∗ n]/[log∗ n])2]

with ε(δ) −−−−→
δ→0+

0 (this is a consequence of the uniformity in x in Theorem 3.1).

Since Ξk/
√
k

dist−−−−→
k→∞

N(0, σ2), these bounds converge to (1 ± ε(δ))
√

2E[e−
1∓ε(δ)

2 χ2

]

as n→∞. Since E[e−
1∓ε(δ)

2 χ2

] −−−→
δ→0

E(e−
1
2χ

2

) = 2−
1
2 , the main term is [1+o(1)]an.

Part (3) follows. �

Application to the deterministic random walk.

Theorem 4.4. Suppose α is a quadratic irrational, and Nn is the number of visits
of the DRW to zero up to (and not including) time n− 1, then

(1) E(Nn) = [1 + o(1)]an, where an =
√
| lnλ|
4πσ2 ( n√

lnn
).

(2) 1
an
Nn

dist−−−−→
n→∞

√
2 exp(− 1

2χ
2), where χ is a standard gaussian.

(3) lim
N→∞

1
ln lnN

∑N
n=2

1
n lnn ( 1

an
Nn) = 1 a.s.

(4) λ is an eigenvalue of the renormalizing automorphism ψ, and σ2 is the

asymptotic variance in 1√
k

Ξk
dist−−−−→
k→∞

N(0, σ2).

This follows from the previous theorem and the identity Nn =
∑n−1
k=0 1T×{0}◦T kα .

Stochastic interpretation of twists. Theorem 4.1 and Lemma 4.2 extend triv-
ially to automorphisms ψ with non-zero drift. One just needs to replace Ξk by
Ξk − kδ(ψ) where δ(ψ) is the drift of ψ. The Markov chain and the function g
Lemma 4.2 are defined as before, except that now E(g) = δ(ψ) 6= 0.

We can use this simple observation to calculate twists. Suppose ψ is a hyperbolic
homogeneous automorphism with positive eigenvalues, and let w be an eigenvector
of its derivative. Recall from Lemma 2.12 that there is a unique homogeneous
automorphism φ with the same derivative as ψ, and which fixes the rays Li(p, w).
The drift of φ equals minus τψ(p, w). Consequently,

Corollary 4.5. Let Ξ̂k := ξ[φk(z)], where z is distributed uniformly in horizon-

tal rectangle zero, then 1
n Ξ̂n −→ −τφ(p, w) a.s., and 1√

n

(
Ξ̂n + nτφ(p, w)

) dist−−−−→
n→∞

N(0, σ2).

5. Application to a result of J. Beck

In this section we explain how to use the machinery developed in sections 2 and
4 to prove the following theorem of J. Beck [B1, B2]. Fix an irrational α and let

Z∗α(n) := #{1 ≤ k ≤ n : {kα} ∈ [0, 1
2 )} − 1

2n ≡ −
1
2

n∑
k=1

f({kα}).
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Theorem 5.1 (Beck). If α is a quadratic irrational, then there are (explicit) con-
stants C1, C2 depending on α s.t. for all a < b real

1

N
#{1 ≤ n ≤ N :

Z∗α(n)− C1 lnN

C2

√
lnN

∈ [a, b]} −−−−→
N→∞

1√
2π

∫ b

a

e−u
2/2du.

This is a reformulation of Theorem 1.1 in [B1] in the special case of the interval
[0, 1

2 ), but without the estimate of the rate of convergence provided there. The con-
stants are calculated in [B2] using algebraic number theory and harmonic analysis.

First we explain how to translate Beck’s theorem into a statement on linear flows
on the infinite staircase.

In what follows ξ denotes a Z–coordinate induced by the natural partition of the
infinite staircase into horizontal rectangles, and p0 denotes the singularity at the
bottom left corner of rectangle zero.

We wish to define ϕtθ(p0) for t > 0 for an irrational direction θ. There is an
element of choice here, because p0 is a singularity, and there are infinitely many
rays in direction θ emanating from p — one for each horizontal cylinder C s.t. that
the vector

(
sin θ
cos θ

)
based in p points inside R.

We define ϕtθ(p0) to be the movement in unit speed along the ray L0(p0,
(

sin θ
cos θ

)
)

emanating from p0 in direction θ which begins at rectangle zero.

Lemma 5.2. Let θ = tan−1(2α− 1) and c :=
√

1 + tan2 θ, then

Z∗α(n) =
1

2
ξ(ϕtθ(p0)) for all cn < t < c(n+ 1), (5.1)

Proof. The constant c is exactly the time it takes ϕθ to cross a horizontal cylinder
in the vertical direction, so ϕcnθ (p0) lies on the bottom horizontal side of a unique
horizontal rectangle Rn, and ξ[ϕtθ(p0)] = const for cn < t < c(n+ 1).

Let ξn denote the Z–coordinate of Rn, and let xn denote the distance of ϕcnθ (p0)
from the bottom left corner of Rn. We show by induction that xn = 2nα mod 2
and ξ[ϕtθ(p0)] = 2Z∗n(n) for cn < t < c(n+ 1).

At time zero, the flow is at p0, so x0 = 0, and by the definition of ϕtθ(p0),
ξ[ϕtθ(p0)] = 0 = 2Z∗α(0) for all 0 < t < c.

Suppose by induction that xn = 2nα mod 2 and ξ[ϕtθ(p)] = 2Z∗α(n) for cn <
t < c(n+ 1). By the definition of St, the following implications hold:

• If xn + tan θ ∈ [0, 1) + 2Z, then ξn+1 = ξn− 1 and xn+1 = xn + tan θ+ 1 mod 2.
• If xn + tan θ ∈ [1, 2) + 2Z, then ξn+1 = ξn + 1 and xn+1 = xn + tan θ− 1 mod 2.

We see that xn+1 = xn + 2α mod 2 = 2(n+ 1)α mod 2, and

ξn+1 = ξn + 1[1,2)+2Z(xn + tan θ)− 1[0,1)+2Z(xn + tan θ)

= ξn + 1[0,1)+2Z(xn + 2α)− 1[1,2)+2Z(xn + 2α)

= 2Z∗n(n) + 1[0, 12 )({(n+ 1)α})− 1[ 1
2 ,1)({(n+ 1)α})

= 2

(
Z∗n(n) + 1[0, 12 )({(n+ 1)α})− 1

2

)
= 2Z∗n+1(n+ 1). �

Proof of Beck’s Theorem. Since α is a quadratic irrational, there are hyperbolic
homogeneous automorphisms which renormalize α.

Let ψ denote a hyperbolic homogeneous automorphism which renormalizes α,
has zero drift, and such that the eigenvalues of dψ are positive. Let 0 < λ < 1
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denote the contracting eigenvalue, and let w denote a contracted eigenvector in
direction θ = tan−1(2α− 1). Let

C1 :=
τψ(p0, w)

2| lnλ|
and C2 :=

σ

2
√
| lnλ|

(5.2)

where τψ(p0, w) is the twist (Definition 2.10), and σ2 is the asymptotic variance
mentioned in the previous sections. We will show that

DN (a, b) :=
1

N
#{1 ≤ n ≤ N :

Z∗α(n)− C1 lnN

C2

√
lnN

∈ [a, b]} −−−−→
N→∞

1√
2π

∫ b

a

e−u
2/2du.

Let ΓN := {ϕtθ(p0) : c < t < c(N + 1)}, and `ΓN (·) denote the length (Lebesgue)
measure on ΓN . By (5.1),

DN (a, b) =
1

`ΓN (ΓN )
`{q ∈ ΓN :

ξ(q)− 2C1 lnN

2C2

√
lnN

∈ [a, b]} (5.3)

Let N∗ := blogλ−1 Nc, and γN := ψN
∗
(ΓN ). Since ψ ◦ ϕtθ = ϕλtθ ◦ ψ, γN is linear

segment with bounded length in direction θ.
By the definition of the twist, ψN

∗
(ΓN ) ⊂ DkN∗ [L0(p0, w)], where kN∗ =

N∗τψ(p0, w) +O(1) = 2C1 lnN +O(1). It follows that

1

2
ξ(·) = C1 lnN +O(1) uniformly on γN .

By (5.3) and the identity `ΓN = λ−N
∗
`γN∗ ◦ψN

∗ |ΓN where `γN∗ =Lebesgue measure

on γN∗ , DN (a, b) = 1
λN∗`ΓN (ΓN )

`γN {ψN
∗
(q) : q ∈ ΓN ,

ξ(q)−2C1 lnN

2C2

√
lnN

∈ [a, b]}. From

now on we set ` := `γN , then setting z = ψ−N
∗
(q) we get

DN (a, b) =
1

`(γN )
`{z ∈ γN :

ξ(ψ−N
∗
(z))− 2C1 lnN

2C2

√
lnN

∈ [a, b]}

=
1

`(γN )
`{z ∈ γN :

ξ(ψ−N
∗
(z))− ξ(z) +O(1)

σ
√
N∗ +O(1)

∈ [a, b]}

=
1

`(γN )
`{z ∈ γN :

ξ(ψ−N
∗
(z))− ξ(z)

σ
√
N∗

∈ [a+O( 1√
N∗

), b+O( 1√
N∗

)]}

=
1

`(γN )
`γ̂N {z ∈ γ̂N :

ξ(ψ−N
∗
(z))

σ
√
N∗

∈ [a+O( 1√
N∗

), b+O( 1√
N∗

)]},

where γ̂N := D−kN∗ (γN ), and `γ̂N is the Lebesgue measure on γ̂N .
The advantage in passing to γ̂N , apart from canceling the ξ(z) term up to

bounded error, is that the family {γ̂N}N≥1 is precompact. This is because the

beginning point of γ̂N is at distance cλ−N
∗

from p0 on L0(p0, w), and `(γ̂N ) is
bounded away from zero and infinity. It follows that every sequence has a subse-
quence Nk ↑ ∞ along which γ̂Nk −−−−→

k→∞
γ̂, where γ̂ is a bounded linear segment in

direction θ, emanating from p0, and beginning in rectangle zero. It is enough to

prove that DNk(a, b)→ 1√
2π

∫ b
a
e−u

2/2du along such sequences.

SupposeNk ↑ ∞ and γ̂Nk → γ̂ as above. Let c0 :=length of γ̂. Fix ε much smaller
than c0, so small that c0+ε

c0−ε ∈ [e−ε, eε]. Let γ̂− and γ̂+ denote two linear segments

in rectangle zero, in direction θ, emanating from p0, and with lengths c0(1− ε) and
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c0(1 + ε) respectively. Then γ̂− ⊂ γ̂ ⊂ γ̂+, and DNk(a, b) is sandwiched between
D+
Nk

(a, b), D−Nk(a, b), where

D+
N (a, b) :=

eε

`(γ̂+)
`{z ∈ γ̂+ :

ξ(ψ−N
∗
(z))

σ
√
N∗

∈ [a+O( 1√
N∗

), b+O( 1√
N∗

)]}

D−N (a, b) :=
1

eε`(γ̂−)
`{z ∈ γ̂− :

ξ(ψ−N
∗
(z))

σ
√
N∗

∈ [a+O( 1√
N∗

), b+O( 1√
N∗

)]},

The linear segments γ̂± are in the unstable (expanding) direction of ψ−1. Let
Q± denote a thickening of these segments in the stable direction (the inside of a
parallelogram with one side equal to γ̂± and the other side a segment in the stable
(contracting) direction of ψ−1). For the same reasons explained in the proof of
Lemma 4.2,

D+
N (a, b) =

eε

m(Q+)
m{z ∈ Q+ :

ξ(ψ−N
∗
(z))

σ
√
N∗

∈ [a+O( 1
N∗ ), b+O( 1

N∗ )]}+ o(1)

D−N (a, b) :=
e−ε

m(Q−)
m{z ∈ Q− :

ξ(ψ−N
∗
(z))

σ
√
N∗

∈ [a+O( 1
N∗ ), b+O( 1

N∗ )]}+ o(1),

where m is the area measure.
We saw in the previous section that if z is chosen uniformly in rectangle number

zero, then ξ(ψ−N
∗

(z))

σ
√
N∗

dist−−−−−→
N∗→∞

N(0, 1), because of the central limit theorem for

finite state mixing Markov chains. The same is true for obvious reasons when z is
sampled uniformly in a finite union of such rectangles. In D±Nk we are sampling z
from a finite union of rectangles with respect to an absolutely continuous measure
(Lebesgue times the density function 1

m(Q±)1Q±). By Eagleson’s Theorem [E],

the central limit theorem still holds, whence D±N (a, b) −−−−→
N→∞

e±ε√
2π

∫ b
a
e−u

2/2du. It

follows that DN (a, b) −−−−→
N→∞

1√
2π

∫ b
a
e−u

2/2du. �

It follows from the proof that C1 and C2 in Beck’s theorem are given by (5.2).

For example, if α =
√

2 then the calculations done in the next section give for a
suitable automorphism λ = 17−12

√
2 = (1+

√
2)−4, τψ(p0, w) = 1, and σ2 = 3

8

√
2.

Thus C1 = 1
8 ln(1+

√
2)

and C2 = 1
8 ( 3√

2 ln(1+
√

2)
)

1
2 , in agreement with [B1],[B2].

6. Calculation of constants

The purpose of this section is to prove:

Theorem 6.1. If α is a quadratic irrational with renormalizing automorphism ψ,
then σ2 ∈ Q[α] and the twists of eigenvectors at singularities are in 1

2Z.

Theorem 6.2. In the special case when α =
√

2 and ψ is a renormalizing auto-
morphism with derivative

(
11 −42
−6 23

)
and zero drift, σ2 = 3

8

√
2.

Theorem 6.3. Let ψ be the automorphism in the previous theorem. If p0 is one
of the singularities in the bottom left corner of a horizontal rectangle, and w is the
contracted eigenvector, then τψ(p0, w) = 1.
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To prove these results we recall that at the end of section 4 we showed the
existence of a stationary mixing finite Markov chain {Xi}i∈Z and a function g s.t.

E[g(X0, X1)] = −τφ(p0, w) ,

k−1∑
i=0

g(Xi, Xi+1) + kτψ(p0, w)

√
k

dist−−−−→
k→∞

N(0, σ2). (6.1)

We will calculate {Xk}k∈Z and g explicitly, and then find E[g(X0, X1)] and σ2 using
the theory of Markov chains.

Along the way we will prove (2.4), as promised in §2.

In what follows ψ is a hyperbolic homogeneous automorphism with zero drift
which renormalizes α. We assume without loss of generality that ψ has positive
eigenvalues and that ψ fixes the singularities of St (otherwise we pass to ψ2, and
note that σ2(ψ2) = 2σ2(ψ) and τψ2(p0, w) = 2τψ2(p0, w)).

Next we assume that φ is the unique hyperbolic homogeneous automorphism
with the same derivative as ψ and which fixes the rays Li(p0, w), see Lemma 2.12.
The drift of φ equals −τψ(p0, w).

Both ψ and φ project to the same toral automorphism, which we denote by
ψ0 : St0 → St0.

The Markov chain {Xk}k∈Z. Let P denote the Adler–Weiss Markov partition of
ψ0, with dynamical graph G . As always, A is the derivative of ψ, λ is the eigenvalue
of A in (0, 1), and w, v are eigenvectors of λ, λ−1.

Recall that {Xk}k∈Z is the Markov chain with the with set of states P, allowed
transitions P → Q iff ψ0(int(P )) ∩ int(Q) 6= ∅, and the transition matrix and
stationary probability vector which generates of the measure of maximal entropy
on Σ(G ). We calculate this data in terms of the fundamental polygon of ψ.

We begin with the cardinality of P. Recall that

P = {Qij : i = 1, 2; j = 1, . . . , Ni}

where ψ0(Qi) =
⋃Ni
j=1Qij . Qij are ordered so that the top s–side of Qi,j+1 is

identified with the bottom s–side of Qi,j+1. Since P is a refinement of {Q1, Q2},
some of the Qij are contained in Q1 and some are contained in Q2. Let

Nik := #{1 ≤ j ≤ Ni : Qij ⊂ Qk},

then Ni = Ni1 +Ni2 and |P| =
∑
i,j Nij . The following lemma determines Nij :

Lemma 6.4. Let `u(Qi) denote the length of the unstable fibres in Qi, i = 1, 2,
then (Nij)2×2 is the unique solution in Z to

N11`
u(Q1) +N12`

u(Q2) = λ−1`u(Q1)

N21`
u(Q1) +N22`

u(Q2) = λ−1`u(Q2)
(6.2)

Proof. If Wu is a u-fibre in Qi, then ψ0(Wu) can be partitioned into Ni1 u–fibres
in Q1 and Ni2 u–fibres in Q2 (one for each Qij). The sum of the lengths of these
u–fibres must equal `[ψ0(Wu)] = λ−1`(Wu) = λ−1`u(Qi), so Nij solve (6.2).

The existence of a solution of (6.2) in Z implies that `u(Q1), `u(Q2) are linearly
independent over Q: Otherwise λ−1 is rational, which is never the case for an
eigenvalue of a hyperbolic matrix in SL(2,Z). It follows that (Nij) is the unique
solution of (6.2) in integers. �
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Next we calculate incidence matrix of G , T = (tPQ)P×P, where

tPQ =

{
1 P → Q,

0 otherwise
(P,Q ∈ P).

Lemma 6.5 (Adler & Weiss). tQijQk` = 1 ⇔ Qij ⊂ Qk. Thus, rank(T ) = 2 and
every P–element in Qi connects to Nik P–elements in Qk.

Proof. Suppose Qij ∈ P. Since P refines {Q1, Q2}, Qij ⊂ Qk for k = 1 or 2. By
construction, ψ0(Qk) =

⋃
Qk`, so if Qij → Q then int(Q) ⊂

⋃
Qk`, which means

that int(Q) intersects int(Qk`) for some `. Since {int(Qk`)} are pairwise disjoint,
Q = Qk`, which proves the (⇒) direction.

The (⇐) direction is also true, otherwise ψ0(int(Qk)) intersects ∂uQkj . This is
false, because ∂uQk` ⊂ ψ0(∂uQk) ⊂ ψ0(int(Qk))c. So tQijQk` = 1⇔ Qij ⊂ Qk.

We see that the incidence matrix T has two types of rows: those of P–elements
P ⊂ Q1, and those of P–elements in P ⊂ Q2. These rows are different, because

− if P ∈ P, P ⊂ Q1, then #{Q ∈ P : Q ⊂ Qk, tPQ = 1} = N1k,
− if P ∈ P, P ⊂ Q2, then #{Q ∈ P : Q ⊂ Qk, tPQ = 1} = N2k,

−
(
N11

N12

)
6=
(
N21

N22

)
, otherwise by Lemma 6.4 `u(Q1) = `u(Q2) and λ is rational.

Since different rows of zeroes and ones are linearly independent, rank(T ) = 2. �

Next we determine the transition matrix of the Markov chain {Xk}k∈Z: the
matrix (pPQ)P,Q∈P s.t. pPQ = P(X1 = Q|X0 = P ).

Lemma 6.6 (Adler & Weiss). (pPQ)P,Q∈P = λM−1TM where M is the diagonal
matrix with diagonal entries MPP = `u(P ).

Proof. By the Adler–Weiss Theorem, P = m0 ◦ π−1
0 , where m0 is the normalized

area measure and P is the joint distribution measure given by

P(E) := P[(Xk)k∈Z ∈ E], (E ⊂ Σ(G ) Borel).

Therefore, if P = Qij , Q = Qk`, then pP,Q = m0[P ∩ ψ−1
0 (Q)]/m0(P ).

P , Q, and P ∩ ψ−1
0 (Q) are parallelograms with sides in the stable and unstable

directions. Let `u(·), `s(·) denote the lengths of these sides, then `s(P ) = λ`s(Qi),
`s[P ∩ ψ−1

0 (Q)] = `s(P ) = λ`s(Qi), and `u[P ∩ ψ−1
0 (Q)] = λ`u(Q). Denoting

the angle between the stable and unstable directions by β, we see that pPQ =

tPQ
λ2`s(Qi)`

u(Q) sin β
λ`s(Qi)`u(P ) sin β = λ`u(P )−1tPQ`

u(Q). �

Proof of (2.4) and calculation of g. Let ξ denote the associate Z–coordinate
of ψ. The definition of g is based on (2.4), which says that the Frobenius function
Fψ of ξ is either (a) P∨ψ−1

0 (P)–measurable or (b) P∨ψ0(P)–measurable. In case

(a), g(P,Q) is the value of Fψ on int(P ) ∩ ψ−1
0 [int(Q)]. In case (b), g(P,Q) is the

value of Fψ on ψ−1
0 [int(P )] ∩ int(Q). In this section we prove (2.4), and give an

explicit formula for g.
Recall from §2 that ψ or ψ−1 has a fundamental polygon of the form R = θ0(R0),

where θ0 : St0 → St0 is a toral automorphism which fixes the punctures of St∗0 and
R0 is one of the shapes in figure 2.

We will limit ourselves to the case when ψ has such a fundamental polygon. The
case of ψ−1 can be handled by the identity Fψ−1 = −Fψ ◦ ψ0.

Suppose Wu is a u–fibre in R. The Z–displacement of Wu is defined by

φ(Wu) := ξ(endpoint of W̃u)− ξ(beginning point of W̃u)
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for some (any) lift W̃u of Wu to St0. φ(Wu) is independent of the lift, and can
be easily determined from the endpoint of Wu as follows: Let H = (2, 1), then
referring to figure 2,

• the Z–displacement of u–fibres terminating at θ0(AF ) is (-1);
• the Z–displacement of u–fibres terminating at θ0(EH) is (+1);
• the Z–displacement of u–fibres terminating at θ0(HD) is (-1).

The unique P–element which has a u–fibre terminating at H is called critical.
The non-critical elements of P have the virtue that all their u–fibres have the same
Z–displacement. Let

φ(Qij) := the value of the Z–displacement of u–fibres in Qij (Qij non-critical).

Lemma 6.7. The critical element is Q2N2 .

Proof. Call the critical element Qk`.
H lies on the top s–side of Q2, ψ0(H) = H, and ψ0(∂sQ2) ⊂ ∂sQ2, therefore

H ∈ int[∂sψ0(Q2)]. It follows that k = 2 and 1 ≤ ` ≤ N2. Let Wu be the u–fibre
in Q2` whose closure contains H. If ` < N2 then H = ψ−1

0 (H) ∈ ψ−1
0 [Wu] ⊂

int(Q2)∪bottom s–side of Q2. This is false, so ` = N2. �

Let q̃0 denote one of the singularities in the middle of the horizontal side of
one of the horizontal rectangles. Since, by assumption, ψ fixes q̃0 and has positive
eigenvalues, there is a constant τ s.t. ψ[Li(q̃0, w)] = Li+τ (q̃0, w) (τ = τψ(q̃0, ~v)). A
continuity argument shows that necessarily ψ[Li(q̃0,−w)] = Li+τ (q̃0,−w)

Lemma 6.8. If ψ has a fundamental domain of the form θ(R0) with R0 as in figure

2, then Fψ is P ∨ ψ−1
0 (P)–measurable, and g(Qij , Qk`) = τ +

∑`−1
s=1 φ(Qks).

(The last expression makes sense because Qks is non-critical when s ≤ `− 1.)

Proof. Let P := Qij , Q := Qk`, and suppose p ∈ int(P ) ∩ ψ−1
0 [int(Q)]. By

the definition of the Frobenius function, Fψ(p) = ξ(ψ(p̃)) − ξ(p̃) for some (any)
p̃ ∈ π−1(p). We choose the p̃ s.t. ξ(p̃) = 0, then Fψ(p) = ξ(ψ(p̃)).

To calculate this we construct a path γ in St0 from the fixed point q0 = (1, 0) to
p and analyze the lift of ψ0[γ] to the infinite staircase. Let q denote the intersection
of Wu(p) and W s(q0) (the u and s fibres of p and q0). The path γ we use is the
concatenation of [q0, q] ⊂W s(p0) and [q, p] ⊂Wu(p).

The curve γ begins with a piece of a ray emanating from q0 in direction w. Let
γ̃ denote its unique lift to St which begins with a segment in L0(q̃0, w). Since γ
does not cross ∂R, all points in γ̃, in particular its end point, have Z–coordinate
equal to zero. It follows that γ̃ ends at p̃.

Let ζ̃ := ψ[γ̃]. This curve ends at ψ(p̃), so ξ[end of ζ̃] = ξ[ψ(p̃)].

As for its beginning, since ψ[L0(q̃0, w)] ⊂ Lτ (q̃0, w), ζ̃ := ψ[γ̃] begins with a

segment in Lτ (q̃0, w). It follows that ξ[beginning of ζ̃] = τ.

The curve ζ̃ projects to ψ0[γ]. To calculate ψ0[γ], we first recall that Qij → Qk`,

and therefore P ⊂ Qk =
⋃Nk
s=1 ψ

−1
0 (Qks). {Qks}Nks=1 are ordered so that [q, p] =⋃`−1

s=1[qs, qs+1]∪ [q`, p], where [qs, qs+1] = Wu(p)∩ψ−1
0 (Qks) and [q`, p] ( ψ−1

0 (Qk`).
So ψ0[γ] is a concatenation of

• [q0, ψ(q)] (a subsegment of W s(q0)), followed by
• a u–fibre in Qk1 (ψ0[q1, q2]), followed by
• a u–fibre in Qk2 (ψ0[q2, q3]), followed by
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• · · ·
• a u–fibre in Qk,`−1 (ψ0[q`−1, q`]), followed by
• the beginning of a u–fibre in Qk`, which terminates at ψ0(p).

It follows that ξ[end of ζ̃] − ξ[beginning of ζ̃] =
∑`−1
s=1 φ(Qks). Substituting the

values of ξ at the endpoint of ζ̃, we find that Fψ(p) = τ +
∑`−1
s=1 φ(Qks). �

Proof of Theorem 6.1. That the twists always belong to 1
2Z was proved in

Lemma 2.11, so we focus on the value of σ2. There is no loss of generality in
assuming that ψ has zero drift.

Let g be the function found in Lemma 6.8, and define a family of P×P matrices
Φ(θ) by

ΦP,Q(θ) := pP,Q exp[θg(P,Q)] (P,Q ∈ P).

These are a positive matrices, and the mixing of σ : Σ(G ) → Σ(G ) (Adler–Weiss
Theorem) guarantees that they are primitive. By the Perron–Frobenius Theorem,
Φ(θ) has a simple positive eigenvalue λ(θ) such that λ(θ) is larger than the modulus
of all other eigenvalues. When θ = 0, Φ is stochastic, and λ(0) = 1.

Since Φ(θ) is depends analytically on θ, λ(θ) is analytic on some interval (−ε, ε).
It is known that

λ(0) = 1,
d

dθ

∣∣∣∣
θ=0

lnλ(θ) = E[g(X0, X1)] and
d2

dθ2

∣∣∣∣
θ=0

lnλ(θ) = σ2. (6.3)

See Doeblin [D], Nagaev [Ngv], or chapter 4 in [PP].
We use this formula to show that σ2 ∈ Q[α], where α is the angle normalized by

ψ. Let A denote the derivative of ψ and let λ denote the eigenvalue of A in (0, 1).
Since ψ renormalizes α, α = 1

2 + 1
2 tan θ(mod 1) where A

(
1

tan θ

)
= λ

(
1

tan θ

)
. Since A

is a matrix of integers, λ ∈ Q[tan θ] = Q[α]. We’ll show that σ2 ∈ Q[λ], and deduce
that σ2 ∈ Q[α].

We need the following claim. Let A denote the collection of functions of the form
ϕ(θ) =

∑n
k=−n ake

kθ with arbitrary n ∈ N and ak ∈ N∪{0}, and set µ(θ) := λ(θ)/λ.

Claim. There are βij(θ) ∈ A s.t. µ(θ) is the largest eigenvalue of
(
β11(θ) β12(θ)
β21(θ) β22(θ)

)
,

for all θ ∈ (−ε, ε).

Proof of the claim. Let Ψ(θ) denote the P ×P matrix (tPQ exp[θg(P,Q)])P,Q∈P.
By lemma 6.6, Ψ = λ−1MΦM−1, so µ(θ) is the leading eigenvalue of Ψ(θ).

As our formulas for tQij ,Qk` and g(Qij , Qk`) show, if P,Q ∈ P are both included
in the same Qk, then the P–row of Ψ(θ) is equal to the Q–row of Ψ(θ), and if
P,Q are not included in the same Qk then the P–row and the Q–row are linearly
independent. In particular, rank[Ψ(θ)] = 2.

We think of Ψ(θ) as of the linear transformation u 7→ uΨ(θ) on RP. Let Vθ :=
Im[Ψ(θ)]. Then dimVθ = 2 and

Vθ = Span{ePΨ(θ), eQΨ(θ)}

when P,Q ∈ P, P ⊂ Q1, Q ⊂ Q2, and eP , eQ are the row vectors (eP )R = δPR,
(eQ)R = δQR where δPQ is the Kronecker symbol.

Ψ(θ) preserves Vθ, and since Vθ contains all the (left) eigenvectors of Ψ(θ), µ(θ)
is the leading eigenvalue of Ψ(θ)|Vθ : Vθ → Vθ. We represent Ψ(θ)|Vθ : Vθ → Vθ in
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the basis {ePΨ(θ), eQΨ(θ)}. For every S ∈ P,

((ePΨ)Ψ)S = (ePΨ2)S = (Ψ2)PS =
∑

R∈P,R⊂Q1

ΨP,RΨR,S +
∑

R∈P,R⊂Q2

ΨP,RΨR,S

=
∑

R∈P,R⊂Q1

ΨP,RΨP,S +
∑

R∈P,R⊂Q2

ΨP,RΨQ,S

=

( ∑
R∈P,R⊂Q1

ΨP,R

)
(ePΨ)S +

( ∑
R∈P,R⊂Q2

ΨP,R

)
(eQΨ)S

=

( ∑
R∈P,R⊂Q1

tPRe
θg(P,R)

)
(ePΨ)S +

( ∑
R∈P,R⊂Q2

tPRe
θg(P,R)

)
(eQΨ)S .

The terms in the brackets belong to A . A similar formula holds for (eQΨ)Ψ. So
Ψ(θ) : Vθ → Vθ is represented by a 2× 2–matrix with entries in A , and µ(θ) is the
leading eigenvalue of that matrix, as claimed.

Call the matrix in the claim Bθ, and let fθ(t) = t2− a(θ)t− b(θ), be the charac-
teristic polynomial of Bθ, then a(θ) = tr(Bθ) ∈ A and b(θ) = −det(Bθ) ∈ A −A .
It follows that a(k)(0), b(k)(0) ∈ Z for all k ≥ 0.

The eigenvalues of Bθ are zeroes of fθ, therefore fθ(µ(θ)) = 0. We differentiate
this identity twice with respect to θ and then substitute θ = 0, noting that µ′(0) =
λ′(0) = E(g) = drift of ψ = 0. Rearranging terms, we obtain

µ′′(0) =
a′′(0)µ(0) + b′′(0)

2µ(0)− a(0)
.

Similarly, (lnλ)′′(0) = (lnµ)′′(0) = µ′′(0)
µ(0) , so σ2 = (lnλ)′′(0) = a′′(0)µ(0)+b′′(0)

2µ(0)2−a(0)µ(0) .

Since µ(0)2 − a(0)µ(0)− b(0) = 0, we obtain

σ2 =
a′′(0)µ(0) + b′′(0)

a(0)µ(0) + 2b(0)
∈ Q[µ(0)].

It remains to recall that λ(0) = 1, therefore µ(0) = 1/λ, so Q[µ(0)] ⊂ Q[α]. �

Proof of Theorem 6.2. We now specialize to the case of α =
√

2.
Let φ denote the homogeneous automorphism φ with derivative

(
11 −42
−6 23

)
, and

which fixes L0[p̃0, w] (p̃0 =singularity in the bottom left/right corner of horizontal
rectangle zero, w =contracted eigenvector). We will find the function g which drives
the random walk of φ, and then use (6.1) to calculate σ2 and the drift of φ. There
are four steps:

(1) Finding the fundamental polygon of φ
(2) Calculating the Markov partition and the transition matrix (tPQ)P×P
(3) Calculating g and Ψ(θ)
(4) Finding a closed form for the leading eigenvalue µ(θ) of Ψ(θ), and using the

identity (lnµ)′′(0) = σ2.

All the calculations can be done in closed form, but P is too large to do this reliably
by hand (it’s a 58 × 58 matrix). We will supply alternative formulas for tPQ and
g(P,Q) which can be easily implemented on a computer, and which provably give
the result with absolute precision.
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A

C

E

D

B

F

G

H

Figure 4. Fundamental domain for the renormalizing automor-
phism of

√
2

Step 1. The fundamental polygon. The derivative matrix is
(

11 −42
−6 23

)
. The

eigenvalues are λ = 17 − 12
√

2, λ−1 = 17 + 12
√

2, and the eigenvectors are v =(
1−2
√

2
1

)
and w =

(
1+2
√

2
1

)
.1

This places us outside of the cases covered in figure 2. Instead of looking for a re-
duction to one these cases by means of Lemma 2.7, we find a fundamental polygon
directly. It is given in figure 4. It is a simple calculation to find the vertices

explicitly: A( 4+
√

2
8 , 1

4
√

2
), B( 12−

√
2

8 ,− 1
4
√

2
), C(2 + 7

√
2

8 , 4−
√

2
8 ), D( 12+

√
2

8 , 8+
√

2
8 ),

E( 4−
√

2
8 , 8−

√
2

8 ), F ( 7
√

2
8 , 4−

√
2

8 ) (figure 4).

Step 2. The Markov partition and the incidence matrix

P = {Q11, . . . , Q1N1
;Q21, . . . , Q2N2

}. We can find N1 and N2 using Lemma 6.4.
The first step is find `u(Q1) = |AB| and `u(Q2) = |CD|. A direct calculation with
the coordinates found in step 1 leads to nested roots, but this can be avoided by
first expressing the coordinates of A,B,C,D in the form “puncture + tv.” This
leads to the presentation

`u(Q1) =

√
2

4
‖v‖ , `u(Q2) =

2 +
√

2

4
‖v‖,

which makes the equations in Lemma 6.4 easy to solve.
The solution is N11 = 5, N12 = 12, N21 = 12, N22 = 29. Thus N1 = N11 +N12 =

17 and N2 = N21 + N22 = 41. As a result, P contains 58 elements, of which
N11 +N21 = 17 are in Q1 and N12 +N22 = 41 are in Q2. Every P–element in Q1

connects to 5 elements in Q1 and 12 elements in Q2; and every P-element in Q2

connects to 12 elements in Q1 and 29 elements in Q2.
So far so good. But to find the incidence matrix we also needs to know which of

the Qij fall in Q1 and which fall in Q2. A calculation by hand or “by inspection” is
possible in principle, but not very reliable due to the size of the problem. We look
for a method for calculating the position of Qij using a computer.

Let `s(Qi) denote the lengths of the stable sides of Qi, then side BC of our
fundamental polygon has length `s(R) := `s(Q1) + `s(Q2), and this side contains
p0 = (2, 0) (figure 2).

1Here we deviate from our convention to choose the eigenvectors in the form
(1
∗
)
.
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We parametrize this side by Ls := [0, 1], representing a point by its normalized
distance from the left endpoint. The puncture p0, for example, is parametrized by

p̂0 :=
√

2
4 (nested roots can be avoided as above); the s–sides of Q1 and Q2 are

parametrized by Ls1 := [0, `
s(Q1)
`s(R) ) = [0, 1−

√
2

2 ) and Ls2 := [ `
s(Q1)
`s(R) , 1) = [1−

√
2

2 , 1).

The key observation is that with this parametrization, a u–fibre which begins at

τ ∈ [0, 1], ends at τ − `s(Q1)
`s(R) mod 1 = τ +

√
2

2 mod 1. We can use this to keep track

of the position of Qij , by following the image of a u–fibre in the interior of Qi.

Suppose first that i = 1. Q1 contains the u-fibre Wu
1 which starts at `s(Q1)

2`s(R) .

Since ψ0 contracts Ls towards p0 by a factor λ, it maps `s(Q1)
2`s(R) to q̂1 := p̂0 −

λ
(
p̂0 − `s(Q1)

2`s(R)

)
= 2−57

√
2

4 mod 1, so ψ0(Wu
1 ) can be broken to u–fibres starting at

τ1j := q̂1 − (j − 1)
`s(Q1)

`s(R)
mod 1

=
2− 57

√
2

4
+ (j − 1)

√
2

2
mod 1 (j = 1, . . . , 17).

(6.4)

Q1j is the parallelogram which contains the u–fibre which starts at τ1j . Similarly,
Q2 contains the u–fibre Wu

2 which starts at the fixed point p0, so Q2j is the paral-
lelogram which contains the u–fibre which starts at

τ2j := p̂0 − (j − 1)
`s(Q1)

`s(R)
mod 1

=

√
2

4
+ (j − 1)

√
2

2
(j = 1, . . . , 41).

(6.5)

It follows that Qij ⊂ Qk iff Lsk 3 τij , and therefore, by Lemma 6.5 we have the
following explicit formula for the incidence matrix:

tQijQk` = 1Lsk(τij). (6.6)

This can be calculated easily on a computer, provided the precision of the calculation
is smaller than the distance between τij and the endpoints of Lsk.

We estimate the precision we need. The endpoints of Lsk are a ∈ {0, 1, 1−
√

2
2 }.

Since dist(τij , a + Z) ≥ min{ 1
4 dist(4τij , 4a + Z), 1

4}, we have the (generous) lower

bound dist(τij , {0, 1 −
√

2
2 , 1} + Z) ≥ min{dist(k

√
2,Z) : k = 1, . . . , 100}. The last

quantity is bounded below by 2 · 10−4, as can be seen from the sixth principal
convergent of

√
2, 239

169 . So the precision we need for the calculation is just 10−4,
which is easily available on a standard machine.

Step 3. Calculating g(Qij , Qk`).

We use Lemma 6.8. Note that by choice of φ, τ = 0, and the calculation of g
boils down to finding the Z–displacement of suitable u–fibres.

The Z–displacement of a u–fibre can be determined from the location of its
endpoint, see figure 4. This in turn can be determined from the location of the
beginning point as follows. Suppose a u–fibre starts at τ ∈ Ls = [0, 1].

• If τ ∈ [0, `
s(Q1)
`s(R) ) = [0, 1−

√
2

2 ), then the endpoint is in AF and the Z–displacement

is 0.
• If τ ∈ [ `

s(Q1)
`s(R) ,

`s(Q1)
`s(R) + `s(Q2)

2`s(R) ) = [1 −
√

2
2 , 1 −

√
2

4 ), then the endpoint is between

E and (1, 1) and the Z–displacement is (−1)
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• If τ ∈ [ `
s(Q1)
`s(R) + `s(Q2)

2`s(R) , 1) = [1 −
√

2
4 , 1), then the endpoint is between (1, 1) and

D and the Z–displacement is (+1)

In summary, a u–fibre which starts at τ ∈ Ls has Z–displacement

γ(τ) = 1
[1−

√
2

4 ,1)
(τ)− 1

[1−
√

2
2 ,1−

√
2

4 )
(τ).

It follows that g(Qij , Qk`) =
∑`−1
m=1 γ(τim), and by step 2,

ΨQij ,Qk`(θ) = 1Lsk(τij) exp

(
θ

`−1∑
m=1

[1
[1−

√
2

4 ,1)
(τim)− 1

[1−
√

2
2 ,1−

√
2

4 )
(τim)]

)
,

where τij , tim are given by (6.4) and (6.5), Ls1 = [0, 1−
√

2
2 ), and Ls2 = [1−

√
2

2 , 1).
As in the case of the incidence matrix, this can be calculated with complete

precision on a standard computer.

Step 4. Calculation of σ2. We implemented the formulas in the previous step on
Mathematica, and found Ψ(θ).

As predicted by the general theory, rank[Ψ(θ)] = 2, so the characteristic poly-
nomial of Ψ(θ) takes the form t|P|−2[t2 + b(θ)t+ c(θ)]. The largest eigenvalue can
therefore be found in closed form. We did this using Mathematica and got

µ(θ) =
1

2
e−2θ

(
9 + 16eθ + 9e2θ + 3

√
(1 + eθ)2(9 + 14eθ + 9e2θ)

)
. (6.7)

It follows that σ2 = (logµ)′′(0) = 3
8

√
2. �

Proof of Theorem 6.3. The calculations in the previous proof were done for the
renormalizing automorphism φ which fixes the rays L0(p0, w). By Lemma 2.12,
τψ(p0, w) = −δ(φ). The drift of φ is E(g), and by (6.3) E(g) = (logµ)′(0). It
follows that τψ(p0, w) = −(logµ)′(0). By (6.7), τψ(p0, w) = 1.

Here is another proof that τψ(p0, w) = 1. The first step is to express the deriva-
tive of ψ through generators of Γ(2):(

11 −42
−6 23

)
=

(
−1 0

0 −1

)(
1 −2
0 1

)(
1 0
6 1

)(
1 −4
0 1

)
,

Let ψi denote the unique homogeneous automorphism with zero drift and derivative(
1 −4
0 1

)
(i = 1),

(
1 0
6 1

)
(i = 2),

(
1 −2
0 1

)
(i = 3), and

( −1 0
0 −1

)
(i = 4). By

the uniqueness of homogeneous automorphisms with zero drift and given derivative,
ψ = ψ4 ◦ ψ3 ◦ ψ2 ◦ ψ1.

The automorphisms ψi are known explicitely (see appendix). To describe them,
note that St has two canonical cylinder decompositions of St, one into horizontal
cylinders and the other into vertical cylinders (Figure 5).

(1) ψ1 acts on every horizontal cylinder in by
(
x
y

)
7→
(
x−4y mod 2
y mod 1

)
, where (x, y)

are measured from the bottom left corner of the corresponding horizontal rec-

tangle. So ψ1[L0(p, w)] = L0(p′,
(−3+2

√
2

1

)
), where p′ :=bottom right corner of

horizontal rectangle #0 (p′ is congruent to p)

(2) ψ2 acts on every vertical cylinder by
(
x
y

)
7→
(

x mod 1
y+6x mod 2

)
, where (x, y) are mea-

sured from the bottom left corner of the corresponding vertical rectangle. So

ψ2[L0(p′,
(−3+2

√
2

1

)
)] = L0(p′,−

( 3−2
√

2
17−12

√
2

)
) = L0(p′,−

(
3+2
√

2
1

)
) = L1(q,−

(
3+2
√

2
1

)
),

where q is the singularity at middle of the top side of horizontal rectangle #1 (q
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is congruent to p and p′). We had to move one horizontal rectangle up, because

−
(

3+2
√

2
1

)
based at p′ points outside of horizontal rectangle #0.

(3) ψ3 acts every horizontal cylinder by
(
x
y

)
7→
(
x−2y mod 2
y mod 1

)
, where (x, y) are mea-

sured from the bottom left corner of the corresponding horizontal rectangle. So

ψ3[L1(q,−
(

3+2
√

2
1

)
)] = L1(q,−w).

(4) ψ4 = D−1 ◦ φ2, where φ maps horizontal cylinders into vertical cylinders by
rotating the horizontal rectangles 90◦ counterclockwise around the midpoint of
the top side of the corresponding horizontal rectangle. Now

(i) φ[L1(q,−w)] = L1(q,
(

1
−(1+2

√
2)

)
);

(ii) φ[L1(q,
(

1
−(1+2

√
2)

)
)] = L1(q, w) = L2(q, w) = L2(D2(p), w) (we moved

up, because w based at q, points outside of rectangle #1);
(iii) D−1[L2(D2(p), w)] = L1(D(p), w).
Consequently, ψ4[L1(q,−w)] = L1(D(p), w).

In summary, ψ[L0(p, w)] = L1(D(p), w) = D[L0(p, w)]. So τψ(p, w) = 1. �

7. Characterization of generic points

In this section we leave the study of the deterministic random walk, and turn to
a different problem: The description of the generic points of the cylinder map.

The cylinder map Tα is ergodic and conservative with respect to the infinite
invariant measure m0 = mT × mZ, for every α irrational ([C],[CK],[Sch],[AK]).
By Hopf’s ratio ergodic theorem, for every F,G ∈ L1(T× Z) s.t.

∫
Gdm0 > 0,∑n−1

j=0 (F ◦ T jα)(x, k)∑n−1
j=0 (G ◦ T jα)(x, k)

−−−−→
n→∞

∫
Fdm0∫
Gdm0

(7.1)

for m0-almost every (x, k) ∈ T× Z.
But (7.1) does not hold for every (x, k) ∈ T × Z. This is because Tα admits

other ergodic conservative locally finite measures [Nkd]. If µ is one of the other
measures, then the limit in (7.1) is

∫
Fdµ/

∫
Gdµ µ–almost everywhere, and not∫

Fdm0/
∫
Gdm0.

This raises the question what exactly is the domain of validity of (7.1). To state
the problem in a meaningful way, we need the following definition.

Definition 7.1. A point (x, k) is called generic (for Tα and m0), if it satisfies ( 7.1)
for every F,G ∈ Cc(T× Z) s.t.

∫
Gdm0 > 0.

By the discussion above almost every point is generic, but some points are not
generic. It was asked in [Sa] what are the generic points of Tα.

In this section we give the answer in the special case when α is a quadratic
irrational. Let ω : T→ St be as in Theorem 3.1.

Theorem 7.2. Suppose α is a quadratic irrational, with renormalizing automor-
phism ψ, then (x, k) is generic for Tα and m0 = mT×mZ iff 1

k ξ[ψ
k(ω(x))] −−−−→

k→∞
0.

Let
(

sin θ
cos θ

)
denote the stable direction of ψ, and ϕθ the linear flow in direction θ on

the infinite staircase. A point ω ∈ St is called generic for ϕθ and the area measure
m, if

∫ n
0
F [ϕtθ(ω)]dt/

∫ n
0
G[ϕtθ(ω)]dt −−−−→

n→∞

∫
Fdm/

∫
Ggm for every F,G ∈ Cc(St)

s.t.
∫
Gdm > 0. We will obtain Theorem 7.2 from the following result.
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Theorem 7.3. ω ∈ St is generic for ϕθ and m iff 1
k ξ[ψ

k(ω)] −−−−→
k→∞

0.

Theorem 7.2 follows from Theorem 7.3 in the same way Theorem 3.1 follows from
Theorem 3.2.

Proof of Theorem 7.3. If the theorem holds for one choice of a Z–coordinate,
then it works for all choices of Z–coordinates, therefore we are free to use the
Z–coordinate of our choice. We choose the Z–coordinate associated to ψ.

Suppose ξ[ψk(ω0)]/k −−−−→
k→∞

0, then ω0 is generic because of Theorem 3.2 : the

fluctuating exponential term cancels out upon division.
The remainder of the proof deals with the implication “genericity⇒zero drift.”

We use the strategy of [SS].
Fix a generic point ω0 ∈ St, let AT := {ϕtθ(ω0) : 0 ≤ t ≤ T}, and define λT to be

the normalized length measure on AT ∩ [ξ = 0]. Since ω0 is generic, λT converges
weak star to the normalized Lebesgue measure on [ξ = 0].

Construction: Fix some N ≥ 1 to be chosen later, and define for every k ≥ 0

XN
k := ξ ◦ ψ(k+1)N − ξ ◦ ψkN =

((k+1)N−1∑
j=kN

Fψ ◦ ψj
)
◦ π.

We think of XN
k as of bounded random variables on (AT ,B(AT ), λT ). The bound

is |XN
k | ≤ N max |Fψ|.

Let log∗ := logλ−1 , where λ is the eigenvalue of the derivative of ψ in (0, 1).
Since ξ = 0 λT –a.e. and Fψ is uniformly bounded,

1
N [log∗ T ]−2∑

k=0

XN
k =

1
N [log∗ T ]−1∑

k=0

XN
k +O(N) = ξ ◦ ψ[log∗ T ] − ξ +O(N)

= ξ ◦ ψ[log∗ T ] +O(N) uniformly on supp(λT ).

The right hand side is nearly constant λT –a.s., because ψ[log∗ T ] contracts the sup-
port of λT (a subset of AT ) to a set of diameter less than λ−1, and the Z–coordinates
of points in such a set must be uniformly bounded away from one another. It follows
that for λT –a.e. ω ∈ AT ,

1
N [log∗ T ]−2∑

k=0

XN
k (ω) = ξ[ψ[log∗ T ](ω0)] +O(N) uniformly in T .

Taking expectations with respect to λT and dividing by [log∗ T ], we obtain

ξ[ψ[log∗ T ](ω0)]

[log∗ T ]
= EλT

 1

[log∗ T ]

1
N [log∗ T ]−2∑

k=0

XN
k

+ o(1), as T →∞. (7.2)

The expectation of 1
[log∗ T ]

∑ 1
N [log∗ T ]−2

k=0 XN
k with respect to the normalized Lebes-

gue’s measure on [ξ = 0] is zero (because ψ is an automorphism with zero drift).

We will use the genericity (in the form λT
w∗−−−−→

T→∞
Normalized Lebesgue�[ξ=0]) to

show that something close happens to the λT –expectation. More precisely:
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Claim. If ω0 is generic then for every ε there exists N s.t. for all T large enough

max
{
|EλT ( 1

NX
N
k )| : 0 ≤ k ≤ 1

N [log∗ T ]− 2
}
< ε. (7.3)

Together with (7.2), this implies that 1
k ξk(ω0) −−−−→

k→∞
0 and finishes the proof.

We begin the proof of (7.3). Fix ω0 generic and ε > 0, and let C, δ0, N0 be
some parameters that will be calibrated at the end of the proof. Let λCT denote the
length measure on AT ∩ [|ξ| ≤ C], normalized so that λCT [ξ = 0] = 1 (this is not a
probability measure).

Step 1. Choosing N > N0 and τ s.t. λCT
[
| 1
NX

N
0 | > δ0

]
< δ0 for all T > τ .

Proof. Fix 0 < δ < δ0. Since 1
k ξ ◦ ψ

k −−−−→
k→∞

0 almost everywhere with respect to

Lebesgue’s measure, we can use Egoroff’s theorem to find N = N(δ, C) > N0 s.t.
Λ0 := {ω ∈ St : |ξ(ω)| ≤ C, | 1

NX
N
0 | > δ0} satisfies m(Λ0) < δ, where m is the area

measure on St.
Since ω0 is generic, λCT converges w∗ to the Lebesgue measure on [|ξ| ≤ C]. The

indicator functions of Λ0 and [ξ = 0] are discontinuous, but all discontinuities lie
on the boundaries of the parallelograms of the Markov partition, and their images
under ψ−N . N is fixed, therefore the closure of the singular set has measure zero.
Thus there is no problem to show using a standard approximation argument that
λCT (Λ0) −−−−→

T→∞
m(Λ0) < δ. It follows that there exists τ = τ(δ, C) s.t. for all

T > τ(δ, C), λCT (Λ0) < δ, proving step 1.

Step 1 allows us to bound EλT ( 1
NX

N
0 ) as follows. Choose δ0 < ε/(1 + max |Fψ|),

then for all T > τ ,

|EλT ( 1
NX

N
0 )| ≤ δ0 + max | 1

NX
N
0 | · λT

[
| 1
NX

N
0 | ≥ δ0

]
≤ δ0(1 + max |Fψ|) < ε.

It is tempting to try to bound EλT ( 1
NX

N
k ) for k 6= 0 in the same way. Unfortu-

nately the methods of step 1 can only be used for bounded k, whereas (7.3) calls
for a uniform bound for 0 ≤ k ≤ [log∗ T ], as T →∞.

We will take an indirect approach. Imagine we were able to construct self maps
θk : AT → AT (0 ≤ k ≤ 1

N [log∗ T ]− 2) with the following properties:

• XN
k = XN

0 ◦ θk+error, uniformly bounded by E0

• θk is Borel, one-to-one, and θk(AT ∩ [ξ = 0]) ⊂ AT ∩ [|ξ| ≤ C]

• C−1
r ≤ d`◦θk

d` ≤ Cr where d` is the (Lebesgue) length measure and Cr is a global
constant, independent of N,T, k, and ε

Then it would follow that λT ≤ CrλCT ◦ θk|[ξ=0], and if E0/N0 < δ0 then

λT [| 1
NX

N
k | > 2δ0] ≤ Cr(λCT ◦ θk)([| 1

NX
N
k | > 2δ0] ∩ [ξ = 0])

≤ CrλCT [| 1
NX

N
k ◦ θ−1

k | > δ0] ≤ CrλCT [| 1
NX

N
0 | > δ0] < Crδ0.

This, and the fact that sup |XN
k | are uniformly bounded, is sufficient to bound

EλT (| 1
NX

N
k |) uniformly and prove (7.3).

In reality we do not know how construct θk like that, because of edge effects at
the endpoints of AT . Luckily these edge effects can be controlled well enough to
push this argument through with minor modifications. The details follow.

Step 2. Breaking AT into the “interior” and “edge” s–fibres.
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We use the Adler–Weiss coding of Theorem 2.8 and Lemma 3.3. Recall that an s–
fibre is a set of the form W s(x, k) :=lift to [ξ = k] of W s(x) := {π0(y) : y∞0 = x∞0 }.
This is a stable linear segment, with length h(x0).

We define an n0–stable block to be the lift to [ξ = k] of a set of the form
{π0(y) : y∞−n0

= x∞−n0
}. These are closed stable linear segments, and their length is

λn0h(x−n0
) � λn0 −−−−→

n0→∞
0. (An � Bn means C−1 < An/Bn < C for all n large.)

Different n0–stable blocks are disjoint, or they meet at one or two endpoints. Every
point belongs to at most two n0–stable blocks.
BT := ψ[log∗ T ](AT ) is a stable linear segment with length in [1, λ−1]. The n0–

stable blocks which intersect the relative intrior of BT fall into two groups:

• two or less “edge” n0–stable blocks which cover the endpoints of BT ;
• (1− 4λn0 maxh)/(λn0 minh) or more “interior” n0–stable blocks which lie com-

pletely inside BT .

Since the number of interior n0–blocks tends to infinity as n0 → ∞, it is possible
to fix once and for all n0 in such a way that there is at least one interior block.

This choice is independent of N0, therefore it is possible to assume without loss
of generality that N0 > n0.

If [log∗ T ]� n0, then the decomposition of BT = ψ[log∗ T ](AT ) into interior and
boundary n0–blocks induces a decomposition of AT into interior and edge s–fibres.
Here and throughout,

• An edge s–fibre of AT is an s–fibre in ψ−[log∗ T ](edge n0–block of BT ).
• An interior s–fibre of AT is a stable fibre in ψ−[log∗ T ](interior n0–block of BT ).

Let Wint,Wbnd be the collection of interior and edge stable fibres in AT . The interior
of AT is AT (int) :=

⋃
Wint, and the boundary of AT is AT (bnd) :=

⋃
Wbnd.

Step 3. Defining θk on the interior of AT (0 ≤ k ≤ 1
N [log∗ T ]− 2).

Recall that G is the dynamical graph of the Markov partition P. An admissible
word is a finite word w0 · · ·wn ∈ Pn s.t. w0 → · · · → wn is a path on G .

Since Σ(G ) is topologically mixing, there exists a constant Mbr such that for
every pair of a, b ∈ P there is a path wab on G of length Mbr s.t. awabb is admissible.
Fix for such a, b a word wab, and call it the bridge from a to b. In what follows

(a,bridge, b) := (a,walastbfirst
, b).

We define θk : AT (int)→ AT as follows. Suppose ω ∈ AT (int). Fix a stable fibre
W s(x, η) ⊂ AT (int). All but countably many points in W s(x, η) can be uniquely
represented in the form (y, η) where

y ∈ Σ(G ) , y∞0 = x∞0 , ξ(ω) = η, and π(ω) = π0(y).

Write y = (y−1
−∞|B0, B1, . . . , Bk, y

∞
kN ), where Bi are words of length of N , and the

zeroth coordinate is to the immediate right of |. We let θk(y, η) := (z, η′) where

z = σ4Mbr (y−1
−∞|bridge, Bk,bridge, B1, . . . , Bk−1,bridge, B0,bridge, y∞(k+1)N )

η′ = η +

[log∗ T ]−1∑
j=0

F (σjy)− F (σjz), where F := Fψ ◦ π0.

What we have done here is to exchange block zero with block k, plug-in bridge words
to ensure admissibility, and at the end apply the shift and modify η to ensure that
we remain inside AT (see below). Here are some properties of θk.
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(i) XN
0 ◦ θk = XN

k +bounded error: θk exchanges the zeroth block with the k–th
block, and therefore |XN

0 ◦ θk −XN
k | ≤ 6Mbr max |Fψ|. Here we are using (2.4).

(ii) θk[AT (int)] ⊂ AT (int) for all 0 ≤ k ≤ 1
N [log∗ T ]−2: We abuse notation and

identify a point in St with its symbolic coding in Σ(G )×Z. Suppose (y, η) belongs

to an interior n0–block and 0 ≤ k ≤ 1
N [log∗ T ]− 2, then

(σ[log∗ T ]z)∞−N = σ[log∗ T ](y)∞−N , because of the σ4Mbr in the definition of z, and

ψ[log∗ T ](z, η′) =
(
σ[log∗ T ](z), η′ +

[log∗ T ]−1∑
j=0

F (σjz)
)

=
(
σ[log∗ T ](z), η +

[log∗ T ]−1∑
j=0

F (σjy)
)
, by the definition of η′.

Since N > n0, ψ[log∗ T ](z, η′) belongs to the same n0–block which contains
ψ[log∗ T ](y, η). This is an interior n0–block of BT = ψ[log∗ T ](AT ). So (z, η′) ∈ AT .

(iii) θk[supp(λT )] ⊂ supp(λC
′

T ) for C ′ := 100[Mbr + 1] max |Fψ|: It is enough to

check that |η′ − η| =
∣∣∣∑[log∗ T ]−1

j=0 F (σjz)−
∑[log∗ T ]−1
j=0 F (σjy)

∣∣∣ ≤ C ′. To check this

we recall that F is constant on 2–cylinders, therefore the difference between the
two sums can only come from the following sources:

– the effect of the shift by σ4Mbr , bounded by 2 · 4Mbr max |Fψ|
– the sum over the bridge words, bounded by 4Mbr max |Fψ|
– the value of F (σjz) for the j at the end of Bk, Bk−1, and B0, with a total

effect bounded by 3 max |Fψ|

This gives the bound above with C much smaller than claimed.

(iv) θk is one-to-one on AT (int): To reconstruct y from z one just needs to erase
the bridge words (whose position is always the same), and then exchange the k–th
block with the zeroth block of what remains. Once y is known, η can be easily
calculated from η′ and z.

(v) d`◦θk/d` is uniformly bounded away from 0,∞, where ` is the length measure
on AT : For every a ∈ Σ(G ), the length of the stable linear segment

[a∞−n] := {ω ∈ AT (int) ∩ [ξ = 0] : π(ω) = π0(y), yj = aj (j ≥ −n)}

is λnh(a−n), because ψ−n[a∞−n] = W s(σ−na), `[W s(σ−na)] = h(a−n), and ψ−n

expands linear stable segments by a factor of λ−n. With this formula at hand, it is
easy to see that d`◦θk

d` ∈ [λ4Mbr ( minh
maxh ), λ4Mbr (maxh

minh )].

Step 4. Defining θk on A(bnd).

Fix once and for all an interior stable fibre W s(x, η) of AT . We will define θk on
an edge stable fibre by first mapping it into W s(x, η), and then applying θk|A(int)

as defined in step 3.
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The resulting transformation is θk : (y, η) 7→ (z, η′) where

z = σ5Mbr (y−1
−∞|bridge, Bk,bridge, B1, . . . , Bk−1,bridge, B0,bridge,

y
[log∗ T ]−1
kN ,bridge, x∞[log∗ T ])

η′ = η +

[log∗ T ]∑
j=0

Fψ(σjy)− Fψ(σjz)

The following properties can be verified as in the previous step:

(i) XN
0 ◦ θk = XN

k +bounded error. The error is bounded by 8Mbr max |Fψ|.
(ii) θk[A(bnd)] ⊂ AT (int) and θk[A(bnd)]∩ [ξ = 0]) ⊂ AT (bnd)∩ [|ξ| ≤ C ′] with

C ′ as above.
(iii) θk is one-to-one on each boundary stable fibre, and its Radon-Nikodym

derivative takes values in [λ5Mbr ( minh
maxh ), λ5Mbr (maxh

minh )].

Step 5. Proof of (7.3).

We estimate EλT ( 1
NX

N
k ) for 0 ≤ k ≤ 1

N [logλ−1 T ]−2. Since |XN
k | ≤ N max |Fψ|,∣∣EλT ( 1

NX
N
k )
∣∣ ≤ 2δ0 + max |Fψ| · λT (Λk), (7.4)

where Λk := {ω ∈ S : ξ(ω) = 0, | 1
NX

N
k | > 2δ0}. We will bound λT (Λk).

First we choose C,N0, δ0: C := C ′ = 100(Mbr + 1) max |Fψ|, N0 so large that
10Mbr max |Fψ|

N0
< δ0, and δ0 := ε/(2 + 3λ−5Mbr

(
maxh
minh

)
max |Fψ|).

By construction, |XN
k −XN

0 ◦ θk| ≤ 8Mbr max |Fψ|, so if | 1
NX

N
k (ω)| > 2δ0 then

| 1
NX

N
0 (θk(ω))| > 2δ0 − 10Mbr max |Fψ|

N0
> δ0. We see that

θk(Λk) ⊂ {ω ∈ AT : |ξ(ω)| ≤ C, | 1
NX

N
0 | > δ0}.

Applying θ−1
k to both sides and recalling that θk is piecewise invertible, at worst

three-to-one (edge effects), and d`◦θk
d` ≥ λ

5Mbr ( minh
maxh ) we find that

λT (Λk) ≤ 3λ−5Mbr
(

maxh
minh

)
λCT
[
| 1
NX

N
0 | > δ0

]
.

By step 1, λT (Λk) ≤ 3λ−5Mbr
(

maxh
minh

)
δ0. Substituting this at (7.4) we find that∣∣EλT ( 1

NX
N
k )
∣∣ ≤ δ0(2 + 3λ−5Mbr

(
maxh
minh

)
max |Fψ|) < ε as required. �.

Appendix A. Proofs of Proposition 2.3, Lemma 2.7, and Lemma 2.9

Classification of homogeneous automorphisms. We prove Proposition 2.3:

(1) If A ∈ SL(2,Z), A =
(

1 0
0 1

)
mod 2 and δ0 ∈ Z, then there is a unique homo-

geneous automorphism with derivative A and drift δ0.
(2) If A ∈ SL(2,Z), A =

(
0 1
−1 0

)
mod 2 and δ0 ∈ 1

2 + Z, then there is a unique
homogeneous automorphism with derivative A and drift δ0.

(3) No other homogeneous automorphisms exist.

Step 1. Existence of homogeneous automorphisms as in parts 1 and 2.

Proof. Let Γ(2) := {A ∈ SL(2,Z) : A =
(

1 0
0 1

)
mod 2}, Γ := Γ(2)∪

(
0 1
−1 0

)
Γ(2).

Γ(2) is generated by
(

1 2
0 1

)
,
(

1 0
2 1

)
, and

( −1 0
0 −1

)
. We will construct

• A homogeneous automorphism with derivative
(

1 0
0 1

)
and drift +1;

• A homogeneous automorphism with derivative
(

1 2
0 1

)
and drift 0;
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• A homogeneous automorphism with derivative
(

1 0
2 1

)
and drift 0;

• A homogeneous automorphism with derivative
( −1 0

0 −1

)
and drift 0;

• A homogeneous automorphism with derivative
(

0 −1
1 0

)
and drift 1

2 .

The automorphisms in part (1) can be constructed from the first three automor-
phisms. The automorphisms in part (2) require an additional composition with the
fourth automorphism.

A homogeneous automorphism with derivative
(

1 0
0 1

)
and drift 1: D

A homogeneous automorphism with derivative
(

1 2
0 1

)
and drift 0: Divide St into

horizontal cylinders, as indicated by the dashed lines in figure 5(a). Act on each
cylinder by the map (x, y) 7→ (x+ 2y mod 2, y) up to identifications, where (x, y)
are measured relative to the bottom left corner. These maps equal the identity on
the boundary of the cylinder (the horizontal sides of the rectangle), therefore they

glue to an automorphism ψ. The derivative of ψ is
(

1 2
0 1

)
, ψ commutes with D,

and ψ fixes the singularities of St. It has zero drift, because the Frobenius function
with respect to the horizontal rectangles vanishes.

A homogeneous automorphism with derivative
(

1 0
2 1

)
and drift 0: The same con-

struction, but using the decomposition of St into vertical cylinders (figure 5(a)).

A homogeneous automorphism with derivative
(

0 −1
1 0

)
and drift 1

2 : Decompose
St into hotizontal rectangles. Rotate every rectangle 90 degrees counterclockwise
around the midpoint of its top side, turning it into a vertical rectangle. These maps
glue continuously to an automorphism of St (figure 5(b)). Using the Z–coordinate
defined by the horizontal rectangles, one sees that the average drift is 1

2 .

A homogeneous automorphism with derivative
( −1 0

0 −1

)
and drift 0: Suppose ψ

is the automorphism with drift 1
2 and derivative

(
0 1
−1 0

)
constructed above, then

ϕ := D−1 ◦ ψ2 has zero drift and derivative
( −1 0

0 −1

)
.

Step 2. A homogeneous automorphism with derivative
(

1 0
0 1

)
is equal to Dk for

some k ∈ Z. Two homogeneous automorphisms with the same derivative and drift
are equal.

Proof. Let ψ be a homogeneous automorphism with derivative
(

1 0
0 1

)
. Fix a

horizontal rectangle R and let p0 denote the singularity at its lower right corner.
Given p ∈ int(R), let γp ⊂ R denote the linear segment from p0 to p. Since ψ fixes
the D–orbit of p0, ψ[γp] is a linear segment from p0 or D(p0) to ψ(p). Since the

derivative of ψ is
(

1 0
0 1

)
, ψ[γp] has the same slope, length, and direction as γp.

There are infinitely many such segments, one for every horizontal rectangle
Dk(R), k ∈ Z. By reasons of continuity there is some fixed k ∈ Z such that
ψ[γp] ⊂ Dk(R) for all p ∈ int(R). It follows that ψ = Dk on R. Since ψ commutes
with D, ψ = Dk on St. This proves the first part of step 2.

For the second part, suppose ψ1, ψ2 have the same derivative and drift, then
ψ1 ◦ ψ−1

2 has derivative
(

1 0
0 1

)
and drift zero (Lemma 2.2). So ψ1 ◦ ψ−1

2 = Dk

with k = drift = 0.

Step 3. For every homogeneous automorphism, either the derivative is
(

1 0
0 1

)
mod 2

and the drift is in Z, or the derivative is
(

0 1
−1 0

)
mod 2 and the drift is in 1

2 + Z.
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Figure 5. (a) decomposition of St into horizontal and vertical
cylinders; (b) a homogeneous automorphism with drift 1

2

Proof. Suppose ψ is a homogeneous automorphism, and let ψ0 : St0 → St0 be the
projection of ψ to St0.

St0 = R2/G where G is generated by the translations by
(

1
1

)
and

(
1
−1

)
, see

figure 1(c). The change of coordinates Θ
(
x
y

)
= 1√

2

(
1 1
1 −1

)
gives the identification

St0 ' R2/
√

2Z2. In these coordinates, the punctures are
√

2Z2 and 1√
2

(
1
1

)
+
√

2Z2,

and ψ0 is represented by ψ̂0 := Θ ◦ ψ0 ◦Θ.

Let B denote the derivative of ψ̂0. The linear segments in R2 from
(

0
0

)
to√

2
(

1
0

)
,
√

2
(

0
1

)
project to closed curves γ1, γ2 on R2/

√
2Z2. ψ̂0 fixes

√
2Z2 (a singu-

larity), therefore if we apply ψ̂0 to γ1, γ2, and lift the result to R2 at
(

0
0

)
, then we get

linear segments from
(

0
0

)
to B

(√
2

0

)
and B

(
0√
2

)
. These segments project to the closed
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curves ψ̂0[γ1], ψ̂0[γ2] on R2/
√

2Z2, so necessarily B
(√

2
0

)
, B
(

0√
2

)
=
(

0
0

)
mod
√

2Z2. It

follows that B ∈ GL(2,Z).

Actually, B ∈ SL(2,Z): |detB| = 1 because ψ̂0 is an orientation preserving

self–bijection of a surface of finite area, and detB > 0 because ψ̂0 is orientation
preserving.

Next we use the fact that ψ̂0 fixes 1√
2

(
1
1

)
+
√

2Z2. Using the linear segment from(
0
0

)
to 1√

2

(
1
1

)
as above, we see that B

( 1√
2

1√
2

)
∈
( 1√

2
1√
2

)
+
√

2Z2. Multiplying by
√

2 and

considering the result modulo 2 we see that the rows of B have entries of different
parity. So B (mod 2) =

(
1 0
0 1

)
,
(

0 1
−1 0

)
,
(

1 0
1 0

)
, or

(
0 1
0 1

)
(mod 2). Since

detB is odd, B =
(

1 0
0 1

)
or
(

0 1
−1 0

)
mod 2.

Returning to ψ0 = Θ ◦ ψ̂0 ◦ Θ, we see by direct calculation that the derivative
of ψ also has entries with different parity at every row. As before, this means that
the derivative of ψ is

(
1 0
0 1

)
or
(

0 1
−1 0

)
mod 2.

Suppose the derivative of ψ is
(

1 0
0 1

)
mod 2. We saw in step one that there

exists a homogeneous automorphism φ with the same derivative and with drift
zero. By step two, ψ ◦ φ−1 = Dk for some k ∈ Z. It follows that δ(ψ) = k ∈ Z.

If the derivative of ψ is
(

0 1
−1 0

)
mod 2, then there is a homogeneous automor-

phism φ with the same derivative and with drift 1
2 . By step two, ψ ◦ φ−1 = Dk for

some k ∈ Z, and δ(ψ) = k + 1
2 . �

Proof of Lemma 2.7. Suppose ξ, η ∈ R \Q and ξ 6= η. We are asked to produce

a matrix
(
a b
c d

)
∈ Γ(2) such that s1 := aξ+b

cξ+d and s2 := aη+b
cη+d satisfy one of the

following: One of s1, s2 is in (−1, 0) and the other is in (1,∞) (“case 1”); Or one
of s1, s2 is in (0, 1) and the other is in (1,∞) (“case 2”).

Let H := {z ∈ C : Im(z) > 0}, then Γ(2) acts on the upper half plane by(
a b
c d

)
· z = az+b

cz+d . It is well known that the hyperbolic polygon F with vertices

−1, 0, 1,∞ is a fundamental domain for this action [Fo]. So {g(F ) : g ∈ Γ(2)} is a
tesselation of H. Notice that the vertices of g(F ) belong to Q ∪ {∞}.

Label the sides of F on the inside by {a, a, b, b} as in figure 6. Notice that a is

mapped to a by
(

1 2
0 1

)
, and b is mapped to b by

(
1 0
2 1

)
. Extend the labeling

to g(F ) (g ∈ Γ(2)) in the natural way. Now every side in the tesselation has two
labels x, x, one internal and the other external (which is which depends on the tile
we use as reference).

Let γ denote the (open) upper half of the circle with diameter [ξ, η] or [η, ξ].
We think of γ as of a geodesic in the upper half plane, from ξ to η. Let x =
(· · · , x−1, x0, x1, · · · ) denote the ordered sequence of internal labels of the sides of
the tiles γ enters. The position of the zeroeth coordinate is not important. The
following facts follow from the geometric structure of the teselation:

(1) x is a doubly infinite (otherwise ξ or η is a vertex of g(F ) for some g ∈ Γ(2),
in contradiction to the irrationality of ξ, η).

(2) For all i, xi 6= xi+1 and xi 6= xi+1.
(3) x does not begin or terminate with a constant ray (otherwise ξ or η is a

vertex of g(F ) for some g ∈ Γ(2), in contradiction to their irrationality).

Suppose first that x contains the symbol a. Then it must contain ab or ab
(otherwise it terminates with the constant sequence a a · · · ). If x does not contain
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Figure 6. Fundamental domain of Γ(2)

a, then it must contain b or b (otherwise it equals · · · aaa · · · ). If x contains b but
not a, then x contains ba (otherwise it terminates with bbb · · · ). If x contains b but
not a then x contains ba (otherwise it terminates with b b b · · · ). In summary, x
must contain at least one of the words ab, ba, ab, ba.

Notice that if the cutting sequence of the geodesic from ξ to η is (xi)i∈Z, then the
cutting sequence of the geodesic from η to ξ is (x−i)i∈Z. Therefore we may assume
without loss of generality that x contains ab or ab, otherwise exchange ξ ↔ η.

Suppose first that x contains the word ab, then γ enters some tile F ∗ through
side a and leaves it through side b (entering an adjacent tile with side b). There is
P ∈ Γ(2) which maps F ∗ onto F . Since P ·γ enters F through side a, P ·ξ ∈ (1,∞).
Since P · γ leaves F through side b (entering the adjacent tile through side b),
P · η ∈ (0, 1). This is case 1.

Next suppose x contains the word ab, then γ enters some tile F ∗ through side a
and leaves it through side b (entering an adjacent tile with side b). There is P ∈ Γ(2)
which maps F ∗ onto F . Since P · γ enters F through side a, P · ξ ∈ (1,∞). Since
P · γ leaves F through side b, P · η ∈ (−1, 0). This is case 2. �

Proof of Lemma 2.9 (Aperiodicity Lemma). Let F := Fψ ◦ π0. We have to
show that if eitF = λh/h◦σ for some t ∈ R, λ ∈ S1, and h : Σ(G )→ S1 continuous,
then t ∈ 2πZ, λ = 1 and h = const.

Proof. We first consider the special case when ψ fixes all the singularities of St.
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It is enough to find x, y ∈ Σ(G ) such that for some n,

σn(x) = x, σn(y) = y, and Fn(x)− Fn(y) = ±1 where Fn =

n−1∑
k=0

F ◦ σn.

Indeed, if eitF = λh/h ◦ σ, then eitFn = λnh/h ◦ σn, whence eitFn(x) = λn and

eitFn(y) = λn. Dividing, we find that eit = 1, whence t ∈ 2πZ. But if t ∈ 2πZ
then λh/h ◦ σ = eitF = 1, whence h is a continuous eigenfunction of σ. Since
σ : Σ(G )→ Σ(G ) is topologically mixing, λ = 1 and h = const.

We will now construct such x, y. It is enough to do this in the case when ψ has
a fundamental polygon of the form R = θ0(R0), where θ0 : St0 → St0 is a toral
automorphism which fixes the punctures of St∗0, and R0 is as in figure 2.

Case (b). The slope of the unstable direction is bigger than one, and the slope of
the stable direction belongs to (−1, 0).

Let ∂sQi, ∂
uQi denote the stable and unstable boundaries of Qi. In case (b),

∂sQ2 3 (1, 0) =: p0 and ∂uQ2 3 (2, 0) =: q0. These are fixed points of ψ0. Their
lifts to St are fixed points of ψ (by assumption).

Recall that ψ0(Q2) is the union of parallelograms Q2,k, k = 1, . . . , N2, where the
bottom stable side of Q2,1 is part of the bottom stable side of Q2, and the bottom
stable side of Q2,k+1 is the top stable side of Q2,k, k = 1, . . . , N2 − 1.

Using the fixed point p0 and the relation ψ0(∂sQ2) ⊂ Q2, it is easy to see that
Q2,1 ⊂ Q2, Q2,1 → Q2,1, and g(Q2,1, Q2,1) = 0. So x = (· · · , Q2,1, Q2,1, Q2,1, · · · )
is a well defined point in Σ(G ), σn(x) = x, and Fn(x) = 0 for all n. [Caution: for
other k, Q2,k is not necessarily in Q2.]

Similarly, some Qi,j ⊂ Q2 contains q0 in its u–boundary, and Qi,j → Qi,j with
g(Q2,1, Qi,j) = 0. We claim that i = 2 and 1 < j < N2:

• q0 = ψ−1
0 (q0) ⊂ ψ−1

0 (∂uQij) ⊂ ∂uQi. In case 1, this forces i = 2.

• The u–side of Q2,j ∩ ψ−1
0 (Q2,j) which contains q0 equals ψ−1

0 [Wu(q0)], where
Wu(q0) is the u–fibre of q0. Since ψ0 is expanding on Wu(q0), the u–side of
Q2,j ∩ ψ−1

0 (Q2,j) does not meet the endpoints of Wu(q0). So 1 < j < N2.

We see that Q2,j+1 is well defined, and that this is the parallelogram which follows
the rightmost P–element in Q2.

Looking at figure 2, we see that Q2,j+1 ⊂ Q2, g(Q2,1, Q2,j+1) = −1, and
g(Q2,j+1, Q2,1) = 0.

We now define y := (· · · , Q2,1, Q2,j+1;Q2,1, Q2,j+1; · · · ), then y ∈ Σ(G ), σ2(y) =
y and F2(y) = −1. Using x, y and n = 2, we get the aperiodicity of F in case 1.

Case (a). The slope of the unstable direction is bigger than one, and the slope of
the stable direction is in (0, 1).

Just like in case (b), the P–element in Q2 which contains p0 in its bottom s–side
is Q2,1, and Q2,1 → Q2,1 with g(Q2,1, Q2,1) = 0. So x = (· · · , Q2,1, Q2,1, Q2,1, · · · )
belongs to Σ, σ(x) = x, and F (x) = 0.

To construct y, we separate cases according to whether Q2,2 ⊂ Q1 or Q2,2 ⊂ Q2.
Suppose first that Q2,2 ⊂ Q2. Looking at figure 2 and noting that p0 ∈ ∂sQ2,

we see that Q2,1 ⊂ Q2, and that every P–element P in Q2 satisfies P → Q2,1 and
g(P,Q2,1) = 0. In particular Q2,2 → Q2,1 and g(Q2,2, Q2,1) = 0. Since Q2,1 ⊂ Q2,
Q2,1 → Q2,2. Using the assumption that the slope of the unstable direction is
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bigger than one, it is not difficult to see that g(Q2,1, Q2,2) = 1. We now set

y = (· · · ;Q2,1, Q2,2;Q2,1, Q2,2; · · · ).

This is a point in Σ(G ), σ2(y) = y, and F2(y) = 1. Using x and y and n = 2, we
get the aperiodicity of F , assuming that Q2,2 ⊂ Q2.

Now consider the case that Q2,2 ⊂ Q1. The following observations follow from
figure 2 and the fact that p0 ∈ ∂sQ2:

• As before, Q2,1 → Q2,2, Q2,2 ⊂ Q1 and g(Q2,1, Q2,2) = 1.
• Q1,1 ⊂ Q2, and every P–element P in Q1 satisfies P → Q1,1, g(P,Q1,1) = 0. In

particular, Q2,2 → Q1,1, and g(Q2,2, Q1,1) = 0.
• All P–elements P in Q2 satisfy P → Q2,1 with g(P,Q2,1) = 0. In particular,
Q1,1 → Q2,1 and g(Q1,1, Q2,1) = 0.

We now let y := (· · · ;Q2,1, Q2,2, Q1,1;Q2,1, Q2,2, Q1,1; · · · ). This is a point in Σ(G )

s.t. σ3(y) = y and F3(y) = 1. Using x, y and n = 3, we see that F is aperiodic.

This proves the lemma in case ψ fixes the singularities of St. The general case
can be reduced to this case as follows.

Suppose ψ is a homogeneous automorphism, and assume that F := Fψ ◦ π0

satisfies eitF = λh/h ◦ σ for some t ∈ R, λ ∈ S1, and h : Σ(G )→ S1 continuous.
Let G := F + F ◦ σ and g := h(h ◦ σ), then eitG = λ2g/g ◦ σ. Observe that

G = Fψ2 ◦ π0, and that ψ2 fixes the singularities of St (this holds for any ho-
mogeneous automorphism, by virtue of the fact that it preserves the D–orbits of
the singularities of St). By the first part of the proof, t ∈ 2πZ. It follows that
λh/h ◦ σ = eitF = 1, whence h is a continuous eigenfunction of σ. Since σ is
topologically mixing, h = const and λ = 1. �
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Séminaire de Probabilités, I (Univ. Rennes, Rennes, 1976), Exp. No. 2, 21 pp. Dépt.
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applications aux difféomorphismes d’Anosov. Ann. Inst. H. Poincaré Probab. Statist. 24
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