THE VISITS TO ZERO OF A RANDOM WALK DRIVEN BY AN
IRRATIONAL ROTATION
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ABSTRACT. We give detailed analysis of the returns to zero of the “determin-
istic random walk” Sy, (z) = ZZ;& f(x+ka) where « is a quadratic irrational,
flz) = 1[%11)({:1:}) — 1[0’%)({:13}), and z is sampled uniformly in [0, 1].

The method is to find the asymptotic behavior of the ergodic sums of L!
functions for linear flows on the infinite staircase surface.

Our methods also provide a new proof of J. Beck’s central limit theorem
for S, (0) where n € {1,..., N} is uniform and N — oo, and they allow us
to determine the generic points for certain infinite measure preserving skew
products (“cylinder maps”).

1. INTRODUCTION AND OVERVIEW

The simple random walk (SRW) can be generated from a dynamical system as
follows. Pick « in T := R/Z uniformly, and iterate the angle doubling map

7:T—=T, 7(x)=2x modl.

Place a “walker” at 0 € Z. At time step k (k > 1), ask the walker to make one
step to the left if 7%(z) € [0, 3), and one step to the right if 7%(z) € [3,1). This
procedure generates the the simple random walk, because the k-th step is (—1)%x*1
where 0.x1xox3 - - - is the binary expansion of z, and if x € T is chosen uniformly,
then x; are i.i.d. equal to +1 or —1 with probability %

The angle doubling map is the standard example of a “chaotic” map. It is natural
to ask what happens if we replace it by an (ergodic) “non-chaotic” map, such as

the irrational rotation
Ry,:T—T, Ruy(z)=z+a modl (ae€R\Q fixed).

Whereas 7 is mixing, has positive entropy, and has countable Lebesgue spectrum,
properties associated with “chaos”, R, is non-mixing, has zero entropy, and has
discrete spectrum, properties associated with “determinism” (see [Pet] page 245).

If we replace 7 by R, we obtain the a stochastic process called the deterministic
random walk [AK]. To define it formally, let .2 denote the Borel o—algebra of T,
let mp be the normalized Lebesgue measure on T thought of as the unit interval
mod 1, and define f : T — Z by
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The deterministic random walk (DRW) with angle o € R\ Q is the sequence
Sp =0, S, =Y 4  foRE (n>1) on the probability space (T, %, mr). The
following table compares it with the simple random walk:

Simple RW Deterministic RW
Ale. orbit returns to zero. | A.e. orbit returns to zero [At]
Recurrence The set of exceptions has The set of exceptions is
positive Hausdorff dim. [BS] finite [Ral.
Trace Z for a.e. . Z for a.e. z [C],[CK],[Sch],
{Sn(z) : n >0} but not for all z [BR],[Pe].
Drift A.e. orbit has zero drift. All orbits have zero drift
nl;rrgo Sp(x)/n The set of exceptions has by Weyl’s Theorem
positive Hausdorff dim. [BS] ([KN, chapter 1])
Central No, by the Denjoy—Koksma
Limit Yes Ineq. [Her, page 73]. Other
Theorem choices of f may have CLT
[BD],[V]. See also [Hu],[B1]

In this paper we contribute to the study of the visits to zero of the deterministic
random walk: N, (z) = N, (z;a) := (#{0 <k <n—1:S,(x) = 0}.
For the simple random walk, if the number of visits to zero up to time n is

N,, then E(N,,) ~ \/2n/7 (de Moivre-Laplace Theorem), and ﬁﬁn st o(1),
n—oo

where ©(t) is Brownian local time [Bor]. The determinstic random walk behaves
differently. Aaronson and Keane showed in [AK] that if « is a quadratic irrational,
then there are constants ci,ca > 0 s.t. cl(\/f) <E(N,) < 02(\/%).

We show, among other things, that if « is a quadratic irrational, then there is a
positive constant c(a ) with the following properties:

(1) E(N,) ~ c(a)( =) =t ap(a) as n — .

(2) anl(a) dist f 2exp[—1x?], where y has the standard normal distribution.
3) winm llnn [ é e (a,,(a) ) 1 almost surely.

4) cla) = LI;U’\Q where ), 02 € Q[a] can be calculated explicitly. For example,

(V2) = \/3—@ In(17 + 12/2).

These results should be contrasted with Kesten’s work [Kes] which says that if
« is also randomized (i.e. (z,«) chosen uniformly in [0, 1]?), then the right scaling
for N, (z;«) is n/lnn.

Our main tool is the cylinder map Tp(x,€) = (x 4+« mod 1,£+ f(x)) on T x Z,
together with the (infinite) invariant measure mg := mg X myz (mp=normalized
Lebesgue measure on T, my =counting measure on Z). To see the connection to
the DRW, write T} := T, 0---0T, (n times) and observe by direct calculation that

e S, (x) is the second coordinate of T (x,0), and
o N,(x)= Zk o Irxgoy (T, %(2,0)), where 1g is the indicator function of E.
We will analyze the asymptotic behavior of the Birkhoff sums ZZ;& G o TF for

general non-negative functions G € L*(T x Z). The results for N,, follow from the
special case G = 1ty (0}
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FIGURE 1. (a) The infinite staircase St; (b) The translation surface
Sto it covers; (c) Stg is a punctured torus

il

A by-product of the analysis is a characterization of the generic points of my,
which partially answers a question in [Sa]. See §7 for precise statements.

Our methods also allow us to give a new proof of a result of J. Beck on the
central limit theorem for ZZ;S ({ka}) where n is chosen randomly uniformly in
{1,...,N}, and N — oo [B1, B2]. See §5 for precise statement.

To study the cylinder map, we use a remarkable geometric construction due
to Pat Hooper, Pascal Hubert & Barak Weiss [HHW] (see also [HW]). They
constructed the infinite staircase surface, St, described in figure 1. The rectangles
are 2 x 1 rectangles with the short side in the direction of the positive y—axis (“up”).
Edges with identical labels are identified by translations.

The vertices split into four infinite classes of identified points, called the singu-
larities of St. We let St* := St \ {singularities}, and think of the singularities of
St as of punctures in St*. Each singularity is the meeting point of infinitely many
rectangles, and the angle around it is infinite.

The linear flow at direction § € (=73, 75) is the flow ol which moves a point on
St* in the direction (2(1;3) t units of distance respecting identifications (§ = 0 is
moving “up”). The definition makes sense for the set of full measure of points p
whose orbit does not hit a singularity.

The connection to the cylinder map is explained by the following observation
from [HHW!]. Recall that a Poincaré section for g is a set & C St s.t. for a.e. p €

St there is a minimal positive time r(p) > 0 s.t. goz(p) (p) € 6, and infpce r(p) > 0.
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The function 7 : & — (0,00) and the map T': & — &, T'(p) = goz(p) (p), are called
the roof function and Poincaré map of &.

Lemma 1.1. For 0 # £%5 +2nk, the union of the horizontal sides of the horizontal
rectangles in figure 1 is a Poincaré section for pg with constant roof function. The
Poincaré map is isomorphic to the cylinder map T, where a = %tanﬁ + %

The isomorphism is very simple: Divide St into horizontal rectangles, call one of
them “rectangle zero” and tag the remaining rectangles by £ € Z in such a way that
the rectangle directly above rectangle £ is rectangle £ + 1. The point (z,£) € Tx Z
corresponds to the point w(z) on the top horizontal side of rectangle &, and located
2z units of distance away from the left end.

Since T, is a Poincaré map for ¢y with constant roof function, there is a standard
way to reduce the study of the Birkhoff sums of T, to the analysis of the Birkhoff
integrals of yg. This is what we will do.

The gain is that St has many symmetries, and for special directions 6, it is
possible to find a “nice” automorphisms v : St — St s.t.

b oph =gy ot ()
for some 0 < A < 1. This is what happens for the 6 whose corresponding « is a

quadratic irrational. (x) is the key to the asymptotic behavior of the Birkhoff sums
of wy and T, and therefore also to the asymptotic behavior of N,,.

2. THE INFINITE STAIRCASE AND ITS AUTOMORPHISMS

Z—cover. St* is a regular Z—cover of a finite area surface St;, (figure 1). Let

7 St* — St
be the covering map. St is a twice punctured torus (Figure 1(c)). Let Sty denote
its completion. It is a torus, and 7 : St* — St} extends continuously to a map
7 : St — Stg. The extension is two-to-one on the singularities of St and infinite-to-
one elsewhere.

The group of deck transformations of the covering is generated by an obvious

translation. We denote it by

D : St — St.

D? fixes the singularities.

Z—coordinate. Choose a bounded connected set R C St* s.t. St* = W, ., D*(R),
for example one of the horizontal rectangles in figure 1 with the vertices and bottom
horizontal side removed. The Z—coordinate of p € St* (relative to R) is

&(p) := unique k s.t. p € D¥(R).

Notice that £ o D = £+ 1. This definition depends on the choice of R. We will refer
to this as “choosing a Z—coordinate.”

Homogeneous automorphisms. St has an obvious atlas of charts whose change
of coordinates transformations are euclidean translations. This allows us to identify
the tangent spaces of St at different points with R? (and therefore with each other)
consistently. We will use the convention that direction “up” in figure 1 is ((1)) € R2.

Once we have identified the tangent spaces at different points with R?, we can
view the differential dv, : T,(St) — Ty()(St) of a smooth map 1 : St — St
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(p € St¥) as a linear map R? — R2. The matrix representing this map is called the
derivative at p.

A map ¥ : St — St is an automorphism, if ¢ : St — St is a homeomorphism;
P(St*) = St*; ¢ : St* — St* is differentiable; ¢ : St* — St* is orientation preserv-
ing; and 1 has constant derivative.

An automorphism ¢ : St — St is called homogeneous, if it commutes with D and
preserves the D-orbits of the singularities of St. Notice that in this case, 1? fixes
the singularities.

Every homogeneous automorphism 1 : St — St is the lift of a toral automorphism
’(/JO : Sto — Stoi Take

to(p) = [t (p)] for some (any) p € 7 (p).

The definition is proper, because 7~ !(p) is an orbit of D, ¥ o D = D o1 and
mo D = . It is easy to see that 1), is invertible and has constant derivative.

We call vy the projection of 1. The assumption that i preserves the D—orbits
of singularities means that g fixes the punctures of Stg.

Proposition 2.1. All homogeneous automorphisms are area preserving.

Proof. Let J, Jy denote the Jacobian functions of a homogeneous automorphism
and its projection 1y . Since m o = ¥y o and 7 is a local isometry, J = Jy o 7.
The Jacobian of v is constant (1) has constant derivative), therefore the Jacobian
of g is constant. Since 1 is a self-bijection of a surface of finite area, this constant
equals one. So J = Jyomw =1, and ® is area preserving. Il

Frobenius functions and drifts. Fix some Z—coordinate £ : St — Z. The Frobe-
nius function of a homogeneous automorphism v : St — St is

Fy Sty — Z, Fy(p) = [ (P)] — €[] for some (any) p € 7" (p).
The definition is proper because 7~ 1(p) = {D"(p) : n € Z}, po D = D o ¢, and

oD =&+ 1. Fy depends on the choice of the Z—coordinate. If we change the
Z—coordinate, F, changes by a coboundary of 1, see below.
The average drift (or just drift) of a homogenous automorphism v : St — St is

1
() = arca(Sto) /StO Fy(p)dp, (dp =area measure).

We will see later that d(¢) is the drift of a certain random walk associated to .
Lemma 2.2. The average drift is independent of the choice of the Z—coordinate,
and §(1p o ¢) = 5(¢p) + 6(¢9) for any homogeneous automorphisms 1, ¢.
Proof. Let g : Sty — Stg be the projection of v, and suppose £, n are two choices
of Z—coordinates with Frobenius functions Fi, Fg We claim that [ FS = f F:Z
Define A : Sty — Z , A(p) = &(p) — n(p) for some (any) p € 7 1(p). The
definition is proper since 7~ 1(p) is a D—orbit, and (é—n)oD = (£+1)—(n+1) = £E—n.
A simple calculation shows that Fi — FZZ = Aoy — A. Since 1y is measure
preserving, f(Fi —F))=[(Aoy—A) =0, and fF'E =[F].
Next suppose ¥, ¢ are two homogeneous automorphisms. It is easy to see that
1 o ¢ is a homogeneous automorphism, and for every p € Stg and p € 7~ (p),

Fyop(p) = £[(0(D))] — €[P] = W (6(P))] — £lo(D)] + £lo(P)] — £[P]
= (Fy o ¢0)(p) + Fy(p), where ¢ is the projection of ¢.
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Since ¢y is area preserving, §(1) 0 @) = [ Fy 0 ¢g + [ Fy = 6(p) + 6(¢). O
By [HHW] the set of derivatives of homogeneous automorphisms equals
'={AeSL(2,Z):A= (4, {)or (.} o) mod2}
Here is a refinement of this statement. The proof is in the appendix.

Proposition 2.3 (Classification of homogeneous automorphisms).

(1) If AeSL(2,Z), A= ( , { )mod2 and &y € Z, then there is a unique homo-
geneous automorphism with derivative A and drift d.

(2) If A€ SL(2,Z), A= ( _} ; )mod2 and 0y € § + Z, then there is a unique
homogeneous automorphism with derivative A and drift dg.

(3) No other homogeneous automorphisms exist.

Renormalizing hyperbolic automorphisms. A homogeneous automorphism of
St is called hyperbolic if its derivative matrix has two real eigenvalues, A\, \~!, where
0<|Al <L

Definition 2.4. A hyperbolic homogeneous automorphism v renormalizes o € R,
if = % + %tan f(mod 1) where (Zg;z) is an eigenvector of the derivative of ¢. In
this case we say that « is renormalized by ).

The motivation is that if « = § + § tanf(mod 1), then T, is the Poincaré map of
the linear flow in direction 6, ¢y : St — St, and

Yo wh =g’ oy
where ) is the eigenvalue of (ig;g)
There is no loss of generality in assuming that (a) the eigenvalues are positive,
(b) 9 fixes the singularities of St, (¢) ¢ has zero drift, and (d) 0 < A < 1: We saw
above that homogeneous automorphism ) has drift in %Z, so 20(v) is always an

integer. One of the automorphisms D~40(¥)q% D)y —4 satisfies (a),(b),(c),(d).

We characterize the irrational numbers o which possess renormalizing automor-
phisms. Recall that a quadratic irrational is an irrational a s.t. aa?® + ba + ¢ = 0
for some a, b, c € Z not all equal to zero.

Proposition 2.5. « is renormalized by a hyperbolic homogeneous automorphism
iff it is a quadratic irrational.

Proof. The derivative of a hyperbolic homogeneous automorphism belongs to SL(2, Z).
The eigenvalues of such matrices are quadratic irrationals, and the slopes of the
eigenvectors of such matrices are quadratic irrationals. It follows that all irrationals
with renormalizing hyperbolic automorphisms are quadratic.

For the conversem suppose that « is a quadratic irrational. We prove that a
renormalizing automorphism exists. Let o/ := 2« — 1. This is also a quadratic
irrational.

By Lagrange’s Theorem, the continued fraction expansion of o’ is eventually
periodic. So there is a map ¢(z) = ‘Cl,,jjrrsi with ( ‘;: Zﬁ ) € SL(2,Z) s.t. the
continued fraction expansion of p(a’) is (completely) periodic:

o) =ag,. .., an_1,a0,. -, Qn_1, ] (2.1)
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Let % denote the principal convergents of 8 := ¢(a’). By the theory of continued

fractions, det( oot ) = (=1)"*!, and B is a fixed point of ¥(z) = 7’;"215":11.

So p(a)] = p(a’), whence (9~ ) (o) = .
Let ¢ := o Yy, then ¢V (a/) = o for all N. We claim that for some N, ¢" is
a Mobius transformation with matrix belonging to

I'2):={AeSL(2,Z): A=1d mod 2}.

Let A be the matrix which represents ¢?. Obviously, ¢? € SL(2,7Z). Let [A], €
SL(2,Z2) denote the residue class of A mod 2. The group SL(2,Z,) is finite,
therefore [AN]y = ([A]2)Y = Id for some N. So ¢V is represented by a matrix in
I'(2), proving the claim.

Write ¢*V (z) = &2 for (15 & ) € T(2), then

( : ) G) B (Zi SZI) - a+1baf<¢2N1(a’>> - a+1ba(;> (2.2)

proving that (;,) is an eigenvector of (¢ [ ) € I'(2). This matrix is hyperbolic,
: o b . _ 2N1 _ n pno1 \2N
because its trace is bigger than two: a + d = tr [gi) ] = tr [( A ) },

and every 2 x 2 matrix with determinant one and all of whose entries are positive
integers, has trace bigger than two.

By (2.2), the homogeneous automorphism with zero drift and derivative ( ¢ )
renormalizes o = 1 + 1o/, O

The previous proof is constructive, but it does not provide a convenient tool for
calculating renormalizing automorphisms. This is the purpose of the next result.

Proposition 2.6. Any quadratic irrational o equals % 4 Mvalatl) vQqéq—s_l)(mod 1) for

some k,q,n € Z satisfying q(q+1) # 0 and n|k? — q(q+1). In this case there is a
renormalizing homogeneous automorphism ¢ with zero drift and derivative

[ 20q—k)+1 2. Eoadatd
= ( —2n 20q+k)+1 ) (23)

Example: For a = /2, we can take k = n = 3,q = 8, and get the homogeneous

automorphism with zero drift and derivative ( P )

Similar formulas can be obtained for v3 (k=n=1,¢=3), V5 (k=n=1,¢=
4), V7 (k=n = 12,q = 63) etc.

Proof. Since « is a quadratic irrational, it has a hyperbolic renormalizing automor-
phism with zero drift. Let A be the derivative. By proposition 2.3, A = ( o b )
with a,d odd and b, ¢ even, and ad — bc = 1.

We claim that tr(4) = 2 (mod 4). Since a, d are odd, they are equal to +1 (mod 4).
Write a = da+¢e,d =48 +n,¢c = 2y,c = 2§ with o, 8,7, € Z and e, = £1. Since
1 = det(A) = en(mod 4), e = n. It follows that a = d(mod4) and trA =a+d =
Ao+ B) +£2 € A7 + 2.

Write tr(A) = 4¢g + 2 with some ¢ € Z. Since a,d are odd and a + d = 4q + 2,
we can put a,d in the form a = 2(¢ — k) + 1 and d = 2(q + k) + 1 with k € Z.
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Since c is even, ¢ = —2n with some n € Z. Since ad — bc = 1, either n = 0 and
k?—q(q+1)
A=1d, orn#0andb=2. K=aet) g5 4 ( 2g=k)+1 2-7=%
" —2n 2(q+k)+1

with ¢,n,k € Z s.t. n # 0 and n|k? — q(¢ + 1). Every choice of k,q,n like that
determines a matrix in SL(2,Z) equal to ( , § ) mod 2.

The characteristic polynomial of A is 22 — xtr A + det A = 22 — (49 + 2)z +
1. The eigenvalues are (2¢ + 1) + 24/q(q+ 1). A is hyperbolic iff ¢(¢ + 1) # 0.

The eigenvectors are proportional to (L W7 1), so the automorphism with

derivative A renormalizes a := % + kxValatl) VZWA). Playing with the signs of k,n we
k+4/q(g+1) 0

see that there is no loss in taking o := % + -

Markov partitions and symbolic dynamics. Every hyperbolic homogeneous
automorphism v : St — St covers a hyperbolic toral automorphism g : Stg — Stg.
Adler and Weiss introduced in [AW] a technique for coding v : Stg — Sto as the
action of the left shift map on the collection of two sided infinite paths on a finite
directed graph. This is done using Markov partitions. The purpose of this section
is to describe this method.

The original work of Adler & Weiss applies to general hyperbolic automorphisms.
It is important to our purposes to carry out the Adler—Weiss construction in a way
which respects that fact that v fixes the punctures of Sty and has derivative matrix

AeT(2):={AeSL(2,Z): A=(, ) mod2}.

We will assume for simplicity that A has positive eigenvalues, 0 < A < 1 and
A~!l > 1. Then there are vectors v = (11)), w = (5}) such that Av = A~ lv and
Aw = Mw. Since A € I'(2), v, w are irrational. We call w the stable direction and v
the unstable direction (of 1g).

The first step in the Adler—Weiss construction is to divide the torus into two
parallelograms @)1, @2 with sides parallel to v, w. They cut the torus along two line
segments emanating from a single fixed point. We prefer to use one segment passing
through the first puncture, and the other passing through the second puncture: this
simplifies the analysis of the coded Frobenius function, see §6 below.

Suppose first that —1 < w < 0,v > 1 (case 1),0or 0 < w < 1,v > 1 (case 2). Then
@1, Q2 can be constructed as in Figure 2. Notice that one of the parallelograms
(which we call Q1) contains one or no punctures in its closure, and the other (which
we call (Q2) contains both punctures in its closure.

The general case can be reduced to case 1 or 2 by working with 6 o 1y 0 871
or 6oy 10 =1 for a suitable toral automorphism # : Sty — Sto which fixes
the punctures. The derivative matrix of # is produced from the following lemma,
applied to the irrational numbers &€ = v=1,n = w™! (see the appendix for proof):

c

that sq := Z§12782 = ggis satisfy one of the following: One of s1,s4 is in (0,1)

and the other is in (1,00); Or one of s1, sz is in (—1,0) and the other is in (1, 00).

Lemma 2.7. For every £,n € R\ Q s.t. £ # n there exists ( ¢ ) € I'(2) such

0 itself can be produced using Proposition 2.3 by projecting the homogeneous auto-
morphism with zero drift and derivative ( ¢ ) to Sto. Homogeneity guarantees
that 6 fixes the punctures.
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FIGURE 2. Partition of the torus

We call R := Q1 UQ2 the fundamental polygon of 1pg. The sides of R in direction
w (resp. v) are called stable (resp. unstable). Let OsR :=union of stable sides of
R and 0, R :=union of unstable sides of R. Since d;R,d, R are linear segments
containing fixed points of ¥y and in the direction of eigenvectors of diy, we have
Yo(0sR) C 9sR and 1/)0_1(5'UR) C O R.

A u—fibre is a linear segment in direction v with endpoints in J;R. Since
Yo(0sR) C 9sR and Av = v, the 1)p—image of a u—fibre is a finite union of u—
fibres. Similarly, an s-fibre is a linear segment in direction w and endpoints in J, R.
The tpp—image of an s—fibre is a subset of an s—fibre. We orient u/s—fibres in the
direction of v, w.

Thus 1 (Q;) is a finite union of non-overlapping parallelograms Q;1, ..., Q;n, C
R with sides in the stable and unstable directions, and with s—sides contained in
0sR. We use the following convention for the order Q;1,...,Q;n, (i = 1,2): Recall
that u—fibres are oriented in the direction of u, then every parallelogram @;; has a
bottom s-side, and a top s—side. The ordering is done so that the top side of Q;; is
identified with the bottom side of Q; j+1 (j =1,...,N; —1).

The interior of ();; is completely contained in the interiors of @y, for k =1 or 2.
Otherwise, 1 (int(Q;)) intersects 9, R, in contradiction to ¢y ' (9, R) C 9, R.

Let P :={Q;; : ¢ = 1,2;1 < j < N;}. Since g is bijective, P is a partition of
Stg. By the previous paragraph, B is a refinement of {Q1,Q@2}. B is the Adler—
Weiss Markov partition.

The dynamical graph of B is the directed graph ¢ with set of vertices B and
edges P; — P; for any pair of P;, P; € P s.t. int(P; Ny (P})) # @. Let 3(¥)
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FIGURE 3. The Z-coordinate associated to the canonical renor-
malizing automorphism of V2

denote the collection of bi-infinite paths on ¥:
YY) := {(Py)rez € B2 : Py — Pyy, for every k € Z}.

Equip ¥(¢) with the metric d(z, y) := exp(—min{|k| : z # yx}). Let 0 : £(¥4) —
¥(¥) denote the left shift map, o : (;)icz — (Tit1)iez-

Theorem 2.8 (Adler and Weiss). For every (P;);cz € X(¥), there is a unique point

mol(Pi)iez] € Niez Vo '(P;), and mo : 2(94) — Sto has the following properties:

(1) 7o : X(%) — Stg is onto and |7y (p)| = 1 for Lebesgue almost every p € Sto

(2) mo is Holder continuous and mp o o = g o 7o

(3) Let mqg denote the normalized Lebesgue measure on Stg, then mg o ﬂal is a
mixing stationary Markov measure on 3.

(4) mgomy ! is the measure of mazimal entropy for o : X(4) — %(¥Y).

See [AW] for proof. Additional information on the combinatorial structure of ¢
can be found in §6.

Let R denote a connected lift of the fundamental polygon @1 U Q2 to St. The
corresponding Z—coordinate £ : St — Z is called the Z—coordinate associated to the
automorphism 1, see figure 3.

The main advantage of the associated Z—coordinate is the following fact, whose
proof we defer for reasons of exposition to §6 (Lemma 6.8): If F, is the Frobenius
function of 1 with respect to the associated Z—coordinate of v, then

Fy is PV by ' (P)-measurable or P V 1o (P)-measurable. (2.4)
This means there exists a function g : B X P — Z s.t. the coded Frobenius function
F:=Fyom:%(¥%) = Z
takes the form F[P] = g(Po, P1) or F[(P,)icz] = 9(P-1,Po) (P = (P)icz € X(9)).
The following additional property of F' is proved in the appendix.

Lemma 2.9 (Aperiodicity Lemma). If e!*f" = zh/h oo where |z| =1, t € R, and
h:3(¥9) — C is continuous , then z =1, t € 2nZ, and h = const.
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This is called the aperiodicity condition in [GH], and should be viewed as a strong
way of saying that F' does not take values in a set of the form a + bZ “up to a
coboundary.” The aperiodicity condition is used in §3.

The twist at a singularity. The contents of this section are only used in §5.

Suppose ¥ is a homogeneous hyperbolic automorphism of the infinite staircase,
and let p denote one of the four singularities of St. Recall that D?(p) = p and
¥ (p) = p.

Let w be some non-zero vector. There are infinitely many rays emanating from
p in direction w: one for each horizontal rectangle with vertex congruent to p such
that the vector w based at p points into the rectangle. Let L;(p, w) denote the ray
which starts at horizontal rectangle number i. So D(L;(p,w)) = L;+1(D(p), w).

Now suppose w is an eigenvector of dy)™ for some n. Then di)*"(w) = Aw with
A > 0, and *"(p) = p. It follows that ¥*"[L;(p,w)] = L;(p,w) for some j = j(i).
It is not difficult to see that (j — i)/2n is independent of the choice of i and n.

Definition 2.10. The twist of w at p is 7y (p, w) := 5-(j — i).

Lemma 2.11. 7(p,w) € %Z. If ¢ is hyperbolic with positive eigenvalues, then
T (Z%M) €Z.

Proof. The first statement is because if di(w) = Aw then we can take n = 1.

Now suppose in addition that A > 0. If ¢)(p) = p, then Y[L;(p,w)] = Litx(p, w)
for some integer k, and therefore 1%[L;(p,w)] = Litor(p, w) and 74 (p,w) =k € Z.
If ¥(p) # p, then by homogeneity, ¢ := Dot fixes p, and by the previous paragraph
To(p;w) € Z. So 1y(p,w) = 74(p,w) — 1 € Z. O

Ezample 1. Let ¢ be the homogeneous automorphism with derivative ( O ) and
drift § (see figure 5). Let p :=lower left corner of horizontal rectangle #0. For any
vector w with positive coordinates, ¥2[L;(p,w)] = Lit1(p, —w). So 74(p, w) = 3.

Ezample 2. Let 1) denote the renormalizing automorphism of /2 with with zero
drift and derivative ( P ), and let w := (H'?‘/i) be its contracted eigenvector.
Let p be one of the singularities at the bottom left corner of one of the horizontal

rectangles, say rectangle #0. We show below (Theorem 6.3) that 7, (p, w) = 1.

Lemma 2.12. Suppose 1 is a hyperbolic homogeneous automorphism with zero drift
and positive eigenvalues. Let p be a singularity, and w an eigenvector of di, then
Ty (p, w) =minus the drift of ¢, where ¢ is the unique homogeneous automorphism
which fixes Lo(p,w), and which has the same derivative as ).

Proof. As in the proof of the previous lemma, there exist kK € Z and ¢ = 0,1 s.t.
Y[Li(p,w)] = D*[Liyr(p,w)]. Let ¢ := D=+ o4p, then ¢ fixes Li(p,w) and
has the same derivative as . This determines ¢ uniquely, because every other
homogeneous automorphism with the same derivative has the form D™ o ¢ with
n # 0.

By the definition of k£ and ¢, 7y(p,w) = k + ¢. By the definition of ¢ and
Proposition 2.2, 6(¢) =6(¢) — (k+£) = —(k + £). O
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3. ESTIMATES OF BIRKHOFF SUMS

In this section we find pointwise asymptotic estimates for the Birkhoff sums of
the cylinder map T, : TXZ — T X Z

To(z,t) = (x + a(mod 1),t + f(z)),

where « is a quadratic irrational, and f = 1[%,1) — 1[0,%).

By proposition 2.5, there is a hyperbolic homogeneous automorphism 1 with zero
drift s.t. @ = 3 + 1 tanf(mod 1), where (3%) is an eigenvector of the derivative
of v, with eigenvalue 0 < A\ < 1.

Recall that the infinite staircase is made from a Z-array of 2 x 1 horizontal
rectangles. Declare one of these rectangles to be “rectangle zero” and let w : T — St
be the function which associates to w(x) the unique point on the top horizontal side
of rectangle zero, located 2x units of distance from its lower left corner.

In what follows log" :=log,—1, mg = mr X mgz, and £ : St — Z is some (any) Z—
coordinate on the infinite staircase. C¢(-) denotes the space of continuous functions
with compact support.

Theorem 3.1. There exists 0> > 0 such that for every (x,f) € T x Z for which
%f[d)k(w(m))] P 0, for every non—negative G € C.(T x Z),
—00

n—1 . 2
; [1+o(V)]n [ Gdmy 1+o(1) (ewlog "] <w(x>>]>
GoT")(x,0) = V2exp |—
g( )@ 20+/7log*n P 20? Vlog™n

The following uniformity in x is observed: Ve > 0 35, N > 0 (which depend on G
but not x) s.t. if |£&[*(w(z))]| < 6 and n > N, then the o(1) terms are in [—¢,¢].

Notice that the right hand side is oscillatory, and that oscillatory term (the expo-
nential) does not depend on G.
We will show in the next section that +&["(w())] P 0 almost everywhere
—00

in T x Z. Thus Theorem (3.1) describes the almost sure behavior of Birkhoff sums
for non-negative G € C.(T x Z). By the ratio ergodic theorem, this is the almost
sure behavior of every L! function with non-zero integral.

E[" (w(@)]
VE

The constant o2 has meaning. We will see in §4 that converges to the

centered normal distribution with variance o2. Thus Z?;Ol G oT' grows a.e. like
a constant times ﬁ, but if we normalize by this growth rate, then we get os-
cillatory behavior. The oscillations are driven by the renormalizing automorphism.
Similar results were proved for horocycle flows on Z? covers of hyperbolic surfaces

of finite area in [LS1], [LS2], and for Hajian-Ito-Kakutani skew products in [AS].

We will obtain Theorem 3.1 from a study of the Birkhoff integrals of the linear
flow in direction 6 on the infinite staircase. Denote this flow by ¢y. We will show:

Theorem 3.2. There exists o> > 0 s.t. for every w € St s.t. %E[@Dk(w)] P 0,
— 00
and for every G € C,(St) such that [ Gdm > 0 (m =area measure),

1+ o Gim 5 |1 0l1) (€)Y
20+/mlog*n 202 Vlog*n

The extra 3 is because m([0,2] x [0, 1]) = 2 whereas mo(T x {0}) = 1.

| Glesta ;-
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Notation. Let ¢y : Stg — Sty denote the projection of ¥ : St — St to the covered
torus Stg, and let 3 denote the Adler—Weiss Markov partition of .

Let v = (i) and w = (llu) denote eigenvectors of the derivative of v with eigen-
values A and A~!. They define the stable and unstable directions.

Linear segments in St or Sty the direction of £w will be called stable. For
example, {p§(wo) : a <t < b} is a stable linear segment in St.

The following is a particularly useful way to generate stable linear segments. Let
7o : 2(¥) — Sty denote the Adler Weiss coding map given by Theorem 2.8. Let

vt = {(zo,71,...) €PN :z; = 2444 for all i > 0}. For every z € BT, let
We(z) :=nof{y € X(9) :yi = (i >0)}.

Lemma 3.3. W#(x) is a stable linear segment. It is the s—fibre through mo(z) in
rectangle xg € P. Let h(z) = £*(xo) be its length, then 3, _, h(y) = A h(z),

where the sum ranges over y € X and o(yo,y1,--.) == (Y1, Y2, )-

Proof. By the Markov property of 1o, Cy, := xo Ny (z1) N ---N 1/}0_("_1)(:6",1)
is a decreasing intersection of compact parallelograms with s—side of length £5(z)
and u-side of length O(A™). The intersection is necessarily an s—fibre in x(, which
passes through mo(z). This is a stable linear segment.

The Markov property also implies that 1 ' [W*(z)] = Uo (y)=a W*(y)- Since 1o

contracts s—fibres linearly by factor A, 3 h(y) = A" h(z). O

o(y)=z

Let W*(z, k) :=lift of W*(z) to St so that mo(z) lifts to a point in & = k. This is
a stable segment in St, and it has length h(zg). W*(z, k) C [£ = k], because W*(z)
lies completely inside an element of 3, and such sets lift in their entirety to subsets
of D(F)(i € Z) where F is the fundamental polygon of .

Proof of Theorem 3.2. We begin with some reductions.

Any two Z—coordinates are within uniformly bounded distance from one another,
therefore if the theorem holds with one choice of a Z—coordinate, then it holds with
all other possible choices. We will work with the Z—coordinate associated to 1.

With this choice of £, the Frobenius function is either 6 V 1 ! ()-measurable,
or PV o (P)—measurable. We will carry out the proof in the first case, and leave
to the reader the (routine) modifications needed for the second case.

A cylinderis a set of the form ([P, ..., Pp] := ﬂf;e ¥y "(P;), where P; € B. This
is a parallelogram with sides parallel to v and w. Cylinders are subsets of Stg.

Instead of working with G € C,(St), we will work with indicators of lifts of
cylinders to Stg. Any non—negative continuous function with compact support can
be sandwiched between linear combinations of such functions, so this suffices for
our purposes.

Here is the precise definition of the sets which we will work with:

ZI
([Pr,. .. Polk i=1ift to {§ =k} of o[Py,..., Po] =) " (P) .
=L

Here ¢/ < £ and Pp,...,P, € B are arbitrary. In fact most of our calcula-
tions will be done in the special case £ = k = 0. This is enough, because 3i,j
st. ¢[Po, ..., Pu]* = (Do) (0[P, .., Pr]’) where D is a deck transformation,
and D’ o )7 preserves the area measure and does not affect the asymptotic drift

lim &[™ (w)]/n.
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Similarly we may assume without loss of generality that £(w) = 0. From now
on, fix w € St s.t. £(w) =0 and &LT(W) — 0, and let

E = 0[P07 “. ,Pg_l]o.
We analyze [;' 1g[ph(w)]dt.

In what follows ¢[-] is the euclidean length measure, and ng € N is a free param-
eter that will be calibrated at the end of the proof. For every n, let

= [1ogs-s (n/no)).
Notice that A" -n € [Ano, no).

Let Ap(w) := {ph(w) : 0 < t < n}. This a stable linear segment, and we are
interested in [ 1g[p}(w)]dt = ([A,(w) N E].

Let B, (w) := 9™ [A,(w)]. Since ¢ contracts stable linear segments by factor A,
By, (w) is a stable linear segment with length ¢[B, (w)] € [Ang,no]. Break B, (w)
into a finite union of lifted s-fibres W*(z(V), &5), ..., W*(z(™), & ) plus two pieces
of stable fibres W* (2, &), W*(z(m*D ¢ 1) to take care of edge effects:

n1 ni+1
Hwe@®,&) C Baw) € |1 W@, &). (3.1)
i—=1 =0

Even though n{, z® and § * depend on n, some uniformities are observed:

(1) 285 —2 < my < 8 (2 Ano < ([By] < no, (W (29, €1)] = haf)).
(2) 1€ — €™ ()] < 2o for all 4, because &, ..., &5 1, &(¥™ (w)) are Z coor-
dinates of points in B ( ), K[Bn( )] < no, and because it takes at least min h
units of distance to cross the fundamental polygon of £ when moving in the

stable direction.

By the definition of By (w), [ 1(@h(w))dt = ([E N~ (By(w))], so (3.1)
translates to

ZJ @, €) / Lelgh@lde < Y T, (3:2)

where J,(z(), &) = ([E Ny~ (W*(z®,£))]. The remainder of the proof is
dedicated to the analysis of J,, (2", £F).
We start by asking when does a point w' € Ws(x(l) § ) belong to 1/)"*( ). We

claim that )=" ( )EElffz/JO" [r(w')] € m(E) and ( Z F¢0¢0)[w ( (W] =

* where 7 is the covering St — Stg.
Explanation: By the definition of Fyy, if o’ € W*(z(¥), &), then & —£[yp~" (w')] =
EW) = €[ (W] = Fylg™ (W) + - + Fytyg ' (m(w))]. Tt follows that

™ @) =0 (Sisy' Fy o) [0y (r(w))] = &
Writing w” := wo_"* [m(w")] (a point in Stg), we see that
T2, €)= e € o[Pov-, Pl 45 () € W),
nl . 3.3
wd 3 R -g)

Jj=0
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We write this in more convenient form. Let o : ¥t — XT denote the one-sided
shift defined before Lemma 3.3. The assumption that Fy, is BV, !3-measurable
allows us to view F' := Fj,om as a function on ¥, F(z) = g(zo, z1). By the Markov

property, ¥g ™ [W*(z®)] = Lﬂan*@:yi) W*(y), and since F(y) = g(yo, Y1),

Fo-(y) = F(y) + F(o(y)) + -+ F(e" "'(y))

is constant on W*(y). It follows that

Tn@®, &) = > hlyo) ey (w)do(Fu- (y) — &).

om (y)=z(®

Here h(yo) is the length of the stable side of the parallelogram yo, 1(pj(y) equals
one when (yo,...,y-1) = (Po, ..., Pr—1) and zero otherwise, and dy(k) equals one
if K = 0 and zero otherwise.

We will use the methods of Babillot & Ledrappier [BL1],[BL2] to estimate this
sum.

For every w € T, u € R define the operator (L, iwp)(x) = > e(“Hw)F(E)w(g)

o(y)=z
on.Z:={p: Xt = C: || :=|l¢lle + Lip()}. No matter which u we choose,
% * 1 T u+iw * —&F
Jn (D, €5) = h(Py) Z 1@@%/ utiw) (Fox (W) =€) gy
o (y)=z® -
hp "o w)€ (rn” i
- R T

The parameter v does not affect the value of the integral, but a judicious choice
u = u(&F, n*) will facilitate the analysis of the integrand.

L,: % — % (z=u+iw) has the following properties ([PP] chapter 4):

(1) Lo has leading eigenvalue A\~!, with eigenprojection Py = hv(p) where h is
given by Lemma 3.3, and v satisfies hdv = mg o my ' (cf. Theorem 2.8).

(2) The eigenvalue A~! is simple and isolated. All other eigenvalues are strictly
smaller in absolute value.

(3) For all u real, L, has spectral radius exp p(v) where

p(u) = Pyop(uF) :=sup{h,(c) + u/qu : pis a o—inv. prob. measure}.

(4) For all u,w real, w & 27Z, L,+iw has spectral radius strictly smaller than
expp(u). This uses the Aperiodicity Lemma (Lemma 2.9).

(5) There is epere > 0 such that for every |z| < epert, L. = A(2)[P(2) + N(2)]
where A(z) € C, P(z) is a projection with one-dimensional image, and N(z)
is an operator with spectral radius strictly less than one s.t. PN = NP = (.
The maps z — A(z), P(z), N(z) are analytic.

(6) p(z) :=log A(z) is an analytic extension of p(u) to U = {z : |2] < €pere}. On U,
p(z) = —log A+ 20222 + 0(2%), where o > 0. This also uses the Aperiodicity
Lemma.

Part (6) implies that the image of p/(+) is a neighborhood of zero. Suppose ET

belongs to this neighborhood, and choose u s.t. p'(u) = & The closer fT is to

n*
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zero, the closer u is to zero. Since, by construction, £ = £(¥" (w)) + O(1), there
exists €9 > 0 so small and ng so large that for all n* > ng

‘ 3 (mn**(w»

‘ < g = |u| < pert-

The condition will be satisfied for all n large enough, because of the assumption

that &[0 (w)]/k - 0. Henceforth we assume that ‘M‘ < go and take
—00

[u] < epert 8.t p'(u) = %

Let p(Ly4iw) denote the spectral radius of Lyyiw. Since u + tw +— Lyyiy 18
continuous, u + iw — p(u + iw) is upper semi-continuous. Therefore, by part (4),
there exists 0 < & < 1 s.t. sup{e P p(Ly1iw) : dist(w, 27Z) > epert} < K.

Similar reasoning gives (perhaps for a slightly larger 0 < k < 1)

sup{|e P p(N (u 4 iw))| : |u+ iw| < epert} < K-

It is not difficult to see, using the spectral radius formula and the continuity of z —

L., that |L7 ;1] = O(e" P k™) uniformly on {w € (—m, ) & |[w| > pert},
and || N(u+ iw)"*l[p]H = O(e" P k") uniformly on (—&perts Epert)-

If we split the domain of integration in the integral which defines J, (z(*),£F)
into (—epert, Epert) and its complement and then substitute L = A(P + N) into the
first piece, then we get the following (where J,, = J, (2, &), z = 2@, ¢ = ¢&F):

Epert
h(P, e .
Jp = (2 o) / e~ (utiw) [)\(u +iw)™ (P(u + iw)1p))(z)| dw
- P
—Epert

+ O(e"*p(“)_“g* /@”*).
The error bound can be simplified using the Legendre transform. Let H(v)
denote minus the Legendre transform of p(u), namely H (v) := p(u) —up’(u) for the
u=u(v) s.t. p'(u) = v. By the choice of u, n*p(u) — u&* = n*H(&* /n*), whence

Epert
h(P, ek ) . " .
J, = (2 0) / o (utiw)e™ +n p(uJ”w)(P(u-i-iw)l[ﬂ)(g)dw—i—O(e” H(%)Hn ).
™
—Epert

The next step is to use the Taylor expansion of p(z) at z = u to see that the
exponential term in the integrand equals

o I —uts] | pintwlp' ()= £5] | 0[5 (ww?+0(w?)]

The first term is exp[n*H(fL—i)}, and the second term is 1 by the choice of u. So

wHE P | T e .
g, = 62—(0> /e—n (5P (“)w2+o(w3)](P(u—&-iw)l[p])(g)dw+O(/<;” )
T L
—Epert
*H( e* )h(P ) [ Epe'r't\/”? d
_ et T ~ 39" (P +0(£x) iv v n
= e~ 2P VnE (P(u+ W)I[B])(l)\/nT +O(I~€ )
:Epert\/F
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We discuss the asymptotic behavior of this expression as n* — oo, subject to
the assumption that L& (w)] — 0. Since &* =& = (Y™ (w)] + O(1),

i —— 0, and therefore v — 0.

n* n*—oo n*—o0o

Since ||P(z) — P|| T‘—O» 0 and P1jp) = hv[P] is bounded away from zero,
z|—
(P(u+i\/%)1[ﬂ)(§) = [1+o(1)]h(z)v[P] = [14+0o(1)|¢[W*(x)]v[P] unif. as n* — oco.

(But caution! z = z() varies as n* — oo so the term on the right side fluctuates.)

If £pery and |u| are small enough then [p”(u)| > 1p”(0) = 302 and [O(w?)| <
%0'2 |w|2 for |w| < epert. We see that the exponential term is bounded by const e 3V,
By the dominated convergence theorem,

e"*H(%) : 1 i 1,.2,2 *
T = [+ oD = RVPIV @) | = [ b+ ()
en H(ER) _ en H(5x) _
~ [1+o(1) BPVIPIEW (@) = [1 + o(L)] YW ()]

s " "
V2ro?n* V2no?n*
Notice that h(Py)v[P] = (mgomy ' )(E) = $m(E), where m is the (non-normalized)
area measure.

Next we analyze the exponent. Since H(-) is minus the Legendre transform of

p(+) and p(z) = —log A+ 1<72z2—|—0( ), Hv) = —log A\ — 325 +0( 2). In particular
H'(0) =0 and H"(0) = — 2. Recalling that £* = £[¢" (w )] + O(1) and expanding

5[w (W)]

H(u) around ug = , we obtain

n*H(fL—i):n (i[w (w)])JrH/(E[l/} *(w)])ﬁ *5[1/1 ) JrO(E *5[ (w)])}

=t B ) 4t [H(0) + 0(1)]—%1) +n*o (O(*l)) (- )l )

n
= H( @) 4 o1) (- H'(0) = 0).
Now we expand H around zero to see that

n* w 2
W H(E) = —n log)\fi[1+ o(1)] <W\/TT(”> +o(1).

This and the definition of n* give
A m(B) W ()
2y/logy-1n
! ! @)’

By (3.2), the sum of these expressions over i = 1,...,n; gives a lower bound for
Jo 1e[@h(w)]dt, and the sum over 0,...,n1 + 1 gives an upper bound. The only
term which depends on i is £[IW*(z(?)]. Since by (3.1),

Tz, €7) = [14 o(1)]

{[B,(w)] —2maxh < iﬁ[W“” nilﬁ )] < {4[Bpn(w)] + 2max h,

i=1
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and since both sides are ¢[B,,(w)][1 + O(%)] = \""n[l + O(%)}7 we have
n n(l+o(1))(1+0O(X _1ro( (el )] 2
/ Lp[ph(w)]dt < ShadCll (n°)>m(E)~ L = (5 :
0 2\/logy-1 1 V2ro?
n n(1l+o0(1))(1+O(~ _Lto() (&l ) :
[ aslebar > SO C I e
0

e
2y/logy-1mn V2mo?

We now remember that ng is a free parameter, and can be chosen arbitrarily
large. The asymptotic expansion of the theorem follows in the case G = 1g.

The case G € C,(S) is treated by decomposing G = Gt — G~ with G* € C.(9)
non-negative, and approximating G* from above an below by linear combinations
of indicators of cylinders. ([

Proof of Theorem 3.1. It is enough to prove the asymptotic statement for func-
tions of the form G(x,k) = v(x)lrx oy (2, k) with v € C(T) s.t. [ ~(t)dt > 0. The
case of G € C.(T x Z) then follows by approximation.

The infinite staircase case be decomposed into an infinite collection of horizontal
2 x 1 rectangles. Fix one of them, calling it “rectangle zero”, and identify it with
[0,2] x [0,1]. Define G on rectangle zero by

G(z',y) = mcos - v(3 (2" — ¢ tan@)) - sin(wy’).

This is designed so that fol/ Cosa(éogo};)(w(m))dt = G(x,0). The upper limit 1/ cos @
is the time it takes ¢} (w(z)) to reach the upper side of [0,2] x [0, 1].

Extend G to the rest of the infinite staircase surface by setting it equal to zero
outside rectangle zero. Since G(z’ + 2,y) = é(m’,y’) and @(*,0) = G(x,1) = 0,
this is a continuous function. A calculation shows that [ Gdm = 2 cos 6 fTX , Gdmy,
where m is the (non-normalized) area measure on St and mg = mg X mgz.

The orbit {¢h(w(z)) : 0 < t < n/cosf} can be split into segments of length
1/ cos 6 which go across horizontal rectangles. The j—th segment enters the bottom
side of rectangle ”Z;& f(z+ia) at distance 224 2ja mod 2 from the left endpoint.
Only the segments s.t. Zz;é (x +ia) = 0 contribute to On/ cos? é[apé (w(x))]dt.
The contribution is G(x + ja,0) = (G o T?)(z,0).

It follows that fon/ 5% Clpb(w(x)))dt = Z;L:_(} Gz + jo, Y21 f(z +ia)) =
Z;:OI (G o T9)(x,0).The theorem now follows from Theorem 3.2. O

4. STOCHASTIC PROPERTIES OF BIRKHOFF SUMS

Theorem 3.1 expresses the Birkhoff sums of the cylinder map T, asymptotically
in terms of ﬁ(Ek(x)) where Zi(x) := &[1*(w(x))], 1 is a renormalizing automor-
phism of a with zero drift, ¢ is its associated Z—coordinate, and w : T — St is the
map which associates to z € T the point on the top side of a (fixed) horizontal
rectangle at distance 2z from its left endpoint.

To determine the stochastic properties of the Birkhoff sums of the cylinder map,
it is sufficient to understand the stochastic process {Z(x)}x>1, when z ~ U[0, 1].
In this section we prove the following.

Theorem 4.1. Choose z € [0,1] uniformly, then
(1) Ex/k —— 0 a.e.
k—o0
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(2) Ve >0 3I(e) >0 s.t. P[|Eg/k| > ] = O(e™*©®) (k — o0).
(3) Ex/VEk kdi> N(0,02). Moreover, there is a probability space (Q, . F , i) equipped
—00

. . . . = 5 = dist
with two continuous time stochastic processes E¢, By : @ — R s.t. {E,}n>1 =

{Entn>1, {Et}t>0 4t tandard Brownian motion, and for some 0 < § < %,
|_t—aBt|—o(t5) a.s. ast—>oo
4) If fif € LY(R), then hm D +f(Ex/VE) = E[f(N)] almost surely,

where N is the standard gaussian, and f is the Fourier transform of f.

Lemma 4.2. There are a stationary mizing Markov chain {X;}5°, with finite set

of states S, g : S xS = R s.t. E[g(Xo,X1)] =0, and a uniformly bounded sequence

of random variables ey, s.t. Zg it 9(Xo, X1) 4+ -+ 9(Xp—1, Xk) + ek (equality of

stochastic processes). The function g is not of the form H(x) — H(y) + const for
any Borel H : S — R.

Proof. Define & : Stg — Z as follows: given p € Sto,
&u(p) := E[W* ()] — &(p) for some (all) p € 7 (p).

This can be easily seen to be independent of the choice of p.

Next define = : Sty — [0, 1] as follows: given p € Sto, lift p to a point p € St in
rectangle #0, and project p to the top side of this rectangle in the stable direction.
The result has the form w(z) for some unique = = z(p) € [0, 1].

Claim. If p is chosen uniformly in Sto, then x(p) is distributed uniformly in [0, 1],
and er(p) := & (p) — V¥ (w(z(p)))] are uniformly bounded on Stq.

The first statement is because rectangle zero can be identified with the parallel-
ogram with a horizontal side of length 2 and a side in the stable direction. The
second statement is because p — w(x) «x w where w is in the stable direction of the

derivative of v, so dist(¢*(p), ¥ [w(z)]) < A¥V1 +tan? 0 < 1/ cos .

It follows that &[¢F(w(w))] et
stochastic process

£e(p) := E[Y*(p)], where p is distributed uniformly in Sto,

&k + ek, where |eg| < 1/cos@ and & is the

We will use the Adler—Weiss Theorem to represent & as a random walk driven by
a Markov chain.

Let B denote the Adler—Weiss Markov partition, and ¢ the dynamical graph
of P, see §2. Let mp : X(¥) — Sto denote the symbolic coding of the projected
automorphism v, given by Theorem 2.8, then IP := mgom, 1is a Markov measure.
It follows that X : X(¥4) — B, Xi[{Pi}icz] = P; is a finite state Markov chain.
Since hyperbolic toral automorphisms are mixing area preserving maps, P is a
mixing shift invariant measure. So { X} }rez is stationary and mixing,.

By the definition of the Frobenius function,

&rlp) = W(@] — &(p) for some (all) 256 m!(p)

k—
Z [T ()] — €[ (p)] = Zs »(5;)] — €[p;], where p; € 7 [W(p)].
=0

So & (p) = Y52 (Fy o ) (p).
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At the end of §2, we saw that F' := Fi,omg can be expressed in the form g(Xo, X1)
or g(X_1, Xp) for some function g : P x P — Z. Since mgom, ' =P,

Zsz“Zﬂw—Zg 1@29Jh

Since {X,};ez is stationary, &k (p) et 9(Xo, X1) 4+ -+ g(Xk—1, Xi) as required.
Elg(Xo,X1)] = [ Fpdmo = 0, because 9 has zero drift. There is no function
H: P = Rs.t. g(Xo,X1) = H(Xo) — H(X1) + const, because of Lemma 2.9. O

Proof of Theorem 4.1. Let Syg := g(Xo, X1) + -+ + g(Xp_1, X1).
(1) By the ergodic theorem, Sig/k - E[g(Xo,X1)] =0 a.s.
— 00
(2) By the Girtner-Ellis Theorem, P[|Skg/k| > €] = O(e™"©)) as k — oo
where I(-) is the Legendre transform of li_}rn LlogElexp(uS,g)] = p(u) =

topological pressure of uF. Since g # H(Xo) — H(X1) + const, p(t) is ana-
lytic and strictly convex. So I(e) is strictly convex. Since p’(0) = E(g) = 0,
I(g) > 0 for all € > 0. See §6 for a calculation of p(u) in a special case.

(3) By the central limit theorem for finite state Markov chains, TSkg —
N(0,03) for o3 := lim LVar[S,g]. Since g # H(X) — H(X1) + const, o9 # 0
n o0

(Leonov’s Theorem). By Philipp & Stout’s Almost Sure Invariance Principle
([PS], chapter 4), there is a probability space (Q,.%#,u) equipped with two
continuous time stochastic processes it, B; : Q — R s.t. {_n}n>1 dist {Sng +
Entn>1, {Et}@o 4ist standard Brownian motion, such that for some 0 < § < 5,
|Z¢ — 00B:| = o(t?) a.s. as t — oc.

By Theorem 4.13 in [PP], 03 = p”(0). It follows that o9 = o where o is the
constant appearing in Theorems 3.1 and 3.2.

(4) If f.f € LY(R), then hm P kf(Skg/\f) = E[f(N)] almost surely,

where N is the standard gaussian, and f is the Fourier transform of f. This
follows from (3) as in Lemma 2 in [LS1] (see also [Fil]).

The theorem follows, since {Zx}x>1 dist {Skg + ek ti>1 with g, = O(1). O

Application to the Cylinder map. Theorems 3.1 and 4.1 combine to give the
following statement. Let x be a standard gaussian random variable.

Theorem 4.3. Suppose a is a quadratic irrational. There are 0® > 0 and0 < A < 1

st if ap = Ll:gél (\/17;7), then for every G € LY(T x Z) s.t. [ Gdmg =1,

n—1
migwﬂ““fm<>

n
. ) Lo o
(2) I\}gl})omngzmnn(ak;GOTa) =1 as.

n—1
(3) if in addition G € Co(T x Z), then [ (Y GoTZ)dm =[1+ o(1)]an
Tx{0} 7=0

Part 2 is a “higher order ergodic theorem” in the sense of A. Fisher [Fil],[Fi2],[ADF].
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Proof. (1) and (2) are immediate.
For (3) let As(n) := {(z,0) : |Z2,(x)/n| <}, Bs(n) := {(2,0) : |Z,(x)/n| > d}.
We break the integral into the main part ng(n) and the remainder fBé(n). The

remainder is O(ne~"(®)) = o(a,,), because of Theorem 4.1(2) and the boundedness
of G. The main term is sandwiched between two bounds of the form

(1 + E((S))an . \/iE[eXp( ! 25(26)( —[log* n]/[ ])2]
(1 — £(8))an - V2E[exp(— 20 (Z0- ny/[log™ n])?]

with £() P 0 (this is a consequence of the uniformity in « in Theorem 3.1).
-0

1¥5(6) 2
X]

Since Ex/Vk kdl> N(0,02), these bounds converge to (1 =+ £(5))v/2E[e~
—00

as n — oo. Since E[(LZ(J) X’ = E(e~2X") = 272, the main term is [1+0(1)]a,.

—

Part (3) follows. O
Application to the deterministic random walk.

Theorem 4.4. Suppose « is a quadratic irrational, and N, is the number of visits
of the DRW to zero up to (and not including) time n — 1, then

(1) B(N,) = [1+ o(1)]an, where a, = \/ 22 ().
(2) a1’ N, _dist | 2€Xp(—%X2); where x is a standard gaussian.

)

N 1 1 _
(3) J\;E)noo lnlnN Zn:2 nlnn(?nNn) =1 as.

(4) X is an eigenvalue of the renormalizing automorphism 1, and o? is the

, . ) = dist
asymptotic variance in ﬁ‘:‘k ﬁ N(0,02).
o0

This follows from the previous theorem and the identity N, = Zz;é Ity {0} oTk.

Stochastic interpretation of twists. Theorem 4.1 and Lemma 4.2 extend triv-
ially to automorphisms 1 with non-zero drift. One just needs to replace E; by
Er — k() where 6(¢) is the drift of 1. The Markov chain and the function g
Lemma 4.2 are defined as before, except that now E(g) = () # 0.

We can use this simple observation to calculate twists. Suppose 1 is a hyperbolic
homogeneous automorphism with positive eigenvalues, and let w be an eigenvector
of its derivative. Recall from Lemma 2.12 that there is a unique homogeneous
automorphism ¢ with the same derivative as v, and which fixes the rays L;(p, w).
The drift of ¢ equals minus 7, (p, w). Consequently,

Corollary 4.5. Let 2 = £[oF(2)], where z is distributed uniformly in horizon-
tal rectangle zero, then %én — —Ty(p,w) a.s., and ﬁ(én + m-¢(p7w)) _dist |

n—oo
N(0,0?).

5. APPLICATION TO A RESULT OF J. BECK

In this section we explain how to use the machinery developed in sections 2 and
4 to prove the following theorem of J. Beck [B1, B2] Fix an irrational o and let

Zin)=#{1<k<n:{ka} €[0,)} —din=-1 Z f({ka}).
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Theorem 5.1 (Beck). If « is a quadratic irrational, then there are (explicit) con-
stants C1,Co depending on « s.t. for all a < b real

Z5(n) — CyIn N

1¢,£{1< < N:Ze € [a,b]} —— 1 /b —u’/2g
— n : a, — e U.
N - - CQ\/IHN N—oo \/27T a

This is a reformulation of Theorem 1.1 in [B1] in the special case of the interval
[0, %), but without the estimate of the rate of convergence provided there. The con-
stants are calculated in [B2] using algebraic number theory and harmonic analysis.

First we explain how to translate Beck’s theorem into a statement on linear flows
on the infinite staircase.

In what follows ¢ denotes a Z—coordinate induced by the natural partition of the
infinite staircase into horizontal rectangles, and py denotes the singularity at the
bottom left corner of rectangle zero.

We wish to define ¢ (po) for ¢ > 0 for an irrational direction . There is an
element of choice here, because py is a singularity, and there are infinitely many
rays in direction # emanating from p — one for each horizontal cylinder C s.t. that
the vector (222) based in p points inside R.

We define ¢} (po) to be the movement in unit speed along the ray Lo (po, (2;2(;))
emanating from pg in direction # which begins at rectangle zero.

Lemma 5.2. Let § = tan~!(2a — 1) and c := V1 + tan? 0, then

Zx(n) = %g(wg(po)) forallen <t <ec(n+1), (5.1)

Proof. The constant c is exactly the time it takes @y to cross a horizontal cylinder
in the vertical direction, so ¢§"(po) lies on the bottom horizontal side of a unique
horizontal rectangle R,,, and &[p}(po)] = const for cn <t < ¢(n +1).

Let &, denote the Z—coordinate of R,,, and let z,, denote the distance of ©§" (po)
from the bottom left corner of R,,. We show by induction that z,, = 2na mod 2
and &[ph(po)] = 2Z;(n) for en <t < c¢(n+1).

At time zero, the flow is at pg, so zop = 0, and by the definition of ¢}(po),
Eleh(po)] =0=22%(0) for all 0 < ¢ < c.

Suppose by induction that x, = 2na mod 2 and &[p)(p)] = 2Z%(n) for cn <
t < ¢(n+1). By the definition of St, the following implications hold:

o If , +tanf € [0,1) +2Z, then £,41 =&, — 1 and 2,41 = 2, +tanfd+1 mod 2.
o If z, +tanf € [1,2) +2Z, then £,41 =&, + 1 and @11 = 2, +tand —1 mod 2.

We see that x,11 = 2, + 2a mod 2 =2(n + 1)a mod 2, and
§ni1 = &n + 1112y 12z (20 +tanb) — 1pp 1) oz (2, + tan )

=&n + Ljo,1y42z(Tn + 2a) — 11 2)42z(Tn + 20)
=2Z,(n) +1p,H({(n+1)a}) = 111 ) ({(n+1)a})

- 2(2;;(71) 10,1y {(n+1)a}) - ;) —27% (1), 0

Proof of Beck’s Theorem. Since « is a quadratic irrational, there are hyperbolic
homogeneous automorphisms which renormalize «.

Let ¢ denote a hyperbolic homogeneous automorphism which renormalizes «,
has zero drift, and such that the eigenvalues of di) are positive. Let 0 < A < 1
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denote the contracting eigenvalue, and let w denote a contracted eigenvector in
direction 6 = tan=!(2a — 1). Let

7y (Po, W) o
Cy:=—"——""and Cy := ———
! 2| In A 2 2¢/[In \|

where 7y (po, w) is the twist (Definition 2.10), and o? is the asymptotic variance
mentioned in the previous sections. We will show that

1 z% —CiIn N
Dy (a,b) := N#{l <n<N: Z5(n) —CilnN

(5.2)

€ a,b]} ——

b
L/ e/ 2y,
CQVIIIN N—o0 \/27‘( a

Let Ty := {ph(po) : ¢ <t < ¢(N+1)}, and fr, (-) denote the length (Lebesgue)
measure on I'y. By (5.1),

B 1 ) &(g) —2C1In N “
DN(a,b) = 7811]\[ (FN)E{(] eln: —202\/W S [ ,b]} (53)

Let N* := [logy—1 N|, and vy := ¥ (T'y). Since ¢ o ¢}y = ppt 01, vy is linear
segment with bounded length in direction 6.

By the definition of the twist, ¥ (Ty) C DF¥*[Lo(po,w)], where ky- =
N*7,(po,w) + O(1) = 2C; In N + O(1). Tt follows that

1
55() = C11In N + O(1) uniformly on vy .

By (5.3) and the identity ¢r, = A"V ¢, otpN" |p, where £, ., =Lebesgue measure

* —2C; In
on yn+, Dn(a,b) = méw{w (@) : g €'y, 5(3)0227\/1;—]\,]\[ € [a,b]}. From

now on we set £ := £, then setting z = =N (q) we get

T WV (@) -2 N
DN(CL7b) = g('}/]\/)ﬂ{ € YN - 202\/@ c [ 7b]}
_ Lo TV @) - o)
! CEWTV () — €()
img{ZE'YN- e € [aJrO(\/]lVf*),bJrO(\/%)]}

__1 , o EWTY () 1 !
= gy {2 €3 = € o+ O(3) b+ O3l

where Ay := D7** (yy), and {5, is the Lebesgue measure on Jy.

The advantage in passing to 7y, apart from canceling the £(z) term up to
bounded error, is that the family {ynx}n>1 is precompact. This is because the
beginning point of Jy is at distance cA~™  from py on Lo(pg,w), and £(Ax) is
bounded away from zero and infinity. It follows that every sequence has a subse-
quence Ny 1 oo along which Y, m 5, where 7 is a bounded linear segment in
direction 0, emanating from pg, and beginning in rectangle zero. It is enough to
prove that Dy, (a,b) — \/% fab e~"*/2qdy, along such sequences.

Suppose Nj, T oo and Jy, — 7 as above. Let ¢g :=length of 4. Fix £ much smaller
than cg, so small that zg—fz € [e7¢,ef]. Let 7~ and 4+ denote two linear segments
in rectangle zero, in direction @, emanating from pg, and with lengths ¢o(1 —¢) and
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co(1 + €) respectively. Then 5~ € 7 € 3+, and Dy, (a,b) is sandwiched between
Dﬁk (a,b), Dy, (a,b), where

o+ S0 () N (2))
f(v ) CoV/NT

1 o “N(z
Dmefk%@jﬂzev:“iVQQ) [a+ O(k=),b+ O(A)]},
The linear segments 4+ are in the unstable (expanding) direction of ¢»~'. Let
Q7 denote a thickening of these segments in the stable direction (the inside of a
parallelogram with one side equal to 3% and the other side a segment in the stable
(contracting) direction of ¥~1). For the same reasons explained in the proof of
Lemma 4.2,

D (a,b) ==

€ [a+O(A), b+ O(S)}

D) = o mlz € QF We a4+ O(3k), b+ O(=)]} + (1)
Dy b) = ——mize @ ¥ ¢ 04 0(L), b+ O]} + o)
N\™ . m(Q_) . U\/W N/ N )

where m is the area measure.
We saw in the previous section that if z is chosen uniformly in rectangle number

€V (z) _ dist
zero, then v e

finite state mixing Markov chains. The same is true for obvious reasons when z is
sampled uniformly in a finite union of such rectangles. In Dﬁk we are sampling z
from a finite union of rectangles with respect to an absolutely continuous measure
(Lebesgue times the density function ﬁl@i). By Eagleson’s Theorem [E],

N(0,1), because of the central limit theorem for

the central limit theorem still holds, whence D3 (a, b) F f —u 2y, Tt
b2
follows that Dy (a,b) B \/% [ e/ du. O

It follows from the proof that Cy and Cs in Beck’s theorem are given by (5.2).
For example, if @ = v/2 then the calculations done in the next section give for a
suitable automorphism A = 17 —12v/2 = (14—\/5)_47 Tp(po,w) =1, and 0% = /2.

Thus C; = and Cy = , in agreement with [B1],[B2].

1
8In(1+v2) (fln(1+f))

6. CALCULATION OF CONSTANTS

The purpose of this section is to prove:

Theorem 6.1. If « is a quadratic irrational with renormalizing automorphism 1,
then 0% € Q[a] and the twists of eigenvectors at singularities are in %Z.

Theorem 6.2. In the special case when o = /2 and 1 is a renormalizing auto-
morphism with derivative ( 1 3 ) and zero drift, 0% = 3/2.

Theorem 6.3. Let ¢ be the automorphism in the previous theorem. If pg is one
of the singularities in the bottom left corner of a horizontal rectangle, and w is the
contracted eigenvector, then Ty (po, w) = 1.
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To prove these results we recall that at the end of section 4 we showed the
existence of a stationary mixing finite Markov chain {X,},cz and a function g s.t.

k-1
> 9(Xi, Xig1) + b1y (po, w)
E[g(Xo, X1)] = —74(po, w) , =°

dist
\/E k—o0

We will calculate { Xy }rez and g explicitly, and then find E[g(Xo, X1)] and 02 using
the theory of Markov chains.
Along the way we will prove (2.4), as promised in §2.

N(0,0%). (6.1)

In what follows v is a hyperbolic homogeneous automorphism with zero drift
which renormalizes a. We assume without loss of generality that i has positive
eigenvalues and that 1) fixes the singularities of St (otherwise we pass to 1?2, and
note that o2 (¢?) = 20%(¢)) and 72 (po, w) = 272 (po, w)).

Next we assume that ¢ is the unique hyperbolic homogeneous automorphism
with the same derivative as 1 and which fixes the rays L;(po, w), see Lemma 2.12.
The drift of ¢ equals —7y(po, w).

Both ¢ and ¢ project to the same toral automorphism, which we denote by
’(ﬂo : Sto — Sto.

The Markov chain {Xj}rez. Let 93 denote the Adler—Weiss Markov partition of
1o, with dynamical graph &. As always, A is the derivative of ¢, A is the eigenvalue
of Ain (0,1), and w, v are eigenvectors of A, A\~

Recall that { X }rez is the Markov chain with the with set of states 3, allowed
transitions P — @ iff ¢o(int(P)) N int(Q) # &, and the transition matrix and
stationary probability vector which generates of the measure of maximal entropy
on X(¥). We calculate this data in terms of the fundamental polygon of .

We begin with the cardinality of 3. Recall that

where ¥o(Q;) = Ujvz’l Qij. Qi; are ordered so that the top s—side of Q; j+1 is
identified with the bottom s-side of Q; j1i. Since P is a refinement of {Q1,Q2},
some of the @);; are contained in ¢); and some are contained in @)2. Let

Nig = #{1 < j < Ni : Qij C Qx},
then N; = N;; + N2 and || = Zi’j N;;. The following lemma determines N;:

Lemma 6.4. Let (“(Q;) denote the length of the unstable fibres in Q;, i = 1,2,
then (N;j)ax2 s the unique solution in Z to

N 0(Q1) + Niol*(Q2) = A1 (Qy)
Nor0*(Q1) + Naol*(Q2) = A~ 10*(Q2)

Proof. If W* is a u-fibre in @;, then ¢o(W™) can be partitioned into N;; u—fibres
in @ and Nj u-fibres in Q2 (one for each @Q;;). The sum of the lengths of these
u~fibres must equal £[1)o(W¥)] = A"H(W¥) = A~10%(Q;), so N;; solve (6.2).

The existence of a solution of (6.2) in Z implies that £*(Q1), £*(Q2) are linearly
independent over Q: Otherwise A~! is rational, which is never the case for an
eigenvalue of a hyperbolic matrix in SL(2,Z). It follows that (IV;;) is the unique
solution of (6.2) in integers. O

(6.2)
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Next we calculate incidence matriz of 4, T = (tpg)gpxsp, where

0 otherwise

tPQ:{l P (P,Q€*P).

Lemma 6.5 (Adler & Weiss). tq,;q., = 1 © Qi C Qr. Thus, rank(T) = 2 and
every P—element in Q; connects to Ny, P—elements in Q.

Proof. Suppose Q;; € PB. Since P refines {Q1,Q2}, Qij C Qp for k =1 or 2. By
construction, o(Qx) = U Qre, so if Q;; — @ then int(Q) C |J Qxe, which means
that int(Q) intersects int(Qp¢) for some ¢. Since {int(Qr¢)} are pairwise disjoint,
@ = Qe, which proves the (=) direction.

The (<) direction is also true, otherwise vy (int(Qy)) intersects 0“Qy;. This is
false, because 9“Qre C Vo(9"Qr) C Yo(int(Qr))°. So tq,;qu, = 1 & Qi C Q.

We see that the incidence matrix T has two types of rows: those of 3—elements
P C @1, and those of P—-elements in P C Q2. These rows are different, because

- ifP€m7PCQ17then #{QemQCQIWtPQ:l}:le;
~ P e, PC Qs then £{Q P Q C Qurtrg = 1} = Nog,

— (%g) # (%’;’;), otherwise by Lemma 6.4 £*(Q1) = ¢*(Q2) and A is rational.

Since different rows of zeroes and ones are linearly independent, rank(7") =2. O

Next we determine the transition matriz of the Markov chain {Xj}rez: the
matrix (ppo)p,gep s-t. ppo = P(X1 = Q| Xo = P).
Lemma 6.6 (Adler & Weiss). (ppg)p,gep = AM YT M where M is the diagonal
matriz with diagonal entries Mpp = £*(P).

Proof. By the Adler-Weiss Theorem, P = mg o 7, ! where myq is the normalized
area measure and P is the joint distribution measure given by

P(E) :=P[(Xp)rez € E], (E C X(¥) Borel).

Therefore, if P = Q;j,Q = Qge, then ppo = mo[P N1y (Q)]/mo(P).

P, Q,and PNy 1(Q) are parallelograms with sides in the stable and unstable
directions. Let £%(-), £°(-) denote the lengths of these sides, then ¢°(P) = M*(Q;),
CIP AW Q) = £(P) = M(Q,), and [P 145 ' (Q)] = M*(Q). Denoting
the angle between the stable and unstable directions by 3, we see that ppgo =

2ys u .

trQ 5 8}% ((1%);1;11; = M"(P)~'tpol*(Q). O
Proof of (2.4) and calculation of g. Let £ denote the associate Z-coordinate
of ¢. The definition of g is based on (2.4), which says that the Frobenius function
Fy of ¢ is either (a) BV ¢y " (P)-measurable or (b) PV vy (R)-measurable. In case
(a), g(P, Q) is the value of Fy on int(P) Ny [int(Q)]. In case (b), g(P,Q) is the
value of Fy on v [int(P)] Nint(Q). In this section we prove (2.4), and give an
explicit formula for g.

Recall from §2 that + or ¢»~! has a fundamental polygon of the form R = 6y(Ry),
where 6y : Stog — Stg is a toral automorphism which fixes the punctures of St and
Ry is one of the shapes in figure 2.

We will limit ourselves to the case when 1 has such a fundamental polygon. The
case of ¥~! can be handled by the identity Fy-1 = —Fyo1y.

Suppose W* is a u—fibre in R. The Z-displacement of W* is defined by

(W) := £(endpoint of W“) — ¢(beginning point of W“)
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for some (any) lift Wt of W to Sto. d(W*) is independent of the lift, and can
be easily determined from the endpoint of W* as follows: Let H = (2,1), then
referring to figure 2,

e the Z-displacement of u—fibres terminating at 6y(AF) is (-1);

e the Z-displacement of u—fibres terminating at 6o(EH) is (+1);

e the Z—displacement of u—fibres terminating at 6o(HD) is (-1).

The unique B-element which has a u—fibre terminating at H is called critical.
The non-critical elements of 3 have the virtue that all their u—fibres have the same
Z—displacement. Let

#(Qij;) := the value of the Z-displacement of u-fibres in @Q;; (Q;; non-critical).
Lemma 6.7. The critical element is Qan, -

Proof. Call the critical element Q.

H lies on the top s—side of Q2, ¥o(H) = H, and ¥y(9°Q2) C 9°Q2, therefore
H € int[0°Yo(Q2)]. It follows that k = 2 and 1 < £ < Nj. Let W* be the u—fibre
in Qa0 whose closure contains H. If £ < Ny then H = 15 ' (H) € 5 ' [W"] C
int(Q2)Ubottom s—side of Q2. This is false, so £ = Na. O

Let ¢o denote one of the singularities in the middle of the horizontal side of
one of the horizontal rectangles. Since, by assumption, ¢ fixes qo and has positive
eigenvalues, there is a constant 7 s.t. ¥[L;(qo, w)] = Lit+(go, w) (7 = 74(4o, 7). A
continuity argument shows that necessarily ¥[L;(go, —w)] = L;+-(Go, —w)

Lemma 6.8. If 1) has a fundamental domain of the form 0(Ry) with Ry as in figure
2, then Fy is PV g - (P)-measurable, and g(Qij, Qre) = 7 + Zi: D (Qks)-

(The last expression makes sense because Qs is non-critical when s < /¢ — 1.)

Proof. Let P := Q;j, @ = Qi¢, and suppose p € int(P) N wo_l[int(Q)]. By
the definition of the Frobenius function, Fy(p) = £(¢(p)) — &(p) for some (any)
p € m1(p). We choose the p s.t. £(p) = 0, then Fy(p) = £(¥(D)).

To calculate this we construct a path 7 in St from the fixed point ¢g = (1,0) to
p and analyze the lift of ¢y[7] to the infinite staircase. Let ¢ denote the intersection
of W*(p) and W*(qp) (the v and s fibres of p and gg). The path v we use is the
concatenation of [go, g] C W*(po) and [g, p] C W*(p).

The curve v begins with a piece of a ray emanating from g in direction w. Let
¥ denote its unique lift to St which begins with a segment in Ly(go,w). Since ~y
does not cross R, all points in 7, in particular its end point, have Z-coordinate
equal to zero. It follows that ¥ ends at p. N

Let ¢ := ¢[¥]. This curve ends at ¥(p), so {[end of {] = £[(D)].

As for its beginning, since 1[Lo(Go,w)] C L+(qo,w), ¢ = ¥[¥] begins with a
segment in L. (o, w). It follows that ¢[beginning of 5] =T

The curve ¢ projects to 1o[y]. To calculate 1], we first recall that Q;; — Qpe,
and therefore P C Qy = Uivzkl Vo (Qrs). {Qrs}Y*, are ordered so that [g,p] =
USZi (45, as1]U [z, p), where [g, gsi1] = W (p) N4y (Qis) and [z, p] & 05 (Qre)-
So 1p[v] is a concatenation of

e [0, % (q)] (a subsegment of W*(qo)), followed by
e a u—fibre in Q1 (Yo[q1, ¢2]), followed by
e a u—fibre in Qg2 (¥o[g2, ¢3]), followed by
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® ---
o a u-fibre in Qg ¢—1 (Yolge—1,¢e]), followed by
e the beginning of a u—fibre in Qxe, which terminates at 1o (p).

It follows that &[end of ] — &[beginning of (] = Zi;i ?(Qrs). Substituting the
values of £ at the endpoint of ¢, we find that Fy(p) =7 + Zi;i D (Qks)- O

Proof of Theorem 6.1. That the twists always belong to %Z was proved in
Lemma 2.11, so we focus on the value of o2. There is no loss of generality in
assuming that 1 has zero drift.

Let g be the function found in Lemma 6.8, and define a family of B x 8 matrices
®(0) by

Ppq(0) :=prqexpllg(P,Q)] (P,Q € R).

These are a positive matrices, and the mixing of o : X(¥4) — X(¥) (Adler—Weiss
Theorem) guarantees that they are primitive. By the Perron—Frobenius Theorem,
®(0) has a simple positive eigenvalue A(6) such that A(6) is larger than the modulus
of all other eigenvalues. When 6§ = 0, ® is stochastic, and A(0) = 1.
Since ®(#) is depends analytically on 0, A(f) is analytic on some interval (—¢, ).
It is known that
d d?

N0V =1, g5l ImA®) = Elg(Xo, X0 and 5|

_ 2
¥ mA(G) =0 (6.3)

See Doeblin [D], Nagaev [Ngv], or chapter 4 in [PP].

We use this formula to show that 02 € Q[a], where « is the angle normalized by
1. Let A denote the derivative of ¢ and let A denote the eigenvalue of A in (0,1).
Since ¢ renormalizes o, & = 3 + 1 tanf(mod 1) where A(tal1 o) = )\(tall p)- Since A
is a matrix of integers, A € Q[tan §] = Q[a]. We'll show that 02 € Q[)], and deduce
that 02 € Q[al].

We need the following claim. Let <7 denote the collection of functions of the form
©(0) =>p__, ape®’ with arbitrary n € N and aj, € NU{0}, and set z1(6) := A(6) /.

Claim. There are 3;;(0) € < s.t. pu(f) is the largest eigenvalue of ( g;gzg g;iggi )
for all 0 € (—¢,¢).

Proof of the claim. Let W(6) denote the P x P matrix (tpg exp[fg(P, Q)])p,gey-
By lemma 6.6, ¥ = A\"*M®M 1, so pu(f) is the leading eigenvalue of ¥(6).

As our formulas for tq,; ., and g(Qij;, Qre) show, if P,Q € *B are both included
in the same @y, then the P-row of ¥(0) is equal to the Q-row of ¥(0), and if
P, Q are not included in the same @ then the P-row and the Q—row are linearly
independent. In particular, rank[¥(6)] = 2.

We think of ¥(6) as of the linear transformation u — u¥(#) on R¥. Let Vp :=
Im[¥(0)]. Then dim Vy = 2 and

Vo = Span{ep¥(0),eq¥(0)}

when P,Q € B, P C Q1, Q C Q2, and ep, e, are the row vectors (ep)r = 0pr,
(eg)r = dqr where épq is the Kronecker symbol.

U(0) preserves Vp, and since Vp contains all the (left) eigenvectors of W(8), u(6)
is the leading eigenvalue of ¥(0)|y, : Vo — Vp. We represent U(0)|y, : Vo — Vp in
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the basis {epW¥(0),eq¥(0)}. For every S € B,

(ep)¥)s = (ep¥?)s = (¥)ps= >, Upr¥rs+ >  Tprlpg
REP,RCQ1 REP,RCQ2
= Z \I’p7R\IJP7S + Z ‘IIP,R\IIQ,S
REP,RCQ1 REP,RCQ2

= ( > \I’P,R) (epV)s + ( > \IJP,R> (eq¥)s
ReP,RCQ1 ReP,RCQ2

= ( Z tPReag(P’R)>(€p‘I’)s + ( Z tPReeg(P’R)>(€Q‘I’)S-
REY,RCQ, REFP, RCQs

The terms in the brackets belong to «/. A similar formula holds for (eq¥)V¥. So
U(0) : Vo — Vp is represented by a 2 x 2-matrix with entries in &7, and p(6) is the
leading eigenvalue of that matrix, as claimed.

Call the matrix in the claim By, and let fp(t) = t? — a()t — b(0), be the charac-
teristic polynomial of By, then a(6) = tr(By) € o and b(f) = —det(By) € & — .
It follows that a(®)(0),5*)(0) € Z for all k > 0.

The eigenvalues of By are zeroes of fy, therefore fy(u(6)) = 0. We differentiate
this identity twice with respect to § and then substitute 6 = 0, noting that p'(0) =
A (0) = E(g) = drift of ¥ = 0. Rearranging terms, we obtain

a” (0)(0) + 5 (0)
21(0) — a(0)

Similarly, (In\)”(0) = (Inp)”(0) = “l;’(g?, so 02 = (InA\)"(0) = i;;gggg@gg;;gg;.

Since 12(0)? — a(0)u(0) — b(0) = 0, we obtain
_a”(0)u(0) 4 " (0)
~ a(0)(0) + 2b(0)

It remains to recall that A(0) = 1, therefore (0) = 1/, so Q[u(0)] C Qa]. O

p1"(0) =

€ Q[u(0)].

Proof of Theorem 6.2. We now specialize to the case of a = V2.

Let ¢ denote the homogeneous automorphism ¢ with derivative ( T ), and
which fixes Lg[po, w] (po =singularity in the bottom left/right corner of horizontal
rectangle zero, w =contracted eigenvector). We will find the function g which drives
the random walk of ¢, and then use (6.1) to calculate o2 and the drift of ¢. There
are four steps:

(1) Finding the fundamental polygon of ¢

(2) Calculating the Markov partition and the transition matrix (tpq)gxp

(3) Calculating g and ¥(6)

(4) Finding a closed form for the leading eigenvalue u(0) of ¥(#), and using the
identity (Inp)”(0) = o2.

All the calculations can be done in closed form, but % is too large to do this reliably

by hand (it’s a 58 x 58 matrix). We will supply alternative formulas for ¢pg and

g(P, Q) which can be easily implemented on a computer, and which provably give

the result with absolute precision.
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D

= c

B

FIGURE 4. Fundamental domain for the renormalizing automor-
phism of /2

Step 1. The fundamental polygon. The derivative matrix is ( P ) The

eigenvalues are A = 17 — 12v/2, A= = 17 4+ 12y/2, and the eigenvectors are v =
("73Y%) and w = (“1V2).2

This places us outside of the cases covered in figure 2. Instead of looking for a re-
duction to one these cases by means of Lemma 2.7, we find a fundamental polygon
directly. It is given in figure 4. It is a simple calculation to find the vertices

TR, 4+v2 1 12—/2 1 V2 4—v2 1242 8+v2

eXphCltIY' A(Tvm)v B(T7_m)’ C(2 + 8 8 )7 D( 8 ) +8 )7
B(152, 552), F(T, 42) (figure 4).

Step 2. The Markov partition and the incidence matrix

PB={Q11,...,Q1n,; Q21,--.,Q2n,}. We can find N; and N» using Lemma 6.4.
The first step is find £%(Q1) = |AB| and £*(Q2) = |CD|. A direct calculation with
the coordinates found in step 1 leads to nested roots, but this can be avoided by
first expressing the coordinates of A, B,C, D in the form “puncture + tv.” This
leads to the presentation

V2 2+2

@) = YFll s (@) = 2 ),

which makes the equations in Lemma 6.4 easy to solve.

The solution is N11 = 5,N12 = 12, N21 = 12,N22 = 29. Thus N] = N11 +N12 =
17 and No = No; + Noo = 41. As a result, B contains 58 elements, of which
Ni1 + Ny = 17 are in @1 and Nyo 4+ Nog = 41 are in (2. Every P-element in Q4
connects to 5 elements in @; and 12 elements in Q)2; and every P-element in Qo
connects to 12 elements in ()1 and 29 elements in Q.

So far so good. But to find the incidence matrix we also needs to know which of
the Q;; fall in @; and which fall in Q2. A calculation by hand or “by inspection” is
possible in principle, but not very reliable due to the size of the problem. We look
for a method for calculating the position of Q);; using a computer.

Let ¢5(Q;) denote the lengths of the stable sides of @;, then side BC' of our
fundamental polygon has length £°(R) := £5(Q1) + £°(Q2), and this side contains
po = (2,0) (figure 2).

1Here we deviate from our convention to choose the eigenvectors in the form (1)
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We parametrize this side by L*® := [0, 1], representing a point by its normalized

distance from the left endpoint. The puncture pg, for example, is parametrized by
Do = % (nested roots can be avoided as above) the s—sides of @)1 and Q) are
parametrized by Lj := [0, Z;S((%))) [0,1— —) and L := [IZ ((QRl)) 1)=[1- ?, 1).

The key observation is that with this parametrization, a u—fibre which begins at

T €[0,1], ends at 7 — KZ ((Ql) mod 1 =7+ ‘fmod 1. We can use this to keep track

of the position of @Q;;, by following the image of a u—fibre in the interior of Q);.

Suppose first that ¢ = 1. @i contains the u-fibre W} Which starts at ge(%’%g
Since 19 contracts L® towards py by a factor A, it maps géfg&; to q1 = po —
A (ﬁo - gé?&g) = 2_547‘/§m0d 1, so 9o(W7") can be broken to u—fibres starting at
(Q1)
t*(R)

2 — 57v2 2
:%fﬂjfl)%mom (G=1,...,17).

Q1; is the parallelogram which contains the u-fibre which starts at ;. Similarly,
Q)2 contains the u—fibre W3' which starts at the fixed point pg, so Q2; is the paral-
lelogram which contains the u—fibre which starts at

oy e@Q)
(-1 05(R) d1 (6.5)
(j=1,...,41).

T1j :alf(jf].) mod 1

(6.4)

= Do —
£+(J—1)

o[ 2

It follows that Q;; C Qy iff L7 > 755, and therefore, by Lemma 6.5 we have the
following explicit formula for the incidence matrix:

tQi;Que = 112 (Tij)- (6.6)
This can be calculated easily on a computer, provided the precision of the calculation
is smaller than the distance between 7;; and the endpoints of Lj.

We estimate the precision we need. The endpoints of L} are a € {0,1,1 — g}
Since dist(7;;, a + Z) > min{} dist(47;;,4a + Z), 1}, we have the (generous) lower
bound dist(7i;, {0,1 — 22,1} + Z) > min{dist(kv/2,Z) : k = 1,...,100}. The last
quantity is bounded below by 2 - 107%, as can be seen from the sixth principal
convergent of /2, %. So the precision we need for the calculation is just 1074,
which is easily available on a standard machine.

Step 3. Calculating 9(Qij, Qre)-

We use Lemma 6.8. Note that by choice of ¢, 7 = 0, and the calculation of g
boils down to finding the Z—displacement of suitable u—fibres.

The Z-displacement of a u—fibre can be determined from the location of its
endpoint, see figure 4. This in turn can be determined from the location of the
beginning point as follows. Suppose a u—fibre starts at 7 € L* = [0, 1].

o If 7 € [0, e;((@};))) =[0,1- f) then the endpoint is in AF and the Z—displacement
is 0.

o Ifr e [EZS((%)), ZZS((QRI)) + éz(?}%g) =[1- f ,1— i) then the endpoint is between

E and (1,1) and the Z—displacement is (71)
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o If 7 € [e;(g%l)) + géﬁ?}‘;g ,1)=11- %, 1), then the endpoint is between (1,1) and

D and the Z—displacement is (41)
In summary, a u—fibre which starts at 7 € L® has Z-displacement

V) =1 (1) sz 1oy (7):

It follows that g(Qij, Qre) = an_:ll ¥(Tim), and by step 2,

-1
\IjQijane (0) = 1LZ (Tij) exp (0 Z [1[1,%,1)(7_1'771) - 1[1\25’1\{15)(7_1'?71)]) )

m=1

where 7,5, t;, are given by (6.4) and (6.5), L] = [0,1 — %), and L§ =[1 — %, 1).
As in the case of the incidence matrix, this can be calculated with complete

precision on a standard computer.

Step 4. Calculation of 02. We implemented the formulas in the previous step on
Mathematica, and found ¥(9).

As predicted by the general theory, rank[¥(#)] = 2, so the characteristic poly-
nomial of W(#) takes the form t/*1=2[t? + b()t + c(6)]. The largest eigenvalue can
therefore be found in closed form. We did this using Mathematica and got

1
u(0) = §e—29 (9 4 16¢” + 9¢*? + 3\/(1 + e9)2(9 + 14e® + 9e29)> . (6.7)

It follows that o2 = (log )" (0) = 2+/2. -

Proof of Theorem 6.3. The calculations in the previous proof were done for the
renormalizing automorphism ¢ which fixes the rays Lo(pg,w). By Lemma 2.12,
Ty(po,w) = —0(¢). The drift of ¢ is E(g), and by (6.3) E(g) = (logu)’'(0). It
follows that 7 (po, w) = —(log 1)’ (0). By (6.7), 74 (po,w) = 1.

Here is another proof that 7, (po, w) = 1. The first step is to express the deriva-
tive of ¢ through generators of I'(2):

(% =)=(% ) ) 1) )

Let 1; denote the unique homogeneous automorphism with zero drift and derivative

(3 9)Ga=1.(% $)G=2.(5 2)G=3and( 5 _|)G=4) By

the uniqueness of homogeneous automorphisms with zero drift and given derivative,
Y =1y 0Pz 0Py 0.

The automorphisms v; are known explicitely (see appendix). To describe them,
note that St has two canonical cylinder decompositions of St, one into horizontal
cylinders and the other into vertical cylinders (Figure 5).

(1) 91 acts on every horizontal cylinder in by (;) — (1_y4ym:31°f 2), where (z,y)
are measured from the bottom left corner of the corresponding horizontal rec-
tangle. So 1 [Lo(p, w)] = Lo(p, (73+12‘/§)), where p’ :=bottom right corner of
horizontal rectangle #0 (p’ is congruent to p)

(2) 19 acts on every vertical cylinder by (z) — (y fmm?fo(li ,), where (z,y) are mea-
sured from the bottom left corner of the corresponding vertical rectangle. So

—34+2v2 3-2v2 3+2v/2 3+2v2
¢2[L0(pl7 ( 4?[ f))] = Lo(p/a _(17,12\5)) = Lo(p/7 _( +1f)) = Ll(Qv _( +1f))a

where ¢ is the singularity at middle of the top side of horizontal rectangle #1 (¢
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is congruent to p and p’). We had to move one horizontal rectangle up, because

(3+2‘[) based at p’ points outside of horizontal rectangle #0.

(3) 13 acts every horizontal cylinder by (y) = (7 yQymgéof 2

sured from the bottom left corner of the corresponding horizontal rectangle. So
"/}3[-[’1((]7 —(3+§\/§))] = Li(q, ~w).

(4) vy = D7 o ¢?, where ¢ maps horizontal cylinders into vertical cylinders by
rotating the horizontal rectangles 90° counterclockwise around the midpoint of
the top side of the corresponding horizontal rectangle. Now

(i) ¢[L1(g, —w)] = L1(a: (1 50m))5
(ii) #[L1(q, (7(1+12\/§)))] = Li(q,w) = La(q,w) = Lao(D*(p),w) (we moved
up, because w based at ¢, points outside of rectangle #1);
(i) D~'[La(D?(p), w)] =L1(D( ) w).
Consequently, ¥4[L1(g, —w)] = L1(D(p), w).
In summary, ¥[Lo(p,w)] = L1(D(p),w) = D[Lo(p,w)]. So 7y (p,w) = 1. O

), where (z,y) are mea-

7. CHARACTERIZATION OF GENERIC POINTS

In this section we leave the study of the deterministic random walk, and turn to
a different problem: The description of the generic points of the cylinder map.

The cylinder map T, is ergodic and conservative with respect to the infinite
invariant measure mg = my X myg, for every « irrational ([C],[CK],[Sch],[AK]).
By Hopf’s ratio ergodic theorem, for every F,G € LY (T x Z) s.t. [ Gdmg > 0,

Yo (F o T3) (k) [ Fdmy
Z;:ol(G o Tg;)(x, k) n—oo [ Gdmyg

(7.1)

for mg-almost every (x,k) € T x Z.

But (7.1) does not hold for every (z,k) € T x Z. This is because T, admits
other ergodic conservative locally finite measures [Nkd]. If p is one of the other
measures, then the limit in (7.1) is [ Fdp/ [ Gdp p—almost everywhere, and not
demo/demo

This raises the question what exactly is the domain of validity of (7.1). To state
the problem in a meaningful way, we need the following definition.

Definition 7.1. A point (z, k) is called generic (for T, and my), if it satisfies (7.1)
for every F,G € Co(T x Z) s.t. [ Gdmg > 0.

By the discussion above almost every point is generic, but some points are not
generic. It was asked in [Sa] what are the generic points of T,.

In this section we give the answer in the special case when « is a quadratic
irrational. Let w: T — St be as in Theorem 3.1.

Theorem 7.2. Suppose « is a quadratic irrational, with renormalizing automor-
phism ¥, then (z,k) is generic for T, and mg = my X myg iff %f[wk(w(:c))] - 0.
—00

Let (:g;g) denote the stable direction of 1, and g the linear flow in direction 6 on
the inﬁnite staircase A point w € St is called generic for py and the area measure

m, if [ Flph(w)ldt/ [, G )]dt — J Fdm/ [ Ggm for every F,G € C.(St)
st [ de > O. We will obtam Theorem 7.2 from the following result.
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Theorem 7.3. w € St is generic for @y and m iff +£[Y*(w)] —— 0.

k—o0

Theorem 7.2 follows from Theorem 7.3 in the same way Theorem 3.1 follows from
Theorem 3.2.

Proof of Theorem 7.3. If the theorem holds for one choice of a Z-coordinate,
then it works for all choices of Z-coordinates, therefore we are free to use the
Z—coordinate of our choice. We choose the Z—coordinate associated to 1.

Suppose &[1* (wo)]/k k—> 0, then wy is generic because of Theorem 3.2 : the
— 00

fluctuating exponential term cancels out upon division.

The remainder of the proof deals with the implication “genericity=-zero drift.”
We use the strategy of [SS].

Fix a generic point wy € St, let Ap := {¢h(wo) : 0 <t < T}, and define Ay to be
the normalized length measure on A1 N [ = 0]. Since wq is generic, A converges
weak star to the normalized Lebesgue measure on [{ = 0].

Construction: Fix some N > 1 to be chosen later, and define for every k > 0

(k+1)N—1

X,iv:zgoq/)(k+l)N—§o1/1kN:( Z Fwowj)ow

j=kN
We think of X}V as of bounded random variables on (A7, Z(Ar), Ar). The bound
is | X < Nmax |Fy|.
Let log" := log,-1, where X is the eigenvalue of the derivative of 1 in (0,1).
Since £ = 0 Ar—a.e. and Fy, is uniformly bounded,
~ [log" T]—2 #[log” T]-1

> X Y. XY +O0W)=¢oyls T — ¢+ O(N)
k=0 k=0

= ¢ oplee” Tl L O(N) uniformly on supp(Ar).

The right hand side is nearly constant Ap-a.s., because 12" 71 contracts the sup-
port of At (a subset of A7) to a set of diameter less than A~!, and the Z—coordinates
of points in such a set must be uniformly bounded away from one another. It follows
that for A\r—a.e. w € Arp,
*[log* T]—2
Z XN (w) = €[ypl°e" TN w)] + O(N) uniformly in 7.

Taking expectations with respect to Ap and dividing by [log* T, we obtain
+ [log* T]—2

S )] Y XY | 4ol), wT o (72)
k=0

log"T] 7\ [log" T

[log* T]—2

The expectation of Tog 7] T] Zk Xév with respect to the normalized Lebes-

gue’s measure on [§ = O] is zero (because 1 is an automorphism with zero drift).
We will use the genericity (in the form Ap ——%Normahzed Lebesgue[¢—g)) to

show that something close happens to the Ap— expectatlon More precisely:



A RANDOM WALK DRIVEN BY AN IRRATIONAL ROTATION 35

Claim. If wg is generic then for every € there exists N s.t. for all T large enough
max{|Ex, (£ X)) : 0 <k < £[log"T] — 2} <e. (7.3)
Together with (7.2), this implies that %ék (wo) k—) 0 and finishes the proof.
— 00

We begin the proof of (7.3). Fix wy generic and ¢ > 0, and let C,dy, Ny be
some parameters that will be calibrated at the end of the proof. Let /\g denote the
length measure on Az N [|¢| < C], normalized so that AS[¢ = 0] = 1 (this is not a
probability measure).

Step 1. Choosing N > Ny and 7 s.t. AZ [| % X{| > do] < & for all T > 7.

Proof. Fix 0 < § < dg. Since %f oYk k—> 0 almost everywhere with respect to
— 00

Lebesgue’s measure, we can use Egoroff’s theorem to find N = N(§,C) > Ny s.t.
Ag = {w € St : |[¢(w)| < C,|FXY| > 0o} satisties m(Ag) < &, where m is the area
measure on St.

Since wyq is generic, )\g converges w* to the Lebesgue measure on [|¢| < C]. The
indicator functions of Ag and [ = 0] are discontinuous, but all discontinuities lie
on the boundaries of the parallelograms of the Markov partition, and their images
under 1 ~N. N is fixed, therefore the closure of the singular set has measure zero.
Thus there is no problem to show using a standard approximation argument that
MG (Ao) P m(Ag) < 0. It follows that there exists 7 = 7(J,C) s.t. for all

T > 7(5,C), AG(Ag) < &, proving step 1.

Step 1 allows us to bound E . (4 X{") as follows. Choose &y < &/(1+max |Fy|),
then for all T > T,

|]E,\T(%Xév)| S 60 +max\ﬁXéV| . /\T“%Xé\q Z 50] S 50(1 —|—max|F¢|) < E.

It is tempting to try to bound EAT(%X,SZ) for k£ # 0 in the same way. Unfortu-
nately the methods of step 1 can only be used for bounded k, whereas (7.3) calls
for a uniform bound for 0 < k < [log* T, as T — .

We will take an indirect approach. Imagine we were able to construct self maps
O : Ar — A7 (0 < k < - [log" T] — 2) with the following properties:

e XY = X}V o 0+error, uniformly bounded by Ej

e 0, is Borel, one-to-one, and 0, (Ar N[ =0]) C Ar N €] < (]

o Ol < % < C, where d¢ is the (Lebesgue) length measure and C. is a global
constant, independent of N, T, k, and ¢

Then it would follow that Ay < C.\§ o Ok|[e=0, and if Ey/No < do then
Al 5 X' > 200) < Cr(AF 0 0k)([| 7 X5 | > 200] N [€ = 0])
< CAEFXY 00,1 > 6] < CAZ] L X > 60] < Crrbo.
This, and the fact that sup |X}'| are uniformly bounded, is sufficient to bound
Ex, (| %X |) uniformly and prove (7.3).
In reality we do not know how construct 6 like that, because of edge effects at

the endpoints of Ap. Luckily these edge effects can be controlled well enough to
push this argument through with minor modifications. The details follow.

Step 2. Breaking Ap into the “interior” and “edge” s—fibres.
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We use the Adler—Weiss coding of Theorem 2.8 and Lemma 3.3. Recall that an s—
fibre is a set of the form W (z, k) :=lift to [ = k] of W*(z) := {mo(y) : y5° = x5°}.
This is a stable linear segment, with length h(xo).

We define an ng-—stable block to be the lift to [ = k] of a set of the form

{mo(y) : ¥=5,, = =5, }- These are closed stable linear segments, and their length is
AOh(x_py) X A0 ——— 0. (A, < B,, means C~! < A,,/B,, < C for all n large.)

ng—o0
Different ng—stable blocks are disjoint, or they meet at one or two endpoints. Every

point belongs to at most two ng—stable blocks.

By := 18" TI(Az) is a stable linear segment with length in [1, A=']. The ng—

stable blocks which intersect the relative intrior of Br fall into two groups:

e two or less “edge” np—stable blocks which cover the endpoints of Br;

e (1 —4A™ maxh)/(A" minh) or more “interior” ng—stable blocks which lie com-
pletely inside Brp.

Since the number of interior ng—blocks tends to infinity as ny — oo, it is possible

to fix once and for all ng in such a way that there is at least one interior block.

This choice is independent of Ny, therefore it is possible to assume without loss
of generality that Ny > ng.

If [log* T] > ng, then the decomposition of By = 18" T1( A7) into interior and
boundary ng—blocks induces a decomposition of A7 into interior and edge s—fibres.
Here and throughout,

e An edge s-fibre of Ar is an s-fibre in ¢ ~[1°8” T](edge ng-block of Br).
e An interior s—fibre of Ap is a stable fibre in ¢~ [°8" Tl (interior ny-block of Br).

Let Wi, #ona be the collection of interior and edge stable fibres in Ar. The interior
of Ap is Ar(int) := | #int, and the boundary of Ar is Ar(bnd) :=J #ona-

Step 3. Defining ), on the interior of A7 (0 <k < +[log" T] — 2).

Recall that ¢ is the dynamical graph of the Markov partition . An admissible
word is a finite word wyg - - - w,, € P" s.t. wg — - -+ — w, is a path on ¥.

Since Y (¥) is topologically mixing, there exists a constant M, such that for
every pair of a, b € B there is a path w,;, on ¢ of length My, s.t. aw,,b is admissible.

Fix for such a,b a word w,;, and call it the bridge from a to b. In what follows

(a, bridge, b) := (a, w,

We define 6, : Ar(int) — Ar as follows. Suppose w € Ar(int). Fix a stable fibre
W#(z,n) C Ap(int). All but countably many points in W*#(z,n) can be uniquely
represented in the form (y,n) where

Yy € E(g) 5 ygo = l,go’ E(w) =1, and W(w) = WO(g)'

Write y = (yZ2|Bo, By, - - -, By, Y ), where B, are words of length of N, and the
zeroth coordinate is to the immediate right of |. We let 0 (y,7n) := (2,7") where

Qlast bfirst ) *) :

z=o*Mer(y=  |bridge, By, bridge, By, . . ., By _y, bridge, By, bridge, yyy 1))
[log* T]—1
n =n+ Z F(o’y) — F(07z), where F := F, o m.
j=0
What we have done here is to exchange block zero with block &, plug-in bridge words
to ensure admissibility, and at the end apply the shift and modify 7 to ensure that
we remain inside Ar (see below). Here are some properties of 6.
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(1) X 00 = XN +bounded error: ) exchanges the zeroth block with the k—th
block, and therefore | X o 0, — X}¥| < 6M,, max |Fy|. Here we are using (2.4).

(ii) Ox[Ar(int)] C Ap(int) for all0 < k < +[log* T] —2: We abuse notation and
identify a point in St with its symbolic coding in ¥(¥) x Z. Suppose (y,7) belongs
to an interior ng—block and 0 < k < %[log* T] — 2, then

(ollog” Tlgyoo = gllog” Tl (1) because of the o*Mer in the definition of z, and

[log™ T)—1
Pl Nz ) = (o2 M (2), 0+ > F(o72))
=0

log™ T]—1
= (olo8" 1) 0+ F(d? by the definition of n’.
( 2),1 y)), by 7
=0

Since N > ng, ¥ Tl(z,1/) belongs to the same ng-block which contains
ypllos™ 71 (y,m). This is an interior ng-block of By = Ylog" TI(Ar). So (z,71) € Ar.

(iti) Ox[supp(Ar)] C supp(AS) for C" := 100[ My, 4 1] max |Fy|: It is enough to
check that |n' —n| = ‘Zgligo* =1 p(oiz) — Z;igo* =1 F(ij)) < C'". To check this
we recall that F' is constant on 2—cylinders, therefore the difference between the

two sums can only come from the following sources:

— the effect of the shift by o4 bounded by 2 - 4M, max |Fy|

— the sum over the bridge words, bounded by 4Mp, max | Fy|

— the value of F(c7z) for the j at the end of B, B,_;, and B,, with a total
effect bounded by 3max |F)|

This gives the bound above with C' much smaller than claimed.

(iv) O is one-to-one on Ar(int): To reconstruct y from z one just needs to erase
the bridge words (whose position is always the same), and then exchange the k—th
block with the zeroth block of what remains. Once y is known, 7 can be easily

calculated from 7’ and 2.

(v) dlofy/dl is uniformly bounded away from 0,00, where € is the length measure
on Ar: For every a € 3(¥), the length of the stable linear segment

[@%,] :={w € Ap(int) N [§ = 0] : 7(w) = mo(y), y; = a; (j = —n)}
is A"h(a_y), because ¥ "[a>=,] = W?*(oc "a), {(W*(c "a)] = h(a—,), and "
expands linear stable segments by a factor of A™". With this formula at hand, it is

easy to see that —d@f’“ € [A4Mbr(—$;?(2), )\4M”T(—ﬁ?§g)].

Step 4. Defining 0, on A(bnd).

Fix once and for all an interior stable fibre W*(z,n) of Ar. We will define 65 on
an edge stable fibre by first mapping it into W*(z,7), and then applying 0k (int)
as defined in step 3.
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The resulting transformation is 0y : (y,n) — (2,1) where

z = oM (y~1 |bridge, By, bridge, By, . . ., B;,_;, bridge, By, bridge,

E?Vg T)-1 bridge,xﬁ‘;g* T])
[log™ T7
n=n+ Y Fyloly) - Fy(o'z)
7=0

The following properties can be verified as in the previous step:

(i) X' 06 = XN +bounded error. The error is bounded by 8 My, max |Fy|.
(i) Ox[A(bnd)] C Ap(int) and 0x[A(bnd)IN[E = 0]) C Ap(bnd)N[|¢] < C'] with
C’ as above.
(iii) Oy is one-to-one on each boundary stable fibre, and its Radon-Nikodym

derivative takes values in [A>Mer (Zil) ASMM(Q?; maxh )]

Step 5. Proof of (7.3).
We estimate Ex, (%X} ) for 0 < k < +-[logy—1 T]—2. Since | X}Y| < N max|Fy|,
|E)\T *Xk )| < 209 +max|F¢,\ . )\T(Ak) (74)

where Ay, := {w € S : £(w) =0, |FXP| > 260}. We will bound A (Ay).
First we choose C, Ny, dp: C = (' = 100(My, + 1) max|Fy|, Ny so large that
100y mex ol 5, and 6y = e/(2 + BA5Mor (B2xh) may | Fy).

By construction, | X} — X{¥ o 0| < 8My, max |Fy|, so if | & X} (w)| > 20y then
|+ X (O (w))| > 200 — %ﬂlm > dp. We see that

Ou(Ar) C {w € At E(w)| < O, |5 Xg' | > &}

Applying 9,;1 to both sides and recalling that 6; is piecewise invertible, at worst
three-to-one (edge effects), and 8% > \5Mer(minh) we fing that

/\T(Ak) < 3/\75Mbr(w)/\7« UWXO ‘ > 50] .

min h
By step 1, Ap(Ay) < 3A72Mer (maxh) s, Qubstituting this at (7.4) we find that
B (5 X0)| < 00(2 4 3AMor (8X0) max |F|) < € as required. a.

APPENDIX A. PROOFS OF PROPOSITION 2.3, LEMMA 2.7, AND LEMMA 2.9

Classification of homogeneous automorphisms. We prove Proposition 2.3:

(1) If A€ SL(2,Z), A= (o } )mod2 and &y € Z, then there is a unique homo-
geneous automorphism with derivative A and drift §g.

(2) If Ae SL(2,Z), A= ( ° § )mod2and &y € § + Z, then there is a unique
homogeneous automorphism with derivative A and drift do.

(3) No other homogeneous automorphisms exist.

Step 1. Existence of homogeneous automorphisms as in parts 1 and 2.

Proof. Let I'(2) :={A € SL(2,Z): A= (5 7 )mod2},I:=T(2)u( % 4 )I(2).
['(2) is generated by ( o 1), (5 ¢ ),and ( ' ° ). We will construct

) and drift +1;

e A homogeneous automorphism with derivative ( oY
e A homogeneous automorphism with derivative ( 0 3 ) and drift 0;



A RANDOM WALK DRIVEN BY AN IRRATIONAL ROTATION 39

e A homogeneous automorphism with derivative ( , ) and drift 0;
o %) and drift 0;

e A homogeneous automorphism with derivative ( ot ) and drift %

e A homogeneous automorphism with derivative (

The automorphisms in part (1) can be constructed from the first three automor-
phisms. The automorphisms in part (2) require an additional composition with the
fourth automorphism.

1) and drift 1: D

(=N

A homogeneous automorphism with derivative (

A homogeneous automorphism with derivative ( 0 2 ) and drift 0: Divide St into
horizontal cylinders, as indicated by the dashed lines in figure 5(a). Act on each
cylinder by the map (z,y) — (z + 2y mod 2,y) up to identifications, where (z,y)
are measured relative to the bottom left corner. These maps equal the identity on
the boundary of the cylinder (the horizontal sides of the rectangle), therefore they
glue to an automorphism . The derivative of v is ( o 2 ), 1) commutes with D,
and v fixes the singularities of St. It has zero drift, because the Frobenius function
with respect to the horizontal rectangles vanishes.

A homogeneous automorphism with derivative ( 30 ) and drift 0: The same con-

struction, but using the decomposition of St into vertical cylinders (figure 5(a)).

A homogeneous automorphism with derivative ( ot ) and drift % Decompose

St into hotizontal rectangles. Rotate every rectangle 90 degrees counterclockwise
around the midpoint of its top side, turning it into a vertical rectangle. These maps
glue continuously to an automorphism of St (figure 5(b)). Using the Z—coordinate
defined by the horizontal rectangles, one sees that the average drift is %

A homogeneous automorphism with derivative ( P ) and drift 0: Suppose P
is the automorphism with drift 1 and derivative ( % ) constructed above, then
¢ := D7 ! 04? has zero drift and derivative ( oY )

Step 2. A homogeneous automorphism with derivative ( o0 ) is equal to D for
some k € Z. Two homogeneous automorphisms with the same derivative and drift
are equal.

Proof. Let 1 be a homogeneous automorphism with derivative ( ; | ). Fix a
horizontal rectangle R and let py denote the singularity at its lower right corner.
Given p € int(R), let v, C R denote the linear segment from po to p. Since 1 fixes
the D—orbit of po, ¥[y,] is a linear segment from py or D(py) to 1 (p). Since the
derivative of ¢ is ( oY ), ¥[vp] has the same slope, length, and direction as ~,.

There are infinitely many such segments, one for every horizontal rectangle
D*(R), k € Z. By reasons of continuity there is some fixed k& € Z such that
Y[y,] € D¥(R) for all p € int(R). It follows that ¢ = D¥ on R. Since 1 commutes
with D, ¢ = D* on St. This proves the first part of step 2.

For the second part, suppose 1,2 have the same derivative and drift, then
Y1 095 " has derivative (§ { ) and drift zero (Lemma 2.2). So ¢ oy ' = DF
with k& = drift = 0.

Step 3. For every homogeneous automorphism, either the derivative is ( oY )mod 2
and the drift is in Z, or the derivative is ( °, ; )mod?2 and the drift is in 1 + Z.
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FIGURE 5. (a) decomposition of St into horizontal and vertical
cylinders; (b) a homogeneous automorphism with drift 3

Proof. Suppose 9 is a homogeneous automorphism, and let ¢y : Sty — Sty be the
projection of ¥ to Stg.

Sto = R?/G where G is generated by the translations by G) and (_11), see
figure 1(c). The change of coordinates ©(;) = %( 1 ) gives the identification
Stg ~ RQ/ﬁZQ. In these coordinates, the punctures are v/2Z2 and % (1) +/272,
and g is represented by 120 =00 ¢A0 0 0.

Let B denote the derivative of 1¢y. The linear segments in R? from (8) to

ﬂ(é), \/5(?) project to closed curves 1, v, on R?//272. 120 fixes /272 (a singu-
larity), therefore if we apply @0 to v1, 72, and lift the result to R? at (8), then we get

linear segments from (8) to B (‘65) and B (\%) These segments project to the closed
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curves g [fyl],zgo[’yg] on R?/y/272, so necessarily B(?),B(\%) = (g)mod\/iZZ. It
follows that B € GL(2,Z).

Actually, B € SL(2,Z): |det B|] = 1 because @Zo is an orientation preserving
self-bijection of a surface of finite area, and det B > 0 because {b\o is orientation
preserving.

Next we use the fact that @0 fixes % (}) ++/272. Using the linear segment from
a3 1
(8) to %(i) as above, we see that B(Vf) € (f) + V/2Z2. Multiplying by /2 and

=3

considering the result modulo 2 we see that the2 rows of B have entries of different
parity. So B(mod2) = (o 1 ),( % o),(1 o),or (o i )(mod2). Since
det Bis odd, B=( , 9 ) or ( % 5 )mod2.

Returning to ¢y = © o 720 o ©, we see by direct calculation that the derivative
of 1 also has entries with different parity at every row. As before, this means that
the derivative of ¢ is (o | )or ( % g )mod2.

Suppose the derivative of ¥ is ( oY )mod 2. We saw in step one that there

exists a homogeneous automorphism ¢ with the same derivative and with drift
zero. By step two, 1 0 ¢~! = DF for some k € Z. It follows that §(v)) = k € Z.

If the derivative of 1 is ( °, ; )mod2, then there is a homogeneous automor-
phism ¢ with the same derivative and with drift % By step two, 1o ¢~ = DF for
some k € Z, and §(¢)) =k + 1. O

Proof of Lemma 2.7. Suppose &, € R\ Q and £ # 1. We are asked to produce
a matrix ( ¢ ) € I'(2) such that s; := Zfidb and sy 1= zgidb satisfy one of the
following: One of s1, s is in (—1,0) and the other is in (1,00) (“case 17); Or one

of s1,s92 is in (0, 1) and the other is in (1,00) (“case 2”).

Let H := {# € C : Im(z) > 0}, then I'(2) acts on the upper half plane by
( o b ) sz = Zjis It is well known that the hyperbolic polygon F' with vertices
—1,0,1, 00 is a fundamental domain for this action [Fo]. So {g(F):g € T'(2)} is a
tesselation of H. Notice that the vertices of g(F') belong to Q U {oo}.

Label the sides of ' on the inside by {a,a,b,b} as in figure 6. Notice that a is
mapped to @ by ( o2 ), and b is mapped to b by ( y 0 ) Extend the labeling
to g(F) (g € T'(2)) in the natural way. Now every side in the tesselation has two
labels z, T, one internal and the other external (which is which depends on the tile
we use as reference).

Let 7 denote the (open) upper half of the circle with diameter [£,7] or [n,£].
We think of « as of a geodesic in the upper half plane, from £ to n. Let z =
(+++,x_1,20,21, -+ ) denote the ordered sequence of internal labels of the sides of
the tiles v enters. The position of the zeroeth coordinate is not important. The

following facts follow from the geometric structure of the teselation:

(1) z is a doubly infinite (otherwise £ or 7 is a vertex of g(F') for some g € I'(2),
in contradiction to the irrationality of £, 7).

(2) For all i, x; # Ti+1 and T; =+ Tit1-

(3) z does not begin or terminate with a constant ray (otherwise £ or 7 is a
vertex of g(F') for some g € I'(2), in contradiction to their irrationality).

Suppose first that x contains the symbol @. Then it must contain @b or @b
(otherwise it terminates with the constant sequence @@---). If z does not contain
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Vecbex cyeles:

= = - aaa - (c0)
x|l a| & CAbab- D)
abab- (+1)
R S } (o)
bbb

FIGURE 6. Fundamental domain of I'(2)

@, then it must contain b or b (otherwise it equals - --aaa---). If z contains b but
not @, then x contains ba (otherwise it terminates with bbb - - - ). If 2 contains b but
not @ then z contains ba (otherwise it terminates with bbb---). In summary, x
must contain at least one of the words @b, ba, @b, ba.

Notice that if the cutting sequence of the geodesic from & to 7 is (x;);cz, then the
cutting sequence of the geodesic from 7 to £ is (T_;)iez. Therefore we may assume
without loss of generality that x contains @b or @b, otherwise exchange £ < 1.

Suppose first that z contains the word @b, then v enters some tile F'™* through
side @ and leaves it through side b (entering an adjacent tile with side b). There is
P € T'(2) which maps F* onto F. Since P-~ enters F through side @, P-£ € (1,00).
Since P -~y leaves F through side b (entering the adjacent tile through side b),
P-ne(0,1). This is case 1.

Next suppose x contains the word @b, then 7 enters some tile F* through side @
and leaves it through side b (entering an adjacent tile with side b). There is P € I'(2)
which maps F* onto F. Since P - enters F through side @, P - £ € (1,00). Since
P -~ leaves F through side b, P -n € (—1,0). This is case 2. O

Proof of Lemma 2.9 (Aperiodicity Lemma). Let F' := Fy, o mp. We have to
show that if e = Ah/hoo for some t € R, A € S, and h : ¥(¢) — S* continuous,
then t € 2nZ, A = 1 and h = const.

Proof. We first consider the special case when 1 fixes all the singularities of St.
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It is enough to find z,y € X(¥) such that for some n,

n—1
o"(z) =xz,0"(y) =y, and F,(z) — F,.(y) = £1 where F,, = Z Foo™
k=0

Indeed, if e®*f = Ah/h o o, then e = A"h/h o 6", whence e®(@) = \" and
(¥ — \n. Dividing, we find that e = 1, whence t € 27Z. But if ¢t € 27Z
then \h/h oo = e = 1, whence h is a continuous eigenfunction of o. Since
0 :%(9) = X(9) is topologically mixing, A = 1 and h = const.

We will now construct such z,y. It is enough to do this in the case when v has
a fundamental polygon of the form R = 6y(Ry), where 6y : Stg — Sto is a toral
automorphism which fixes the punctures of Stg, and Ry is as in figure 2.

Case (b). The slope of the unstable direction is bigger than one, and the slope of
the stable direction belongs to (—1,0).

Let 9°Q;, 0"Q; denote the stable and unstable boundaries of @Q;. In case (b),
0°Q2 3 (1,0) =: po and 9“Q2 > (2,0) =: go. These are fixed points of 1. Their
lifts to St are fixed points of ¢ (by assumption).

Recall that ¢9(Q2) is the union of parallelograms Q2., k = 1,..., Na, where the
bottom stable side of ()21 is part of the bottom stable side of ()2, and the bottom
stable side of ()2 ;41 is the top stable side of Qa2 , k=1,..., Ny — 1.

Using the fixed point py and the relation ¢y(9°Q2) C Q2, it is easy to see that
Q2.1 C Q2, Q21 = Q21, and g(Q2,1,Q2,1) =0. Soz = (---,Q21,Q21,Q2,1, )
is a well defined point in X(¥), 0" (z) = z, and F,(z) = 0 for all n. [Caution: for
other k, Q2 is not necessarily in Qs.]

Similarly, some (); ; C @2 contains g in its u-boundary, and @Q;; — @, ; with
9(Q2,1,Qi,;) = 0. We claim that ¢ =2 and 1 < j < Na:

e qo =y (q0) C vyt (8"Qij) C 0“Q;. In case 1, this forces i = 2.

e The u-side of Q2 ; N1y ' (Q2;) which contains g equals 1y ' [W¥(go)], where
W"(qo) is the u—fibre of gy. Since vy is expanding on W*(qg), the u-side of
Qa,; N1y ' (Q2,;) does not meet the endpoints of W*(gp). So 1 < j < Na.

We see that (2 41 is well defined, and that this is the parallelogram which follows
the rightmost B—element in Qs.

Looking at figure 2, we see that Q241 C Q2, 9(Q2,1,Q2,+1) = —1, and
9(Q2,5+1,Q2,1) = 0.

We now define y := (-, Q2,1, Q2,54+1;@2,1, Q2,415 - - ), then y € X(¥), 02(@ =
y and Fy(y) = —1. Using z,y and n = 2, we get the aperiodicity of F in case 1.

Case (a). The slope of the unstable direction is bigger than one, and the slope of
the stable direction is in (0, 1).

Just like in case (b), the P-element in Q2 which contains py in its bottom s—side
is Q2,1, and Q2,1 — Q2,1 with g(Q2,1,Q2,1) =0. Soz = (--- ,Q2,1,Q2,1,Q2,1, ")
belongs to ¥, o(z) = z, and F(z) = 0.

To construct y, we separate cases according to whether Q22 C Q1 or Q22 C Q2.

Suppose first that Q22 C (2. Looking at figure 2 and noting that py € 9°Q)2,
we see that Q21 C @2, and that every P—element P in Q)2 satisfies P — ()21 and
9(P,Q2,1) = 0. In particular Q22 — Q2,1 and g(Q22,Q2,1) = 0. Since Q21 C Q2,
Q2,1 — Q22. Using the assumption that the slope of the unstable direction is
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bigger than one, it is not difficult to see that g(Q2,1,Q2,2) = 1. We now set

Y= (- 1Q2,1,Q2,2; Q2,1, Q2,25 ).
This is a point in (%), 0*(y) = y, and F5(y) = 1. Using z and y and n = 2, we

get the aperiodicity of F, assuming that Q2,2 C Q2.
Now consider the case that Q2 2 C 1. The following observations follow from

figure 2 and the fact that py € 9°Qa:

e As before, Q21 — Q22, Q22 C Q1 and g(Q2,1,Q22) = 1.

e Q1,1 C Q2, and every P—element P in Q; satisfies P — Q1.1, g(P,Q1,1) = 0. In
particular, Q22 — Q1,1, and g(Q2,2,Q1,1) = 0.

o All P-elements P in Q9 satisfy P — Q21 with g(P,Q2,1) = 0. In particular,
Q11— Q2,1 and g(Q1,1,Q2,1) = 0.

We now let y := (- 3Q21,Q2,2,Q1,1;Q2,1,Q22,Q1,1;---). This is a point in (%)
st. 0®(y) =y and F3(y) = 1. Using z,y and n = 3, we see that F' is aperiodic.

This proves the lemma in case v fixes the singularities of St. The general case
can be reduced to this case as follows.

Suppose % is a homogeneous automorphism, and assume that F' := Fy o mg
satisfies e®®f" = Ah/h o o for some t € R, A € St and h : £(¥4) — S! continuous.

Let G := F+ Foo and g := h(hoa), then e?“ = X\2g/g o . Observe that
G = Fy» o mg, and that ¥? fixes the singularities of St (this holds for any ho-
mogeneous automorphism, by virtue of the fact that it preserves the D—orbits of
the singularities of St). By the first part of the proof, ¢ € 27Z. It follows that
Ah/h oo = et = 1, whence h is a continuous eigenfunction of o. Since o is
topologically mixing, h = const and A = 1. ([
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