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Abstract

We consider the dynamics in a neighborhood of an elliptic equilibrium point with a
Diophantine frequency of a symplectic real analytic vector field and we prove the following
result of effective stability. Generically, both in a topological and measure-theoretical
sense, any solution starting sufficiently close to the equilibrium point remains close to it
for an interval of time which is doubly exponentially large with respect to the inverse of
the distance to the equilibrium point.

1 Introduction

The aim of this paper is to study the effective stability of elliptic equilibrium points of real
analytic Hamiltonian systems in n degrees of freedom, for any n ∈ N∗. Our main result can
be stated informally as follows. The exact definitions and statements are gathered in Section
1.6 below.

Theorem. If the frequency vector of the elliptic equilibrium is Diophantine, and under an
additional open and dense condition of full Lebesgue measure on the coefficients of the power
expansion of H at the equilibrium up to order [n

2+4
2 ], the equilibrium is doubly exponentially

stable.

This result will be derived from a more general effective stability result for non-resonant
elliptic equilibrium points, which crucially uses a version of Nekhoroshev estimates for steep
real-analytic elliptic equilibrium points which is proved in a companion paper [BFN20]. It
extends previous results of super-exponential stability that were only proved for invariant
tori, and where much stronger non-generic assumptions were required. Inspired by the tech-
niques of the current paper, we proved in the subsequent paper ([BFN17]) that an invariant
Lagrangian Diophantine torus is generically doubly exponentially stable. As we will discuss
in detail in the sequel, the study of the stability of tori and that of points have some intrinsic
differences. Our proofs build on the idea introduced by Giorgilli and Morbidelli in [MG95] of
combining averaging estimates due to Birkhoff normal forms with the Nekhoroshev geometric
stability theory. Before stating the exact results and giving more explanation about the proof,
let us start by describing the general setting.
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1.1 Stability of elliptic equilibrium points

We consider a symplectic manifold (M,Ω) of dimension 2n, n ∈ N, where Ω is an everywhere
non-degenerate closed 2-form, a smooth symplectic vector field X on M (meaning that the
one-form iXΩ is closed, or, equivalently, that the Lie derivative LXΩ vanishes identically)
and an equilibrium point p∗ ∈ M , that is X(p∗) = 0. We are interested in studying whether
p∗ is stable in the following sense (in the sense of Lyapounov): given any neighborhood U of
p∗, there exists a smaller neighborhood V of p∗ such that for any point p0 ∈ V , the unique
solution p(t) of X starting at p0 (that is, the unique curve p(t) satisfying ṗ(t) = X(p(t)) and
p(0) = p0) is defined and contained in U for all time t ∈ R.

The problem being local, there are some obvious simplifications. First, by the classical
theorem of Darboux, we may assume without loss of generality that (M,Ω) = (R2n,Ω0) where
Ω0 is the canonical symplectic structure of R2n, and that p∗ = 0 ∈ R2n. Then, we may also
assume that the one-form iXΩ0 is in fact exact, meaning that X is Hamiltonian: given a
primitive H of iXΩ0 and letting J0 be the canonical complex structure of R2n, the vector
field can be simply written X = XH = J0∇H, where the gradient is taken with respect to
the canonical Euclidean structure of R2n. Therefore 0 is an equilibrium point of XH if and
only if it is a critical point of H, that is ∇H(0) = 0. Moreover, the Hamiltonian function H
being defined only modulo a constant, it is not a restriction to impose that H(0) = 0.

Let (x, y) = (x1, . . . , xn, y1, . . . , yn) be symplectic coordinates defined in a neighborhood
of the origin 0 ∈ R2n so that (ẋ(t), ẏ(t)) = XH(x(t), y(t)) is equivalent to the system

ẋ(t) = ∂yH(x(t), y(t)), ẏ(t) = −∂xH(x(t), y(t)).

Since H(0) = 0 but also ∇H(0) = 0, the Taylor expansion of H at the origin is of the form

H(x, y) = H2(x, y) +O3(x, y)

where H2 is the quadratic part of H at the origin and where O3(x, y) contains terms of order
at least 3 in (x, y). We can now define the linearized Hamiltonian vector field at the origin
to be the Hamiltonian vector field associated to H2:

XH2 = J0∇H2 = J0A

where A is the symmetric 2n× 2n matrix (corresponding to the Hessian of H at the origin)
such that H2(x, y) = A(x, y) · (x, y). In order to study the stability of the equilibrium point,
it is useful to first study its linear stability, that is, the stability of the origin for the linearized
vector field (the latter is obviously equivalent to the boundedness of all its solutions). The
matrix J0A possesses symmetries which imply, in particular, that if λ is an eigenvalue then
so is −λ. It follows that if J0A has an eigenvalue with a non zero real part, it also has
an eigenvalue with positive real part and in this case one can find solutions of the linear
system that converges to infinity at an exponential rate: this implies linear instability but
also instability in the sense of Lyapounov. We will say that the equilibrium point is elliptic
if the spectrum of the matrix J0A is both purely imaginary and simple. This implies linear
stability, while linear stability is equivalent to J0A being semi-simple and its spectrum purely
imaginary (but the assumption that the spectrum is simple, which is already a non-resonance
assumption, will be important for us in the sequel). Note that if we only assumed the spectrum
to be purely imaginary, then, if the matrix J0A has a non-trivial Jordan block, one can find
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solutions for the linearized vector field converging to infinity at a polynomial rate, implying
linear instability (but not necessarily instability in the sense of Lyapounov).

So from now on, 0 ∈ R2n is assumed to be an elliptic equilibrium point of the Hamiltonian
system defined by a smooth function H. Since the spectrum of the matrix JA is invariant
by complex conjugation, it has necessarily the form {±iα1, . . . ,±iαn} for some vector α =
(α1, . . . , αn) ∈ Rn with distinct components: this is usually called the frequency vector. By
a result of linear symplectic algebra (a simple case of a theorem due to Williamson, see
[AKN06]) one can find a linear symplectic map which puts the quadratic part into diagonal
form (this result requires the components of α to be distinct): hence we can assume that H
is of the form

H(x, y) =

n∑
j=1

αj(x
2
j + y2

j )/2 +O3(x, y), (1.1)

where our standing assumption from now on is that the Hamiltonian H is real-analytic, hence
it can be extended as a holomorphic function on some complex neighborhood of the origin.
Also, we will always assume that the frequency vector α is non-resonant, that is for any
non-zero k ∈ Zn, the Euclidean scalar product k · α is non-zero.

Note that fixing such coordinates imposes a sign on the components of the vector α ∈ Rn.
Given a point (x, y) ∈ R2n, let us define I(x, y) ∈ Rn+ by

I(x, y) = (I1(x1, y1), . . . , In(xn, yn)), Ij(xj , yj) = (x2
j + y2

j )/2, 1 ≤ j ≤ n

so that H can be written again as

H(x, y) = α · I(x, y) +O3(x, y) := h1(I(x, y)) +O3(x, y)

The linearized vector field, associated to h1(I(x, y)) = α · I(x, y), is easily integrated:
given an initial condition (x0, y0), the corresponding solution (x(t), y(t)) is quasi-periodic.
More precisely, letting I0 = I(x0, y0) ∈ Rn+, one obviously has I(x(t), y(t)) = I0 for all time
t ∈ R and so the set T (I0) = {(x, y) ∈ R2n | I(x, y) = I0} is an invariant torus, the dimension
of which equals the number of strictly positive components of I0, and on which the flow is
just a flow of translation. The same holds true in fact for an arbitrary Hamiltonian depending
only on the quantity I(x, y), and such Hamiltonians will be called here integrable.

A central question in Hamiltonian dynamics is then the following.

Problem 1. For a Hamiltonian H as in (1.1), is the origin stable or unstable?

By stable we mean Lyapunov stable in the sense that points near the origin remain in a
neighborhood of the origin. Other notions of stability may also be addressed as we will see
below.

1.2 Perturbation of completely integrable systems.

If H is integrable, the origin is obviously stable. Now in general H is, in a small neighborhood
of the origin, a small perturbation of the integrable Hamiltonian h1 and thus classical tech-
niques from perturbation theory (such as KAM theory, Aubry-Mather theory, Nekhoroshev
estimates or Arnold diffusion) may be used to tackle the problem. However, this setting of
singular perturbation theory is quite different from the usual context of a perturbation of an
integrable Hamiltonian system in action-angle coordinates, that is, a Hamiltonian of the form
h(I) + εf(θ, I), where ε is the small parameter and (θ, I) ∈ Tn × Rn.
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A first obvious difference is that for a Hamiltonian H as in (1.1), one cannot introduce
action-angle coordinates on a full neighborhood of the origin: indeed, if we let Ij = Ij(xj , yj),
then the symplectic polar coordinates

xj =
√

2Ij cos θj , yj =
√

2Ij sin θj , 1 ≤ j ≤ n

are analytically well-defined only away from the axes Ij = 0. This amounts to the fact that
for a Hamiltonian integrable in a neighborhood of an elliptic equilibrium point, the foliation
by invariant tori is singular in the sense that the dimension of each leaf is non-constant (it
varies from 0 to n), whereas in action-angle coordinates this foliation is regular.

A second difference lies in the fact that for Hamiltonians of the form h(I) + εf(θ, I) the
perturbation f is usually considered as arbitrary whereas in (1.1) the perturbation is more
restricted as it is given by the higher order terms O3(x, y).

Finally, a third difference is that, under the assumption that α is non-resonant, a Hamil-
tonian H as in (1.1) possesses infinitely many integrable approximations hm, for any integer
m ≥ 2 (given by the Birkhoff normal form, see below for more details) which are uniquely
determined (once the vector α is fixed). This is in sharp contrast with a Hamiltonian of the
form h(I) + εf(θ, I) which does not have, in general, further integrable approximations.

As we will see below, these differences have the following general effect: in a neighborhood
of an elliptic equilibrium point, as opposed to a perturbation of an integrable system in action-
angle coordinates, stability properties are stronger and instability properties are harder to
exhibit.

1.3 KAM stability

Due to the classical KAM (Kolmogorov-Arnold-Moser) theory, one can prove, for any number
of degrees of freedom and assuming some non-degeneracy assumption (on the higher order
terms O3(x, y)), that the elliptic equilibrium point is KAM stable: in any sufficiently small
neighborhood of the origin, there exist a positive measure set of Lagrangian invariant tori, on
which the dynamics is conjugated to a linear flow, having the origin as a Lebesgue density
point.

Related to the results that we will expose in the following sections, let us mention that it
is sometimes possible to replace the non-degeneracy assumption in the study of stability by
arithmetic conditions on the frequency vector α of the linear part of the flow at the equilibrium.
Indeed, in the analytic setting, Herman conjectured the KAM stability (without the Lebesgue
density requirement) of Diophantine equilibria without any non-degeneracy assumption. In
([Her98]) he made the following conjecture (in the slightly different context of symplectic
maps).

Conjecture 1 (Herman). Assuming that α is Diophantine, in any sufficiently small neigh-
borhood of the origin there exists a set of positive Lebesgue measure of Lagrangian invariant
tori.

Recall that α ∈ Rn is said to be Diophantine if for some constant γ > 0 and exponent
τ ≥ n − 1 it holds that |k · α| ≥ γ|k|−τ1 for all k = (k1, . . . , kn) ∈ Zn \ {0}, where |k|1 :=
|k1|+ · · ·+ |kn|. We then use the notation α ∈ DC(τ, γ).

Herman’s conjecture is true for n = 2, even in the smooth category, as it was proved
by Rüssmann (see for instance [Rüs02] and [FK09] in the discrete case, for respectively real-
analytic and smooth maps, and [EFK13] or [EFK15, Section 7.1] in the continuous case) but
unknown in general (see [EFK13, EFK15] for partial results).

4

20 Nov 2019 12:06:31 PST

Version 2 - Submitted to Adv. Math.



Observe also that this KAM stability phenomenon without any non-degeneracy condition
has no counterpart for perturbed integrable system in action-angle coordinates, since any
integrable system that does not satisfy the so-called Rüssmann non-degeneracy condition can
be simply perturbed so that no invariant torus survives (see [Sev03]).

1.4 Arnold’s diffusion conjecture

In general, KAM stability does not have direct implications on Lyapounov stability. There
are however two cases for which one knows that stability holds true for a Hamiltonian H as
in (1.1).

The first case is when the quadratic part H2 is sign-definite, or, equivalently, when the
components of the vector α ∈ Rn have the same sign (and this includes, as a trivial instance,
the case n = 1). Indeed, the Hamiltonian function has then a strict minimum (or maximum)
at the origin, and as this function is constant along the flow (it is in particular a Lyapounov
function) one can construct, using standard arguments, a basis of neighborhoods of the origin
which are invariant, and the latter property is obviously equivalent to stability.

The second case is when n = 2 and when the so called Arnold iso-energetic non-degeneracy
condition is satisfied. Then, KAM stability occurs in every energy level passing sufficiently
close to the origin, implying Lyapounov stability as the two-dimensional tori disconnect each
three-dimensional energy level (see for instance [Arn61] and [Mos62]). It is easy to see that
the Arnold iso-energetic non-degeneracy condition is generic in measure and topology as a
function of the coefficients of the O4(x, y) part of the Taylor expansion of H around the origin.
Arnold conjectured that apart from these two cases (the case of a sign-definite quadratic part,
and generically for n = 2), an elliptic equilibrium point is generically unstable. More precisely,
in [Arn94] one can find the following conjecture.

Conjecture 2 (Arnold). An elliptic equilibrium point of a generic analytic Hamiltonian sys-
tem is Lyapounov unstable, provided n ≥ 3 and the quadratic part of the Hamiltonian function
at the equilibrium point is not sign-definite.

This conjecture is wide open, to such an extent that under our standing assumptions (real-
analyticity of the Hamiltonian and a non-resonance condition on the frequency vector), it was
only recently that some particular unstable examples were introduced in [Fay18]. For instance,
the Birkhoff normal form in the examples of [Fay18] are not Kolmogorov non degenerate.

If the frequency vector is resonant, it is quite easy to construct an example of unstable
elliptic equilibrium point (see [Mos60]). But even in this case, the genericity is still open (see
[KMV04] for an announcement on some partial results).

If the Hamiltonian is smooth non-analytic, examples have been constructed by Douady-Le
Calvez ([DLC83]) for n = 3 and by Douady ([Dou88]) for any n ≥ 3, but there also, genericity
was out of reach with their methods.

1.5 Effective stability

The aim of this paper is to investigate the so called effective stability of an elliptic equilibrium
point. More precisely, given r sufficiently small and any initial condition (x0, y0) at a distance
at most r from the origin, we are interested in the largest positive time T (r) for which the
solution (x(t), y(t)), starting at (x0, y0), stays at a distance at most 2r from the origin, for
all |t| ≤ T (r). Arnold’s conjecture states that for n ≥ 3, it holds generically that T (r) <∞.
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At the moment there is no other conjectural upper bound on T (r). In this paper, we will be
interested in lower bound on T (r). Let us first recall some previous results.

First, without any assumptions, it is easily seen from the equations of motion that T (r)
is at least of order r−1. Then, given an integer K ≥ 4, with the assumption that H is smooth
and α is non-resonant up to order K, that is

k ∈ Zn, 0 < |k|1 ≤ K =⇒ k · α 6= 0

the following statement can be proved (see [Bir66] or [Dou88]): there exists a symplectic
transformation ΦK , well-defined in a neighborhood of the origin, such that

H ◦ ΦK(x, y) = α · I(x, y) + hm(I(x, y)) + fK(x, y) (BNF)

where hm is a polynomial of degree at most m = [K/2] (the integer part of K/2) in n
variables, with vanishing constant and linear terms, and fK is of higher order OK+1(x, y).
The polynomial α · I(x, y) + hm(I(x, y)) is usually called the Birkhoff normal form of H of
order K. Since the term α · I(x, y) will be fixed in the sequel we will denote hm(I(x, y))
by BNFK(H). The polynomial BNFK(H) is uniquely defined, but, in general, this is not
the case for the coordinate change function ΦK (although there is a distinguished choice
of a generating function for ΦK). An obvious consequence of (BNF) is that, in this case,
T (r) is at least of order r−K+1 at the origin (naturally, the neighborhood in which the
effective stability holds depends on K and may be very small depending in particular on
the arithmetics of α). Thus if α is non-resonant and H is of class C∞, T (r) becomes larger
near the origin than any power of r−1. Observe that if α is non-resonant, one can find a
formal symplectic transformation Φ∞ and a unique formal series h∞ in n variables such that
H ◦ Φ∞(x, y) = h∞(I(x, y)). However, the formal transformation Φ∞ is in general divergent
(see [Sie41]), and the convergence problem for the formal series h∞ is still an open problem
(see [PM03] for some results).

Now with the assumption that the Hamiltonian H is real-analytic, exponentially large
lower bounds for T (r) have been obtained in two different contexts.

First, if α is Diophantine, α ∈ DC(τ, γ), one can prove that T (r) is at least of order

exp
(

(γr−1)
1
τ+1

)
. This is obtained by estimating the size of the remainder term fK in the

Birkhoff normal form of order K, and then choosing K = K(r) as large as possible in terms
of r (see [GDF+89] or [DG96] for slightly better estimates). One should point out here that
actually for any non-resonant α one can associate a function ∆α(r) and prove that T (r) is at
least of order exp

(
∆α(r−1)

)
(see Section 1.6 below for the definition of this function ∆α). In

the Diophantine case one has ∆α(x) ≥ (γx)
1
τ+1 and the classical result is thus recovered.

Then, in a different direction, assuming only that α is non-resonant up to order K, for
some K ≥ 4, but requiring that the quadratic form h2 is positive definite (which implies that
h1 + h2, and then h1 + hm for any m ≥ 2, is convex in a neighborhood of the origin), it has

been proved that T (r) is at least of order exp
(
r−

K−3
2n

)
: this was established independently

by Niederman ([Nie98]) and Fasso-Guzzo-Benettin ([FGB98]) and later clarified by Pöschel
([Pös99]). The proof is based on the implementation of Nekhoroshev’s estimates ([Nek77],
[Nek79]): observe that in the absence of action-angle coordinates, this implementation is not
straightforward and it was only conjectured by Nekhoroshev.

It is a remarkable fact that both exponential stability results under one of the two hy-
pothesis : 1) α is Diophantine or 2) h2 is positive definite, can be combined into a double
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exponential stability result if both 1) and 2) hold. This was first done by Giorgilli and Mor-
bidelli in [MG95] in the context of a quasi-periodic invariant Lagrangian torus. In our context
of an elliptic equilibrium, the result of [MG95] would amount to double exponential stability
of a Diophantine equilibrium provided h2 is positive definite, or more precisely that T (r) is

at least of order exp
(

(exp((γr−1)
1

1+τ ))
1
2n

)
. Even though the condition that h2 is positive

definite is open, it is far from being generic in any sense and recently some efforts have been
made to improve this result, especially in [Bou11] and [Nie13]. In [Bou11], using results from
[Nie07] and [BN12], it was proved that under a certain condition on the formal Birkhoff series
h∞, the double exponential stability holds true. This condition, which includes the condition
that h2 is positive definite as a particular case, was proved to be prevalent (a possible gen-
eralization of “full measure” in infinite dimensional spaces) in the space of all formal series.
This result has at least two drawbacks. First, although this condition can be termed generic
in a measure-theoretical sense, it is far from being generic in a topological sense. Secondly,
this condition was only formulated in the space of formal series, and it was unclear whether
prevalent Hamiltonians have formal Birkhoff series satisfying this condition. This second issue
was partially solved in [Nie13]: it is proved there that a prevalent Hamiltonian has a formal
Birkhoff series satisfying a condition close to the one introduced in [Bou11], yielding a result
which is only intermediate between exponential and double exponential stability.

The aim of this paper is to improve those results by establishing that generically, and in
a strong sense, the double exponential stability holds true.

1.6 Main results

We start by some reminders and notations that will be useful in our statements. Let H be
a real analytic Hamiltonian on R2n having an elliptic equilibrium point at the origin with a
non-resonant frequency vector α, that is H is as in (1.1).

• For vectors in C2n, ‖ . ‖ denotes the norm defined as

‖z‖ := max
1≤j≤n

√
|zj |2 + |zn+j |2, z = (z1, . . . , zn, zn+1, . . . , z2n) (1.2)

and for vectors in Cn, ‖ . ‖ denotes the usual Euclidean norm

‖I‖ :=
√
|I1|2 + · · ·+ |In|2, I = (I1, . . . , In, ). (1.3)

It will be more convenient to use these different norms for vectors in C2n or in Cn, and
we hope that this abuse of notations will not confuse the reader.

• We suppose that the radius of convergence of H is strictly larger than some R > 0 and
let ‖H‖R be the sup norm of H in the open complex ball in C2n centered at the origin
of radius R that we denote by

BR := {z ∈ C2n | ‖z‖ < R}. (1.4)

We also define the real ball BR := BR ∩ R2n.

• We denote by P (n,m) the set of polynomials of degree at most m in n variables. We
let P2(n,m) ⊂ P (n,m) be the subspace of polynomials with a vanishing affine part,
and P3(n,m) ⊂ P (n,m) the subset of polynomials that have a vanishing affine and
quadratic part.
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• We denote by H̃m ∈ P3(2n,m) the part of the power expansion of H that contains the
terms of degree between 3 and m included.

• Having fixed the number of degrees of freedom n, in all the sequel, we let

K0 = K0(n) := n2 + 4, m0 = m0(n) := [K0(n)/2].

• The vector α is supposed to be non-resonant: this means that for any integer K ≥ 1,

Ψα(K) = max{|k · α|−1 | k ∈ Zn, 0 < |k|1 = |k1|+ · · · |kn| ≤ K} < +∞. (1.5)

We define, as in [Bou12], the function

∆α(x) = sup{K ≥ 1 | KΨα(K) ≤ x}.

Observe that if α ∈ DC(τ, γ), then Ψα(K) ≤ γ−1Kτ and hence

∆α(x) ≥ (γx)
1

1+τ (1.6)

• Recall that for H as in (1.1), there exists for every integer K ≥ 4 a real analytic
symplectic transformation ΦK defined in the neighborhood of the origin such that

H ◦ ΦK(x, y) = α · I(x, y) + hm(I(x, y)) + fK(x, y)

where hm is a polynomial of degree m = [K/2] (the integer part of K/2) in n variables,
with vanishing constant and linear terms, and fK is of higher order OK+1(x, y). We
denoted hm by BNFK(H). By uniqueness of the Birkhoff normal form we have a well
defined map

BNFK : P3(2n,K) −→ P2(n,m)

H̃K 7−→ hm = BNFK(H̃K) = BNFK(H).

Our main result is the following.

Theorem A. Let H be a real analytic Hamiltonian on R2n having an elliptic equilibrium
point at the origin with a non-resonant frequency vector α. There exists an open and dense
set of full Lebesgue measure Nn(α) ∈ P3(2n,K0) such that if H̃K0 ∈ Nn(α), then there exists
r∗, c, c′, c′′ > 0 that depend only on n,R, ‖H‖R, α and H̃K0 such that if r ≤ r∗, then

T (r) ≥ exp
(
cr−2 exp

(
c′∆α

(
c′′r−1

)))
.

If α ∈ DC(τ, γ), there exists an open and dense set of full Lebesgue measure Nn(α) ∈
P3(2n,K0) such that if H̃K0 ∈ Nn(α), then there exists r∗ and C that depend only on
n,R, ‖H‖R, α, and H̃K0 such that if r ≤ r∗, then

T (r) ≥ exp
(

exp
(
Cr−

1
τ+1

))
.

We will see that the second part of the statement is a direct consequence of the first part.
Since c′ and c′′ will not depend on α (see (3.8)), it follows from (1.6) that the constant C
that appears under the double exponential in the Diophantine case is actually of the form

C = γ
1
τ+1C ′ where C ′ does not depend on α. Theorem A improves all previous results

contained in [MG95], [Bou11] and [Nie13]. In the course of its proof, we will also have to
extend the results on exponential stability contained in [Nie98], [FGB98] and [Pös99].

8

20 Nov 2019 12:06:31 PST

Version 2 - Submitted to Adv. Math.



Remark 1.1. Observe that even though ∆α(r−1) goes to infinity as r goes to zero, the speed of
convergence can be arbitrarily slow but the statement implies that T (r) is always at least of
order exp(cr−2). From the proof of the theorem, one can easily obtain the following statement:
fixing k ∈ N∗, k ≥ 2, and allowing the constants r∗k and ck to depend also on k, one has

T (r) ≥ exp
(
ckr
−k exp

(
c′∆α

(
c′′r−1

)))
which is always at least of order exp(ckr

−k). As a matter of fact, the weaker estimate

T (r) ≥ exp
(
ckr
−k
)

can be obtained if one only assumes α to be non-resonant up to a sufficiently high order
depending on k and n.

Remark 1.2. The Diophantine condition α ∈ DC(τ, γ) is sometimes called an asymptotic
Diophantine condition. A strictly weaker condition, called uniform Diophantine condition,
requires the existence of an increasing sequence Kj ∈ N, Kj → ∞, such that |k · α| ≥ γK−τj
for every k ∈ Zn \ {0} with |k|1 ≤ Kj . Under that weaker condition, we have Ψα(Kj) ≤ γKτ

j

and Theorem A then implies that there exists a sequence rj → 0 such that

T (rj) ≥ exp

(
exp

(
Cr
− 1
τ+1

j

))
.

The notion of stably steep polynomials, which can be implicitly found in the work of
Nekhoroshev ([Nek73]), will be important in the proof of Theorem A.

Definition 1 (Stably steep polynomials). A polynomial P0 ∈ P2(n,m) is called stably steep if
there exist a neighborhood V of P0 in P2(n,m) and positive constants C, δ such that for any
integer l ∈ [1, n− 1], any P ∈ V and any vector subspace Λ ⊆ Rn of dimension l, letting PΛ

be the restriction of P to Λ, the inequality

max
0≤η≤ξ

min
||x||=η, x∈Λ

||∇PΛ(x)|| > Cξm−1

holds true for all 0 < ξ ≤ δ, where || . || is the usual Euclidean norm defined in (1.3).

The set of stably steep polynomials in P2(n,m) will be denoted by SS(n,m).
Theorem A will clearly follow from the combination of the following two statements,

Theorems B and C, with the set Nn(α) being defined as Nn(α) := BNF−1
K0

(SS(n,m0)).
Our first statement is that the set of Hamiltonians with stably steep BNF of order K0

have doubly exponentially stable equilibria.

Theorem B. Let H be a real analytic Hamiltonian on R2n having an elliptic equilibrium
point at the origin with a non-resonant frequency vector α. If

BNFK0(H) = hm0 ∈ SS(n,m0)

then the conclusions of Theorem A hold.

The second statement shows that the condition BNFK0(H) = BNFK0(H̃K0) ∈ SS(n,m0)
is generic in a strong sense.
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Theorem C. For any non-resonant α ∈ Rn, the complement of BNF−1
K0

(SS(n,m0)) in
P3(2n,K0) is contained in a semi-algebraic subset of positive codimension. In particular,
BNF−1

K0
(SS(n,m0)) is a dense open subset of P3(2n,K0) of full Lebesgue measure.

Proof of Theorem A. Putting together Theorem B and C immediately yields Theorem A if
we take Nn(α) = BNF−1

K0
(SS(n,m0)).

To prove Theorem C, we will show that the complement of SS(n,m0) in P2(n,m0) is
contained in a semi-algebraic subset of codimension at least one. This will be done in Sections
3.1, 3.2 and Appendix A.

Theorem B will follow (see Section 3.4) from a version of the Nekhoroshev exponential
stability result adapted to our singular perturbation setting, which will be stated in Section 2
and proved in [BFN20].

1.7 Comments, open questions and prospects

It is natural to ask whether our main result, Theorem A, can be improved, and so we can ask
the following two questions.

Question 1. What can one say about the effective stability of an equilibrium as in (1.1) if
no assumption is made on the Birkhoff normal form?

As mentioned earlier, the sole fact that α ∈ DC(τ, γ), implies that T (r) is at least of order

exp
(

(γr−1)
1
τ+1

)
(see [GDF+89] or [DG96] for slightly better estimates). In [FF19], for d ≥ 3

and any τ > d and any ε > 0, a real analytic Hamiltonian H : Td ×Rd → R was constructed
that has an invariant quasi-periodic Lagrangian torus with frequency α ∈ DC(τ), for which

the diffusion time satisfies T (r) ≤
1

r
exp

(
Cr−

1
τ+1−ε

)
. No such example is known to exist for

Diophantine equilibria.

Question 2. Is the estimate on the time T (r) in Theorem A essentially optimal?

A main difficulty in these questions is related to the fact that the construction of an
unstable elliptic equilibrium point in the analytic category is a wide open problem as we
emphasized in the Introduction. Concerning the second question, let us just mention that it
may be possible to give an answer in the Gevrey category (a regularity which is intermediate
between smooth and analytic). Indeed, on the one hand, one should expect that the statement
of Theorem A holds true for Gevrey Hamiltonians, with only different constants. On the other
hand, elaborating on the methods of [Her83] and [MS02], an example showing the optimality
of double exponential stability for invariant tori in Gevrey class and in the quasi-convex case,
was announced in [FD18].

Moreover, it is also natural to ask whether our result holds true for a quasi-periodic invari-
ant Lagrangian torus, or more generally, for a quasi-periodic normally elliptic and reducible
invariant torus (which includes both elliptic equilibrium points and quasi-periodic invariant
Lagrangian tori as particular cases). This general case is described by a Hamiltonian of the
form

H(θ, J, x, y) = β · J + α · I(x, y) + F (θ, I, x, y)

where (θ, J) ∈ Tm × Rm are action-angle coordinates, (x, y) symplectic coordinates around
the origin in R2n and F is at least of order 2 in I and 3 in (x, y). The set {(J, x, y) | J =
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0, I(x, y) = 0} is a normally elliptic torus of dimension n in a n + m degrees of freedom
Hamiltonian, and the question is as follows.

Question 3. Assuming that the vector (β, α) ∈ Rm+n is Diophantine, does the conclusion
of Theorem A hold for a generic real-analytic function F : if (J(0), I(x(0), y(0))) is at a
distance r of zero in Rn+m, with r sufficiently small, is it true that (J(t), I(x(t), y(t))) stays
at a distance 2r from 0 for a time T (r) which is doubly exponentially large with respect to
r−1/(τ+1) (where τ is the exponent of the Diophantine condition on the vector (β, α))?

In a subsequent paper ([BFN17]), we answered positively the above question in the case
of an invariant Lagrangian Diophantine torus, which is of particular interest in the study
of perturbed integrable systems. Indeed, by KAM theory, it is well-known that invariant
Lagrangian Diophantine tori appear for arbitrary small perturbations of generic integrable
Hamiltonian systems in action-angle coordinates. Furthermore, these tori are not isolated and
appear as a family parametrized by some Cantor set of positive Lebesgue measure (tending
to full measure as the size of the perturbation goes to zero). The goal of [BFN17] is to prove
that under an additional generic assumption on the integrable Hamiltonian, most of the KAM
tori are doubly exponentially stable.

2 Nekhoroshev exponential stability for a steep elliptic equi-
librium

To state precisely the result, let us introduce further notations.

• For vectors in Cn, it will be convenient to also use the sup norm | . | defined as

|I| := max{|I1|, . . . , |In|}, I = (I1, . . . , In). (2.1)

This norm allows an easier comparison between I(z) ∈ Cn and z ∈ C2n: indeed, we
have |I(z)| ≤ ‖z‖2/2 and the equality holds true if z ∈ R2n.

• Given r > 0, we define the domain Dr to be the open ball centered at the origin in Cn
of radius r2/2 with respect to the norm | . |:

Dr := {I ∈ Cn | |I| < r2/2}

and we let Dr := Dr ∩ Rn. This choice is motivated by the fact that if I : z ∈ C2n 7→
I(z) ∈ Cn, then I(Br) ⊆ Dr and I(Br) = Dr ∩Rn+, where Br and Br have been defined
in (1.4).

• We define ‖ . ‖r to be the sup norm for functions defined on Br or on Dr. Extending the
norm ‖ . ‖ initially defined for vectors in Cn and C2n (respectively in (1.2) and in (1.3))
to tensors in Cn and C2n, we extend the sup norm ‖ . ‖r for tensor-valued functions
defined on Br or on Dr. As an example, given h : Dr → C, we have

∇h : Dr → Cn, ∇2h : Dr → L(Cn,Cn)

where L(Cn,Cn) is the space of C-linear maps from Cn to itself, and thus

||∇h||r = sup
z∈Dr

||∇h(z)||, ||∇2h||r = sup
z∈Dr

(
sup

v∈Cn, ||v||=1
||∇2h(z).v||

)
.
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The same notation ‖ . ‖r will be used also for the real domains Br and Dr: this will
not cause confusion as it will be clear from the context if it is the complex or the real
domains that are considered.

• We consider a Hamiltonian H of the form

H(z) = h(I(z)) + f(z), h : Dr → C, f : Br → C (∗)

which is real analytic and such that

‖∇h‖r ≤ E, ‖∇2h‖r ≤ F, ‖Xf‖r ≤ ε (2.2)

where Xf is the Hamiltonian vector field associated to f .

• The integrable Hamiltonian h is supposed to be steep on the domain Dr, as defined
below.

Definition 2. A differentiable function h : Dr → R is steep if there exist positive
constants C, δ, pl, for any integer l ∈ [1, n − 1], and κ such that for all I ∈ Dr, we
have ||∇h(I)|| ≥ κ and, for all integer l ∈ [1, n − 1], for all vector space Λ ∈ Rn of
dimension l, letting λ = I + Λ the associated affine subspace passing through I and hλ
the restriction of h to λ, the inequality

max
0≤η≤ξ

min
||I′−I||=η, I′∈λ∩Dr

||∇hλ(I ′)−∇hλ(I)|| > Cξpl

holds true for all 0 < ξ ≤ δ. We say that h is (r, κ, C, δ, (pl)l=1,...,n−1)-steep and, if all
the pi = p, we say that h is (r, κ, C, δ, p)-steep.

Let us point out that the definition of steepness that we use is not exactly the one given by
Nekhoroshev but it is obviously equivalent to it (see [Nek73] or [Nek77]). Indeed, Nekhoroshev
only requires steepness for subspaces Λ which are orthogonal to∇h(I), in which case∇hλ(I) =
0; for subspaces Λ such that ∇hλ(I) 6= 0, the inequality in Definition 2 is clearly satisfied
(and one may even set pl = 0 in this case). Here’s the main result of [BFN20].

Theorem 2.1 (Bounemoura-Fayad-Niederman). Let H(z) = h(I(z)) + f(z) be as in (∗)
satisfying (2.2), such that h is (r, κ, C, δ, (pl)l=1,...,n−1)-steep. Then there exist r̃∗, c̃, c̃′ > 0,
which depend only on n, E, F , κ, C and pl for 1 ≤ l ≤ n− 1 such that if

r ≤ r̃∗, rε ≤ c̃min
{
δ2na, r4na

}
(2.3)

where
a := 1 + p1 + p1p2 + · · ·+ p1p2 . . . pn−1,

then for any solution z(t) of the Hamiltonian flow (∗) with z(0) = z0 ∈ Br/2 we have

|I(z(t))− I(z0)| ≤ c̃′(rε)
1

2na , |t| ≤ exp
(

(rε)−
1

2na

)
.

3 Genericity of steepness and Birkhoff normal forms

The aim of this section is to give a proof of Theorem B and Theorem C; we recall that this
two statements together imply our main result Theorem A. The proof of Theorem C will be
given in Section 3.2, while the proof of Theorem B will be given in Section 3.4 and will use
Theorem 2.1 (which was just stated above).
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3.1 Genericity of steepness

In Appendix A we will prove a general result on genericity of stably steep polynomials.

Theorem 3.1. The complement of SS(n,m0) in P2(n,m0) is contained in a semi-algebraic
subset Υ(n,m0) of codimension at least one.

Theorem 3.1 has an immediate consequence on the genericity of steep functions as will be
shown in the following Theorem 3.2.

Given p ∈ N, p ≥ 3 and ρ > 0, let Cp(Dρ) be the set of functions p times continuously
differentiable on Dρ, and assume

||∇2h||p,ρ = max
2≤j≤p

‖∇jh‖ρ <∞

where ‖ . ‖ρ is the sup norm on Dρ of the tensor-valued function ∇jh, and where we recall
that by definition, Dρ is the (real) open ball of radius ρ2/2 with respect to the sup norm | . |.
Given h ∈ Cp(Dρ), we denote by Tp−1h(I) ∈ P (n, p − 1) the Taylor expansion of h of order
p − 1 at I ∈ Dρ (or the p − 1-jet at I). We have the following statement (that will be used
later with the value p = m0 + 1).

Theorem 3.2. Let h ∈ Cp(Dρ) be such that ‖∇h(0)‖ := $ and Pp−1 := Tp−1h(0)− T1h(0)−
T0h(0) ∈ SS(n, p− 1). Then, there exists positive numbers µ∗, δ∗ and C that depend only on
$, Pp−1, ||∇2h||p,ρ and n such that h is (µ, κ,C, δ, p− 2)-steep, with

µ := min{ρ/2, µ∗}, κ := $/2, δ := min{ρ2/4, δ∗}.

Proof of Theorem 3.2. Let M := ||∇2h||p,ρ. Observe first that if µ2 ≤ $/M then the condi-
tion ‖∇h(I)‖ ≥ κ = $/2 is satisfied for any I ∈ Dµ.

Fix an arbitrary I ∈ Dµ, and define HI = Tp−1h(I) − T1h(I) − T0h(I) ∈ P2(n, p − 1).
Since H0 = Tp−1h(0) − T1h(0) − T0h(I) = Pp−1 is stably steep, we have the existence of µ̃
that depends on M , Pp−1, and n such that if µ ≤ µ̃, HI is sufficiently close to Pp−1 so that
for all integer l ∈ [1, n− 1], for all vector subspace Λ ⊆ Rn of dimension l, letting HI,Λ be the
restriction of HI to Λ, the inequality

max
0≤η≤ξ

min
||x||=η, x∈Λ

||∇HI,Λ(x)|| > C0ξ
p−2

holds true for all 0 < ξ ≤ δ0, where δ0 and C0 are the steepness constant related to Pp−1.
Now, we get by the Taylor formula (applied to ∇h at the order p− 1) that

‖∇h(I + x)−∇h(I)−∇HI(x)‖ ≤M(p− 1)!‖x‖p−1

provided I + x ∈ Dρ, which is satisfied if µ ≤ ρ/2 and |x| ≤ ‖x‖ ≤ ρ2/4. So for ‖x‖ ≤ ξ ≤ δ,
with δ := min{C0(2M(p− 1)!)−1, ρ2/4}, we have

‖∇h(I + x)−∇h(I)−∇HI(x)‖ ≤ (C0/2)ξp−2

and then, letting λ = I + Λ,

‖∇hλ(I + x)−∇hλ(I)−∇HI,Λ(x)‖ ≤ (C0/2)ξp−2.

From this we eventually obtain

max
0≤η≤ξ

min
||x||=η, x∈Λ

||∇hλ(I + x)−∇hλ(I)|| > (C0/2)ξp−2

and letting I ′ = I + x, C := C0/2, δ∗ := C0(2M(p − 1)!)−1 and µ∗ := min{µ̃,
√
$/M}, the

steepness of f is thus established with the constants given in the statement.
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3.2 Generic steepness of the BNF.

The proof of Theorem C will be an easy consequence of Theorem 3.1 and the following two
lemmas on the map BNFK .

Lemma 3.3. The map BNFK is algebraic.

Proof. This follows by construction of the Birkhoff normal form, and we refer to [PM03] for
more details.

Now given a polynomial Q = Q2 + · · ·+Qm ∈ P2(n,m), where each Qj is homogeneous of
degree j, we can define a polynomial Q̃ ∈ P3(2n,K) by setting Q̃(ξ) := Q(I(ξ)). For K ≥ 4,
we can define a map by

FK : P2(n,m) −→ P2(n,m)

Q 7−→ BNFK(H̃K + Q̃).

Lemma 3.4. The map FK preserves Lebesgue measure.

Proof. This also follows by construction of the Birkhoff normal form. More precisely, it
can be shown that decomposing the map FK as FK = (FK2 , . . . , FKm ), where FKj is the

component with respect to homogeneous polynomials of degree j, then we have FK2 (Q) =
Q2+BNF4(H̃4) = Q2+h2, and for 3 ≤ j ≤ K, we have FKj (Q) = Qj+FKj (H̃2j , Q2, . . . , Qj−1)

where FKj is an algebraic map (see [Nie13], where this property has already been used).

This expression clearly implies that FK is smooth with Jacobian one, therefore it preserves
Lebesgue measure.

Proof of Theorem C. Our aim is to show that the complement of BNF−1
K0

(SS(n,m0)) in
P3(2n,K0) is contained in a semi-algebraic subset of positive codimension. Since the inverse
image of a semi-algebraic subset by an algebraic map is semi-algebraic, from Theorem 3.1 and
Lemma 3.3, it follows that the complement of BNF−1

K0
(SS(n,m0)) in P3(2n,K0) is contained

in a semi-algebraic subset. It remains to prove that this set has positive codimension, or equiv-
alently, zero Lebesgue measure in P3(2n,K0). By Lemma 3.3, for any H̃K0 ∈ P3(2n,K0), the
Lebesgue measure in P2(n,m0) of the set

{Q ∈ P2(n,m0) | H̃K0 + Q̃ /∈ BNF−1
K0

(SS(n,m0))}

is zero. By Fubini-Tonelli theorem, this implies that the complement of BNF−1
K0

(SS(n,m0))
in P3(2n,K0) has zero Lebesgue measure, and this concludes the proof.

3.3 Birkhoff normal forms with estimates

For a real analytic Hamiltonian with an elliptic equilibrium point, as in (1.1), it is known
that the estimates on the Birkhoff normal form are given by the arithmetic properties of α
and the analytic norm of H. We summarize in the following Proposition 3.5 the estimates
on the BNF that will be useful for us in the sequel. The proof of Proposition 3.5 is relatively
standard, we include it in Appendix B following [DG96].

Here it will be more convenient to perform a linear change of complex canonical coordinates
z = S(ξ), where S : C2n → C2n is defined by

zj =
1√
2

(ξj + iξn+j), zn+j =
i√
2

(ξj − iξn+j).
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It is easy to check that this linear transformation S and its inverse S−1 have unit norm
(with respect to the norm || . || defined in (1.2)), hence H and H ◦ S have the same radius of
convergence around the origin and ||H ◦ S||R = ||H||R. Abusing notations, we will still write
H instead of H ◦ S to denote the Hamiltonian in these new coordinates. Observe that

H2(ξ) = h1(I(ξ)) = α · I(ξ) = i

n∑
j=1

αjξjξn+j

where
I(ξ) = (I1(ξ), . . . , In(ξ)), Ij(ξ) = iξjξn+j , 1 ≤ j ≤ n.

Recall the definition of Ψα given in Section 1.6 and define also for any integer j ≥ 3,

ψjα :=

j∏
i=3

Ψα(i).

For K ≥ 1, define
ρK := (548ncdKΨ(K))−1, (3.1)

where the positive constants c and d depend only on n, R and ||H||R and are defined in (B.3).

Proposition 3.5. Let H be as in (1.1) with α as in (1.5), and fix integers p ≥ 2, K ≥
2p and 0 ≤ q ≤ K − 4. There exist constants b(p) and b̃(q) that depend respectively on
p, n,R, ‖H‖R, ψ2p−1

α and on q, n,R, ‖H‖R, ψq+2
α such that if we assume

0 < ρ ≤ ρK/e, (3.2)

then there exists a real-analytic symplectic transformation ΦK = Id + O(ξ2) defined on BρK
such that

H ◦ ΦK(ξ) = α · I(ξ) + hm(I(ξ)) + fK(ξ),

with fK = O(ξK+1) and the following estimates hold

||∇2hm||p,ρ = max
2≤j≤p

||∇jhm||ρ ≤ b(p) (3.3)

||∇fK ||ρ ≤ b̃(q)ρqe−K . (3.4)

3.4 From Nekhoroshev stability to double exponential stability

In this section we prove that Theorem 2.1 implies Theorem B. As a corollary of Proposition
3.5 and Theorem 3.2 we get the following

Proposition 3.6. Let H be as in (1.1) with α as in (1.5), and such that

BNFK0(H̃K0) = hm0 ∈ SS(n,m0).

There exists C > 0 and K∗ ≥ 4 that depend only on n, R, ‖H‖R, hm0, ||α|| and ψ2m0+1
α such

that if
K ≥ K∗, 0 < ρ ≤ ρK/e,
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then there exists a real-analytic symplectic transformation ΦK = Id + O(ξ2) defined on BρK
such that

H ◦ ΦK(ξ) = α · I(ξ) + hm(I(ξ)) + fK(ξ) := h(I(ξ)) + fK(ξ) (3.5)

with fK = O(ξK+1) and

||∇2hm||m0+1,ρ = max
2≤j≤m0+1

||∇jhm||ρ ≤ b(m0 + 1) (3.6)

||∇fK ||ρ ≤ b̃(q)ρqe−K , 0 ≤ q ≤ K − 4, (3.7)

and such that h is (ρ/2, ||α||/2, C, ρ2/4,m0 − 1)-steep.

Proof of Proposition 3.6. For K ≥ K∗ ≥ 2(m0+1) apply Proposition 3.5 with p = m0+1 and
q ≤ K − 4 and get (3.5) with estimates (3.6) and (3.7). We want to apply Theorem 3.2 with
p = m0 + 1 and $ = ||α||. Observe first that Tm0h(0)− T1h(0)− T0h(0) = hm0 ∈ SS(n,m0).
Then observe also that ∇2h = ∇2hm and that by (3.6), we have the bound

||∇2h||m0+1,ρ = ||∇2hm||m0+1,ρ ≤ b(m0 + 1)

which is independent of ρ, hence the constants C, µ∗ and δ∗ in the statement of Theorem 3.2
do not depend on ρ, and choosing K∗ sufficiently large, ρK and then ρ become sufficiently
small so that ρ/2 ≤ µ∗ and ρ2/4 ≤ δ∗ therefore h is (ρ/2, ||α||/2, C, ρ2/4,m0 − 1)-steep.

We now use Proposition 3.6 and Theorem 2.1 to give the

Proof of Theorem B. Let H be as in (1.1) with α as in (1.5) and

BNFK0(H̃K0) = hm0 ∈ SS(n,m0).

For r > 0 we define
K = ∆α((1644encdr)−1)

so that ρK/e ≥ 3r, and observe that K ≥ K∗ is satisfied (with K∗ given by Proposition 3.6)
provided r ≤ r∗ for some sufficiently small r∗ > 0. Hence we can apply the latter proposition
with our choice of K and with ρ = 3r.

Next we want to apply Theorem 2.1 to (3.5). First observe that Theorem 2.1 is stated and
proved in the z variables whereas the estimate of Proposition 3.6 are given in the ξ variables:
however since z = S(ξ) with S and S−1 of unit norm, Theorem 2.1 also holds true, with the
same estimates, if one uses the ξ variables.

From Proposition 3.6 and our choice of ρ, the function h is (3r/2, ||α||/2, C, 9r2/4,m0−1)-
steep and (2.2) is satisfied with

E := 3/2||α||, F := b(2), ε := b̃(q)ρqe−K

for some 0 ≤ q ≤ K− 4 yet to be chosen. Up to taking r∗ smaller one easily checks that (2.3)
(with r replaced by ρ = 3r) is satisfied provided we choose q = 4na − 1. Thus Theorem 2.1
can be applied and we obtain the following statement: given an arbitrary solution ξ̃(t) of the
system associated to H ◦ ΦK in (3.5), if ||ξ̃(0)|| = ||z̃(0)|| ≤ ρ/2 = 3r/2, then

|I(z̃(t))− I(z̃(0))| ≤ c̃′(ρε)
1

2na , |t| ≤ exp
(

(ρε)−
1

2na

)
.
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For r sufficiently small, this implies in particular that ||ξ̃(t)|| = ||z̃(t)|| < 7r/4 for times

|t| ≤ exp
(

(3rε)−
1

2na

)
.

Recalling the definition of ε and with our choices of q and K, the previous estimate implies
that ||ξ̃(t)|| = ||z̃(t)|| < 7r/4 for times

|t| ≤ exp(cr−2 exp(c′∆α(c′′r−1)))

with
c := 3−2b̃(4na− 1)−

1
2na , c′ := (2na)−1, c′′ := 1644encd. (3.8)

To conclude, observe that H is related to (3.5) by a symplectic transformation ΦK =
Id +O(ξ2), which can be made close enough to the identity (as well as its inverse) by taking
r small enough. Hence, given any solution ξ(t) of the system associated to H with ||ξ(t)|| =
||z(t)|| ≤ r, the corresponding solution ξ̃(t) of (3.5) satisfy ||ξ̃(0)|| = ||z̃(0)|| ≤ 3r/2 for r
small enough, and therefore ||ξ̃(t)|| = ||z̃(t)|| < 7r/4, and also ||ξ(t)|| = ||z(t)|| < 2r, for times

|t| ≤ exp(cr−2 exp(c′∆α(c′′r−1))).

We eventually arrives at the estimate

T (r) ≥ exp(cr−2 exp(c′∆α(c′′r−1)))

and this concludes the proof of the lower bound on T (r) in the general case. The estimate in
the Diophantine case follows from the general case and from (1.6).

A Proof of generic steepness

The aim of this section is to give the proof of Theorem 3.1. The latter will be an immediate
consequence of Propositions A.2 and A.3 below. We shall use in the proof of these propositions
basic results concerning semi-algebraic subsets; for proofs and more information we refer to
[BCR98]. Our main ingredient to prove Theorem 3.1 is a result of Nekhoroshev on stably
expanding polynomials that we will now state.

Let us first recall that P (n,m) denotes the space of polynomials of degree m in n variables
with real coefficients, and P2(n,m) the subspace of P (n,m) consisting of polynomials with
vanishing homogeneous parts of order zero and one. The following definition, which is related
to the definition of stably steep polynomials, is due to Nekhoroshev ([Nek73]).

Definition 3. Let 1 ≤ l ≤ n − 1. A polynomial Q0 ∈ P2(l,m) is called stably expanding if
there exist a neighborhood Ul of Q0 in P2(l,m) and positive constants C ′l , δ

′
l such that for any

Q ∈ Ul, the inequality
max

0≤η≤ξ
min
||y||=η

||∇Q(y)|| > C ′lξ
m−1

holds true for all 0 < ξ ≤ δ′l.

The set of stably expanding polynomials in P2(l,m) will be denoted by SE(l,m).

Theorem A.1 (Nekhoroshev). Let 1 ≤ l ≤ n− 1. The complement of SE(l,m) in P2(l,m)
is contained in a closed semi-algebraic subset Σ(l,m) of codimension [m/2].
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Let us denote by L(n, l) the space of rectangular matrices with n rows and l columns, with
real coefficients, and by L1(n, l) the open subset of L(n, l) consisting of matrices of maximal
rank. Any A ∈ L(n, l) induces a linear map A : Rl → Rn, hence given P ∈ P (n,m), we can
define PA ∈ P (l,m) by setting PA(x) = P (Ax), x ∈ Rl. Moreover, if P ∈ P2(n,m), then
PA ∈ P2(l,m). Let us define the set

Θ(l, n,m0) = {(P,A,Q) ∈ P2(n,m0)× L1(n, l)× Σ(l,m0) | PA = Q}.

Then we define Υ(l, n,m0) to be the projection of Θ(l, n,m0) on the first factor P2(n,m0),
and finally

Υ(n,m0) =

n−1⋃
l=1

Υ(l, n,m0).

Theorem 3.1 is a straightforward consequence of the following two properties of the set
Υ(n,m0).

Proposition A.2. The set Υ(n,m0) is a semi-algebraic subset of P2(n,m0) of codimension
at least one.

Proposition A.3. The complement of SS(n,m0) in P2(n,m0) is contained in Υ(n,m0).

The second proposition is true for any m ≥ 2 and not just for m = m0, but this will not
be needed.

Let us now give the proof of Proposition A.2 and Proposition A.3, following the arguments
in [Nek73].

Proof of Proposition A.2. The set P2(n,m0) is a real vector space hence it is algebraic, L1(n, l)
is obviously an algebraic subset of L(n, l) whereas, by Theorem A.1, Σ(l,m0) is a semi-
algebraic subset of P2(l,m0). Moreover, for (P,A,Q) ∈ P2(n,m0) × L1(n, l) × Σ(l,m0), the
equality PA = Q corresponds to a system of algebraic equations in the coefficients of P , A and
Q. This implies that Θ(l, n,m0) is a semi-algebraic subset of P2(n,m0)×L(n, l)× P2(l,m0).
Now since the projection of a semi-algebraic subset is a semi-algebraic subset, Υ(l, n,m0)
is a semi-algebraic subset of P2(n,m0). Then, as a finite union of semi-algebraic subsets is
semi-algebraic, Υ(n,m0) is a semi-algebraic subset of P2(n,m0). We need to prove that the
codimension of Υ(n,m0) in P2(n,m0) is at least one; to do this it is sufficient to prove that
the codimension of Υ(l, n,m0) in P2(n,m0) is at least one for any 1 ≤ l ≤ n − 1. So let us
fix 1 ≤ l ≤ n − 1. Given (A,Q) ∈ L(n, l) × P2(l,m0), we define ΘA,Q(l, n,m0) to be the
intersection of Θ(l, n,m0) with the set

{(P ′, A′, Q′) ∈ P2(n,m0)× L(n, l)× P2(l,m0) | A′ = A, Q′ = Q}.

If (A,Q) ∈ L1(n, l)× Σ(l,m0), it is easy to see that

dimΘA,Q(l, n,m0) = dimP2(n,m0)− dimP2(l,m0)

and therefore

dimΘ(l, n,m0) = dimΘA,Q(l, n,m0) + dimL1(n, l) + dimΣ(l,m0)

= dimP2(n,m0)− dimP2(l,m0) + dimL1(n, l) + dimΣ(l,m0)

= dimP2(n,m0) + dimL1(n, l)− codimΣ(l,m0)

= dimP2(n,m0) + nl − [m0/2]
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where in the last equality we used the fact that dimL1(n, l) = dimL(n, l) = nl and Theo-
rem A.1. Now given P ∈ P2(n,m0), we define ΘP (l, n,m0) to be the intersection of Θ(l, n,m0)
with the set

{(P ′, A′, Q′) ∈ P2(n,m0)× L(n, l)× P2(l,m0) | P ′ = P}.

Recall that if GL(l) denotes the group of square invertible matrix of size l, with real coeffi-
cients, then GL(l) acts freely on L1(n, l) (the quotient space is nothing but the Grassmannian
G(l, n), that is, the space of all l-dimensional subspaces of Rn). It is then easy to see that
GL(l) acts freely on ΘP (l, n,m0), therefore the dimension of an orbit of this action equals the
dimension of GL(l), which is l2, and hence,

dimΘP (l, n,m0) = l2.

Since Υ(l, n,m0) is the projection of Θ(l, n,m0) on the first factor P2(n,m0), we have

dimΥ(l, n,m0) ≤ dimΘ(l, n,m0)− l2

≤ dimP2(n,m0) + nl − [m0/2]− l2

≤ dimP2(n,m0)− [m0/2] + l(n− l)
≤ dimP2(n,m0)− [m0/2] + [n2/4]

≤ dimP2(n,m0)− 1

where the last inequality follows from the definition of m0. This proves that Υ(l, n,m0) has
codimension at least one in P (n,m0) for any 1 ≤ l ≤ n−1, therefore Υ(n,m0) has codimension
at least one in P (n,m0) and this concludes the proof.

Proof of Proposition A.3. To prove that the complement of SS(n,m0) in P2(n,m0) is con-
tained in Υ(n,m0), we will prove that the complement of Υ(n,m0) in P2(n,m0) is contained
in SS(n,m0). So we fix P0 ∈ P2(n,m0) \Υ(n,m0) and 1 ≤ l ≤ n− 1. We denote by O(n, l)
the subset of L1(n, l) consisting of matrices whose columns are orthonormal vectors for the
Euclidean scalar product. Recalling that the Grassmannian G(l, n) is the quotient of L1(n, l)
by GL(l), it is also the quotient of O(n, l) by the group O(l) of orthogonal matrices of Rl.
Therefore given any Λ0 ∈ G(l, n), there exist an open neighborhood BΛ0 of Λ0 in G(l, n) and
a continuous map Ψ : BΛ0 → O(n, l) such that, if π : O(n, l)→ G(l, n) denotes the canonical
projection, then π ◦Ψ is the identity. Let us now consider the continuous map

F : P2(n,m0)×BΛ0 → P2(l,m0), F (P,Λ) = PΨ(Λ).

Since P0 does not belong to Υ(n,m0), by definition of the latter set it comes that F (P0,Λ)
does not belong to Σ(l,m0) and therefore, by Theorem A.1, F (P0,Λ) ∈ SE(l,m0) for any
Λ ∈ BΛ0 . Hence, by definition of SE(l,m0), there exist a neighborhood Ul of F (P0,Λ) in
P2(l,m) and positive constants C ′l , δ

′
l such that for any Q ∈ Ul, the inequality

max
0≤η≤ξ

min
||y||=η

||∇Q(y)|| > C ′lξ
m0−1

holds true for all 0 < ξ ≤ δ′l. Now by continuity of F , we can find a neighborhood Vl of P0

in P2(n,m0) and an open neighborhood B′Λ0
⊆ BΛ0 of Λ0 in G(l, n) such that F (Vl ×B′Λ0

) is
contained in Ul. So for any P ∈ Vl and any Λ ∈ B′Λ0

, we have

max
0≤η≤ξ

min
||y||=η

||∇F (P,Λ)(y)|| > C ′lξ
m0−1
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for all 0 < ξ ≤ δ′l. Now since the columns of the matrix Ψ(Λ) form an orthonormal basis of
Λ, setting x = Ψ(Λ)y, x ∈ Λ, ||x|| = ||y|| and hence

min
||y||=η

||∇F (P,Λ)(y)|| = min
||x||=η, x∈Λ

||ΠΛ∇P (x)|| = min
||x||=η, x∈Λ

||∇PΛ(x)||

where ΠΛ is the orthogonal projection onto Λ, and PΛ is the restriction of P to Λ. Therefore,
for any P ∈ Vl and any Λ ∈ B′Λ0

, we have

max
0≤η≤ξ

min
||x||=η, x∈Λ

||∇PΛ(x)|| > C ′lξ
m0−1

for all 0 < ξ ≤ δ′l. To conclude, since the Grassmannian G(l, n) is compact, it can be covered
by a finite number of neighborhoods of the form B′Λ0

, Λ0 ∈ G(l, n), and hence one can certainly
find positive constants Cl, δl such that for any P ∈ Vl and any Λ ∈ G(l, n), the inequality

max
0≤η≤ξ

min
||x||=η, x∈Λ

||∇PΛ(x)|| > Clξ
m0−1

holds true for all 0 < ξ ≤ δl. This means that P0 ∈ SS(n,m0), and this finishes the proof.

B Birkhoff normal forms with estimates

The goal of this section is to give the proof of Proposition 3.5 using the work of Delshams
and Gutiérrez ([DG96]).

Given l ∈ N and P a homogeneous polynomial in ξ of degree l, if P (ξ) =
∑
|ν|=l Pνξ

ν , we
define the norm

||P || :=
∑
|ν|=l

|Pν |. (B.1)

By our analyticity assumption on the Hamiltonian H in (1.1), we have the following expansion
at the origin

H(ξ) =
∑
l≥2

Hl(ξ) = i

n∑
j=1

αjξjξn+j +
∑
l≥3

Hl(ξ)

and there exist positive constants c and d, which depends only on n, R and ||H||R such that
for any integer l ≥ 2,

||Hl|| ≤ cl−2d. (B.2)

Using Cauchy formula one easily proves that

||Hl|| ≤ (2R)−l(e(2n+ 1))l||H||R

and therefore one can choose

c := (2R)−1e(2n+ 1), d := (2R)−2(e(2n+ 1))2||H||R. (B.3)

Given any function f that can be written as f =
∑

k Pk, with each Pk homogeneous of
degree k in ξ, one easily check that

sup
ξ∈Bρ
|f(ξ)| ≤

∑
k

||Pk||ρk, (B.4)
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and, if g =
∑

k, k evenQk, with each Qk homogeneous of degree k/2 in I(ξ), then

sup
I∈Dρ

|g(I)| ≤
∑

k, k even

||Qk||(ρ2/2)k/2. (B.5)

Moreover, the above estimates hold true if f is replaced by a tensor-valued function. Recall
the definition of Ψα given in (1.5). Recall that we also defined for any integer j ≥ 3, ψjα =∏j
i=3 Ψα(i) and for convenience, we set ψ2

α := 1. We can finally state the main technical
proposition of [DG96].

Proposition B.1 (Delshams-Gutiérrez). Let H be as in (1.1) with α as in (1.5) and consider
an integer K ≥ 4. If we define

ρK := (548ncdKΨ(K))−1,

then there exists a real-analytic symplectic transformation ΦK = Id + O(ξ2) defined on BρK
such that H ◦ ΦK is in Birkhoff normal form up to order K, that is

H ◦ ΦK(ξ) = α · I(ξ) +
∑

k even, 4≤k≤K
hk(I(ξ)) +

∑
k≥K+1

fk(ξ)

where hk is a homogeneous polynomial of degree k/2 in I(ξ), fk a homogeneous polynomial
of degree k in ξ, with the following estimates:

||hk|| ≤ 6−1(6cd)k−2(k − 2)!ψk−1
α , k even, 4 ≤ k ≤ K;

||fk|| ≤ 20d2(20cd)k−2(K − 3)!(K − 2)k−K+2ψK−1
α Ψα(K)k−K+2, k ≥ K + 1.

This is exactly the statement of Proposition 1 in [DG96], to which we refer for the proof.
We will now arrange these estimates in a way that will be more convenient for us.

Proposition B.2. Let H be as in (1.1) with α as in (1.5). Given an integer p ≥ 2 and
K ≥ 2p, we have the following estimates on the homogeneous polynomials of Proposition B.1:

||hk|| ≤ β(p)ρ
−(k−2p)
K , 2p ≤ k ≤ K; (B.6)

where
β(p) := 6−1(6cd)2p−2(2p− 2)!ψ2p−1

α , (B.7)

and, given an integer 0 ≤ q ≤ K − 4, we have

||fk|| ≤ β̃(q)ρ
−(k−q−1)
K , k ≥ K + 1. (B.8)

where
β̃(q) := c−1d(20cd)q(q + 2)!ψq+2

α .

The proof of Proposition B.2 is straightforward from Proposition B.1. Now from these
estimates on the homogeneous parts of hm and fK , we will deduce the estimates of Proposition
3.5.
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Proof of Proposition 3.5. Recall that

hm(I(ξ)) =
∑

k even, 4≤k≤K
hk(I(ξ))

where each hk is homogeneous of degree k/2. For p ≥ 2 and k ≥ 2p, ∇phk is a tensor-valued
homogeneous polynomial of degree (k−2p)/2 and one can easily check (see [DG96], estimates
(24)), that

||∇phk|| ≤ (k/2)p||hk||.

Using this inequality, inequality (B.5) and the estimate (B.6) we get

||∇phm||ρ ≤
∑

k even, 2p≤k≤K
||∇phk||(ρ2/2)(k−2p)/2

≤
∑

k even, 2p≤k≤K
(k/2)p||hk||(ρ2/2)(k−2p)/2

≤ β(p)
∑

k even, 2p≤k≤K
(k/2)pρ

−(k−2p)
K (ρ2/2)(k−2p)/2

≤ β(p)
∑

k even, 2p≤k≤K
(k/2)p(1/2)(k−2p)/2(ρ/ρK)k−2p

≤ b(p)

since the sum can be bounded by the corresponding series which is convergent. The same
bound applies to ||∇jhm||ρ for any j such that 2 ≤ j ≤ p, hence

||∇2hm||p,ρ = max
2≤j≤p

||∇jhm||ρ ≤ b(p).

Concerning

fK(ξ) =
∑

k≥K+1

fk(ξ),

since ∇fk is a vector-valued homogeneous polynomial of degree k − 1, we have

||∇fk|| ≤ k||fk||

and so, using this inequality together with inequality (B.4) and the estimate (B.8) we obtain

||∇fK ||ρ ≤
∑
k≥K
||∇fk||ρk−1 ≤

∑
k≥K

k||fk||ρk−1

≤ β̃(q)
∑
k≥K

ρ
−(k−q−1)
K ρk−1 ≤ β̃(q)ρq

∑
k≥K

(ρ/ρK)k−q−1

≤ b̃(q)ρqe−K .

This concludes the proof.

Comment. The preprint “Double exponential stability for generic real-analytic elliptic
equilibrium points” was first submitted to the server HAL (with automatic submission on
Arxiv) in September 2015; in order to make it more accessible, we decided to withdraw this
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preprint in March 2019 and split it into two parts. This article corresponds to the second
part, the first part being [BFN20]. Unfortunately, the HAL server did not allow us to mention
that the old preprint has been transformed into two new preprints. Even worse, because of
technical problems between the servers HAL and Arxiv, the situation could not be updated
on the Arxiv: while the old preprint has been removed from HAL and the two new preprints
appeared, on Arxiv the old preprint is still present but the two new preprints do not appear.
We apologize for this situation and we hope that this will resolved in the future. Note that
the results of [BFN17], which were published in 2017, are applications of the ideas developed
in this paper.

Acknowledgements. The authors have benefited from partial funding from the ANR
project Beyond KAM.
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