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Abstract. We give the first example of a smooth volume preserving mixing dynamical
system such that the discrete Schrödinger operators on the line defined with a potential
generated by this system and a Hölder sampling function have almost surely a continuous
spectrum.

1. Introduction
Given a dynamical system (�, T, µ), a sampling function V :�→ R and a base point
x ∈�, we define the one-dimensional (1D) Schrödinger operator generated by (�, T, µ),
V and x as the operator on `2(Z),

(HT,V,x u)n = un+1 + un−1 + V (T n x)un . (∗)

A general fact in spectral theory of 1D Schrödinger operators is that randomness of the
potential is a source of localization of the spectrum. Thus, an ergodic dynamical system
with randomness features has in general a localized pure point spectrum.

The goal of this paper is to prove the following result that we state informally here
before we give its exact statement at the end of this section.

THEOREM. There exist smooth volume preserving and mixing dynamical systems such
that the associated 1D Schrödinger operators with Hölder potentials have, for almost
every base point, no eigenvalues in their spectrum.

Let us first recall some of the instances where randomness yields pure point spectra.
The most famous example is Anderson’s model: the dynamical system is the Bernoulli
shift (RZ, σ, µZ), where µ is a probability measure supported on R; the sampling
function V : RZ

→ R is defined by V (x)= x0, where x = · · · x−1x0x1 · · · . It is well
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known that if µ= r(x)dx with r bounded and compactly supported, then for µZ-almost
every x ∈ RZ, the operator Hσ,V,x has pure point spectrum and the related eigenfunctions
are localized; see for example [7, 8, 14, 16]. Another kind of example is given by
Bourgain and Schlag [6]. In their example, the dynamical system is (T2, A, Leb), where
A : T2

→ T2 is a hyperbolic toral automorphism; the sampling function V (x)= λF(x)
with F ∈ C1(T2) non-constant and

∫
F = 0. For δ > 0 small and the coupling constant

λ > 0 sufficiently small, they established Anderson localization on some subinterval I0 of
[−2+ δ,−δ] ∪ [δ, 2− δ]. We note that (A, T2, Leb) is mixing since A is hyperbolic.

An interesting question is to understand how much randomness is needed to ensure
localization. For example, recently much interest in Schrödinger operators generated
by the skew-shift was in part motivated by the study of the transition from complete
localization to continuous spectra as randomness of the potential decreases.

It is a known fact indeed that quasi-periodic potentials often display absolutely
continuous spectra for small coupling. The skew-shift dynamics are on one hand related to
the quasi-periodic dynamics, but present on the other hand some mixing (in the fibers)
and parabolic features (see [13]). The skew-shift Tα is defined on T2 by Tα(x, y)=
(x + α, y + x), where α ∈ R is irrational. When α is Diophantine and the sampling
function is regular, it is expected that localization holds almost surely for arbitrary non-
zero coupling constant (see [4, 5] for results in that direction).

We note that the system (T2, Tα, Leb) is strictly ergodic, but not weakly mixing.
Thus, the above expectation aims at establishing localization under a weak randomness
hypothesis.

Our approach in the present work is a dual one, since we will construct a smooth mixing
system for which the associated Schrödinger operators with any Hölder potential have no
eigenvalues for almost all base points.

Our construction is a smooth reparametrization of a linear flow on T3 (see §3.2 for the
definitions) that will combine mixing with the existence of super-recurrence times (see
Definition 1) for almost every point. The strong recurrence implies a Gordon property on
the potential, that in turn yields absence of a pure point in the spectrum (see §2 below).

The construction of the reparametrized flow follows the construction in [10] of a
reparametrization of a linear flow on T3 that is mixing but has a purely singular maximal
spectral type. Indeed, the singularity of the maximal spectral type in [10] was due to the
existence of very strong periodic approximations on parts of the phase space that have a
slowly decaying measure.

Note that for continuous potentials, the behavior of the Schrödinger operator above the
skew-shifts is completely different from the one described in the above conjecture. Indeed,
Boshernitzan and Damanik showed that for a typical skew-shift and a generic continuous
sampling function, the associated Schrödinger operators have no eigenvalues for almost
all base points [2]. In [3], they generalized this result to skew-shifts on the torus T3 with a
frequency in a residual set. They also showed that their approach cannot be carried out for
skew-shifts in dimension larger than or equal to 4.

The approach of [2, 3] is to introduce a recurrence property called ‘repetition property’,
that, when checked for a given dynamical system (at some or all orbits depending on the
system) implies a Gordon property on the generic continuous potential (above some or all
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orbits depending on the system). Our approach is inspired by theirs, but in our case the
Gordon property follows directly from super-recurrence, for all Hölder potentials. In their
case, especially since they include almost every frequency of the skew-shift, recurrence
is not very strong and the ‘repetition property’ they prove is only sufficient to guarantee
continuous spectrum for a generic continuous potential. Note also that in [2], the ‘repetition
property’ and its spectral consequences are shown to hold for almost every point, for
almost every interval exchange. It is well known that almost every interval exchange
transformation is weakly mixing [1], but it is never mixing [12].

We will now give the precise statement of our construction. We start with the definition
of super-recurrence.

Let (�, T ) be a topological dynamical system with � a compact metric space and T a
homeomorphism.

Definition 1. Assume that x ∈�. If there exist α > 1 and an integer sequence kn ↑∞ such
that

d(T kn x, x)≤ exp(−kαn ),

then we say that x is super-recurrent with recurrent exponent α.
If µ is an invariant ergodic measure of T , we say that the system (�, T, µ) is super-

recurrent if µ-almost every x ∈� is super-recurrent.

As mentioned above, our examples will be a reparametrization of a minimal translation
flow on the three torus by a smooth function 8. As will be recalled in §3, such flows
are uniquely ergodic for a measure equivalent to the Haar measure with density 1/φ. We
denote by µ the Haar measure on the torus and by µφ the measure with density 1/φ. Note
that reparametrizations of linear flows always have zero topological entropy.

THEOREM 1. There exist (α, α′) ∈ R2 and a smooth reparametrization φ ∈ C∞(T3, R∗+)
of the translation flow Tt (α,α′,1) such that the resulting flow is mixing, for its unique ergodic
invariant probability measure µφ , and µ-almost every x ∈ T3 is super-recurrent for its
time-one map T .

As a consequence, for every Hölder continuous potential V : T3
→ R, the operator

HT,V,x has purely continuous spectrum for µ-almost every x ∈ T3.

Remark 1. It is easy to see that super-recurrence for almost every point implies the metric
repetition property of [2]. Hence, for a generic continuous function V and µ-almost
every x , the operator HT,V,x has continuous spectrum.

The frequencies α and α′ are specially chosen super Liouville numbers, so that
Ttn(α,α′,1) is very close to the identity for some sequence tn→∞ (see §3.5). Naturally, the
very strong periodic approximations of the linear flow are lost after time change, otherwise
mixing would not be possible. However, one can choose the reparametrization in such a
way that along a sequence of times tn→∞, the very strong almost periodic behavior of
the translation flow still appears on a set of small measure εn . If now εn decreases, but not
too rapidly, say εn ∼ 1/n, then by a Borel–Cantelli argument, most of the points on the
torus will be strongly recurrent along a subsequence of the sequence tn .
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2. Super-recurrence and continuous spectrum
To show why super-recurrence implies the absence of a point part in the spectrum, we just
have to show that it implies the Gordon condition, which we now state.

The Gordon condition. A bounded function V : Z→ R is called a Gordon potential if there
are positive integers kn→∞ such that

max
1≤l≤kn

|V (l)− V (l ± kn)| ≤ n−kn

for any n ≥ 1.
The Gordon condition ensures that the 1D Schrödinger operator on `2(Z) with

potential V has no eigenvalues [11].
Assume that V :�→ R is continuous. Define

Vx (n)= V (T n x), x ∈�, n ∈ Z.

We now assume that M is a smooth compact manifold and T is a C1 diffeomorphism of
M . Let d be the Riemann metric on M. Then we have the following simple consequence
of super-recurrence.

PROPOSITION 1. If x ∈ M is super-recurrent and V : M→ R is Hölder, then Vx is a
Gordon potential.

Proof. Since T is C1, T is Lipschitz. Let L > 1 be the Lipschitz constant. Assume that
V is β-Hölder with Hölder constant C1. Let α > 1 be the recurrent exponent of x . Let
{kn : n ≥ 1} be the sequence related to x . By taking a subsequence, we can assume that
kn ≥ n. For 1≤ l ≤ kn , we have

|Vx (l)− Vx (l ± kn)| = |V (T l x)− V (T l±kn x)|

≤ C1d(T l x, T l±kn x)β

≤ C1[Lld(x, T±kn x)]β

≤ C1[L2kn e−kαn ]β

= C1 exp(−β(kαn − 2kn ln L))

≤ n−kn

as soon as n is big enough. By the definition, Vx is a Gordon potential. �

Hence, the second part of Theorem 1 follows from the first part of Theorem 1 and
Proposition 1 and the above-mentioned spectral consequence of the Gordon condition on
the potentials.

We now proceed to the construction of the reparametrized flow.

3. Super-recurrent mixing flows
We start with some notation and reminders on reparametrizations and special flows.
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3.1. Translation flows on the torus. The translation flow on Tn of the vector α ∈ Rn

is the flow arising from the constant vector field X (x)= α. We denote this flow by {Rtα}.
When the numbers 1, α1, . . . , αn are rationally independent, i.e. none of them is a rational
combination of the others, {Rtα} is uniquely ergodic for the Haar measure µ on the torus.
In this case we say that it is an irrational flow.

3.2. Reparametrized flows. If φ is a strictly positive smooth real function on Tn , we
define the reparametrization of {Rtα} with velocity φ as the flow given by the vector field
φ(x)α, that is, by the system

dx
dt
= φ(x)α.

The new flow has the same orbits as {Rtα} and preserves a measure equivalent to the Haar
measure given by the density 1/φ. Moreover, if {Rtα} is uniquely ergodic, then so is the
reparametrized flow (see [15]).

3.3. Special flows. The reparametrizations of linear flows can be viewed as special
flows above toral translations. We give the formal definition.

Definition 2. Given a Lebesgue space L , a measure-preserving transformation T on L and
an integrable strictly positive real function ϕ defined on L , we define the special flow over
T and under the ceiling function ϕ by inducing on L × R/∼, where∼ is the identification
(x, s + ϕ(x))∼ (T (x), s), the action of

L × R→ L × R
(x, s)→ (x, s + t).

If T preserves a unique probability measure λ, then the special flow will preserve a
unique probability measure that is the normalized product measure of λ on the base and
the Lebesgue measure on the fibers.

We will be interested in special flows above minimal translations Rα,α′ of the two torus
and under smooth functions ϕ(x, y) ∈ C∞(T2, R∗+) that we will denote by T t

α,α′,ϕ
. We

denote Mϕ = {(z, s) : z ∈ T2, s ∈ [0, ϕ(z))}. We will still denote by µ the product of the
Haar measure of T2 with the normalized Lebesgue measure on the line.

In all the sequel we will use the following notation, for m ∈ N,

ϕm(z) := Smϕ(z)=
m−1∑
l=0

ϕ(z + l(α, α′)).

With this notation, given t ∈ R+, we have for ξ ∈ Mϕ , ξ = (z, s),

T tξ = (RN (t,s,z)
α,α′

(z), t + s − ϕN (t,s,z)(z)), (3.1)

where N (t, s, z) is the largest integer m such that t + s − ϕm(x)≥ 0, that is, the number
of fibers covered by (z, s) during its motion under the action of the flow until time t .
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3.4. Mixing. We also recall the definition of mixing for a measure-preserving flow: a
flow {T t

} preserving a measure ν on M is said to be mixing if, for any measurable subsets
A and B of M , one has

lim
t→∞

ν(T t A ∩ B)= ν(A)ν(B).

By standard equivalence between special flows and reparametrizations (see for
example [9]), Theorem 1 follows from the following theorem.

THEOREM 2. There exist a vector (α, α′) ∈ R2 and a smooth strictly positive function ϕ
defined over T2 such that the special flow T t

α,α′,ϕ
is mixing and µ-almost every ξ ∈ Mϕ is

super-recurrent for T 1
α,α′,ϕ

.

We will now undertake the construction of the special flow T t
α,α′,ϕ

, following the same
steps as [10]. We will first choose a special translation vector on T2; then we will give
two criteria on the Birkhoff sums of the special function ϕ above Rα,α′ that will guarantee
mixing and super-recurrence, respectively. Finally, we build a smooth function ϕ satisfying
these criteria.

3.5. Choice of the translation on T2. We start with a quick reminder on continued
fractions. Let α ∈ R\Q. There exists a sequence of rationals {pn/qn}n∈N, called the
convergents of α, such that

‖qn−1α‖< ‖kα‖ for all k < qn (3.2)

(where ‖x‖ :=min{|x − n| : n ∈ Z}) and, for any n,

1
qn(qn + qn+1)

≤ (−1)n
(
α −

pn

qn

)
≤

1
qnqn+1

. (3.3)

We recall also that any irrational number α ∈ R\Q has a writing in continued fractions

α = [a0, a1, a2, . . .] = a0 + 1/(a1 + 1/(a2 + · · · )),

where {ai }i≥1 is a sequence of integers ≥ 1, a0 = [α]. Conversely, any sequence {ai }i∈N
corresponds to a unique number α. The convergents of α are given by the ai in the
following way:

pn = an pn−1 + pn−2 for n ≥ 2, p0 = a0, p1 = a0a1 + 1,

qn = anqn−1 + qn−2 for n ≥ 2, q0 = 1, q1 = a1.

Following [17] and as in [9], we take α and α′ satisfying

q ′n ≥ e(qn)
5
, (3.4)

qn+1 ≥ e(q
′
n)

5
. (3.5)

Vectors (α, α′) ∈ R2 satisfying (3.4) and (3.5) are obtained by an adequate choice of the
sequences an(α) and an(α

′). Moreover, it is easy to see that the set of vectors satisfying
(3.4) and (3.5) is a continuum; cf. [17, Appendix 1].
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3.6. Mixing criterion. We will use the criterion on mixing for a special flow T t
α,α′,ϕ

studied in [9]. It is based on the uniform stretch of the Birkhoff sums Smϕ of the ceiling
function above the x or the y direction alternatively depending on whether m is far from
the qn or from the q ′n . From [9, Propositions 3.3–3.5], we have the following sufficient
mixing criterion. We denote by {x} ∈ [0, 1) the fractional part of a real number x .

PROPOSITION 2. (Mixing criterion) Let (α, α′) be as in §3.5 and ϕ ∈ C2(T2, R∗+). If for
every n ∈ N sufficiently large, we have a set In equal to [0, 1] minus a finite number of
intervals whose lengths converge to zero such that:
• m ∈ [e2(qn)

4
/2, 2e2(q ′n)

4
] H⇒ |Dx Smϕ(x, y)| ≥ (m/e(qn)

4
)(qn/n) for any y ∈ T and

{qn x} ∈ In;
• m ∈ [e2(q ′n)

4
/2, 2e2(qn+1)

4
] H⇒ |Dy Smϕ(x, y)| ≥ (m/e(q

′
n)

4
)(q ′n/n) for any x ∈ T

and {q ′n y} ∈ In ,
then the special flow T t

α,α′,ϕ
is mixing.

3.7. Super-recurrence criterion. We give now a condition on the Birkhoff sums of ϕ
above Rα,α′ that is sufficient to ensure super-recurrence for T 1

α,α′,ϕ
.

PROPOSITION 3. (Super-recurrence criterion) If for n sufficiently large, we have for any x
such that 1/n2

≤ {qn x} ≤ 1/n − 1/n2 and for any y ∈ T,

|Sqnq ′nϕ(x, y)− qnq ′n| ≤
1

e(qnq ′n)2
, (3.6)

then µ-almost every z = (x, y, s) ∈ Mϕ is super-recurrent for the time-one map of the
special flow T t

α,α′,ϕ
as in Definition 2.

Proof. Denote by T t the flow T t
α,α′,ϕ

and let tn = qnq ′n . From (3.1), we have that

T tn (x, y, s)= (x + tnα, y + tnα′, s + tn − Stnϕ(x, y)).

From (3.3), (3.4) and (3.5), we get that ‖tnα‖, ‖tnα′‖ ≤ 1/et3
n . Now, for x such that 1/n2

≤

{qn x} ≤ 1/n − 1/n2, for any y ∈ T and for s ∈ [0, ϕ(x, y)), we have from (3.6) that
z = (x, y, s) satisfies (for the Euclidean distance) d(z, T tn z)≤ 2/et2

n .
Now, the set Cn = {x ∈ T : 1/n2

≤ {qn x} ≤ 1/n − 1/n2
} has Lebesgue measure larger

than 1/2n. As qn increases very fast, we have that the sets Cn are almost independent, from
which it follows by Borel–Cantelli-type lemmas that Lebesgue almost every x ∈ T belongs
to infinitely many of the Cn . Thus, almost every z ∈ Mϕ is super-recurrent. �

3.8. Choice of the ceiling function ϕ. Let (α, α′) be as above and define

f (x, y)= 1+
∑
n≥2

Xn(x)+ Yn(y),

where

Xn(x)=
1

e(qn)4
cos(2πqn x), (3.7)

Yn(y)=
1

e(q ′n)4
cos(2πq ′n y). (3.8)
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Using Proposition 2, we proved in [9] that the flow T t
α,α′, f is mixing (the proof will be

recalled below). In order to keep this criterion valid but have in addition the conditions of
Proposition 3 satisfied. we modify the ceiling function in the following way.
•We keep Yn(y) unchanged.
• We replace Xn(x) by a trigonometric polynomial X̃n with integral zero, that is,

essentially equal to 0 for {qn x}< 1/n and whose derivative has its absolute value bounded
from below by qn/e(qn)

4
for {qn x} ∈ [0, 1]\

⋃4
j=0[ j/4− 2/n, j/4+ 2/n]. The first two

properties of X̃n will yield Criterion 3 while the lower bound on the absolute value of its
derivative will ensure Criterion 2.

More precisely, the following proposition enumerates some properties that we will
require on X̃n and its Birkhoff sums, and that will be sufficient for our purposes.

PROPOSITION 4. Let (α, α′) be as in §3.5. There exists a sequence of trigonometric
polynomials X̃n(x) satisfying:
(1)

∫
T X̃n(x) dx = 0;

(2) for any r ∈ N, for every n ≥ N (r), ‖X̃n‖Cr ≤ 1/(e(qn)
4/2);

(3) for {qn x} ≤ 1/n, |X̃n(x)| ≤ 1/e(qnq ′n)
4
;

(4) for {qn x} ∈ [2/n, 1
4 − 2/n] ∪ [ 34 + 2/n, 1− 2/n], we have X̃ ′n(x)≥ qn/e(qn)

4
,

as well as for {qn x} ∈ [ 14 + 2/n, 1
2 − 2/n] ∪ [ 12 + 2/n, 3

4 − 2/n], we have

X̃ ′n(x)≤−qn/e(qn)
4
;

(5) ‖Sqn

∑
l≤n−1 X̃l‖C0 ≤ 1/e(qnq ′n)

4
;

(6) for any m ∈ N, ‖Sm
∑

l≤n−1 X̃ ′l‖C0 ≤ qn .

Before we prove this proposition, let us show how it allows us to produce the example
of Theorem 2. Define for some n0 ∈ N

ϕ(x, y)= 1+
∞∑

n=n0

X̃n(x)+ Yn(y) (3.9)

that is of class C∞ from Property (2) of X̃n and from the definition of Yn in (3.8). From
(2) again, we can choose n0 sufficiently large so that ϕ is strictly positive. Furthermore,
we have the following theorem.

THEOREM 3. Let (α, α′) ∈ R2 be as in §3.5 and ϕ be given by (3.9). Then the special
flow T t

α,α′,ϕ
satisfies the conditions of Propositions 2 and 3 and hence the conclusion of

Theorem 2.

Proof. The second part of Proposition 2 is valid exactly as in [9] since Yn has not been
modified. We sketch its proof for completeness. For m ∈ N, we have that

SmYn(y)= Re
(

Y (m, n)

e(q ′n)4
ei2πq ′n y

)
with

Y (m, n)=
1− ei2πmq ′nα

′

1− ei2πq ′nα′
.
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It follows from (3.2)–(3.5) that

|Y (m, k)| ≤ m for all k ∈ N∗, (3.10)

|Y (m, k)| ≤ q ′n for all k < n, (3.11)

|Y (m, n)| ≥
2
π

m for all m ≤
q ′n+1

2
. (3.12)

Let now m ∈ [e2(q ′n)
4
/2, 2e2(qn+1)

4
] and y be such that 3/n ≤ {q ′n y} ≤ 1/2− 2/n. Then

(3.3) and (3.4) imply that for any 0≤ l ≤ m, 2/n ≤ {q ′n(y + lα′)} ≤ 1/2− 1/n. Hence,
(3.12) implies that

|SmY ′n(y)| ≥
8mq ′n
ne(q ′n)4

.

Using (3.10) and (3.11) to bound ‖
∑

k>n SmY ′k‖ and ‖
∑

k<n SmY ′k‖, respectively, we
obtain that |Sm

∑
k≥1 Y ′k(y)| ≥ mq ′n/ne(q

′
n)

4
. The case 1/2+ 3/n ≤ {q ′n y} ≤ 1− 2/n is

treated similarly.
We now turn to the control of the Birkhoff sums in the x direction. Let m ∈

[e2(qn)
4
/2, 2e2(q ′n)

4
] and x be such that |{qn x} − j/4|> 3/n for any positive integer j ≤ 4.

For definiteness, assume that {qn x} ∈ [3/n, 1
4 − 3/n], the other cases being similar.

From (3.5), we get for any 0≤ l ≤ m that 2/n ≤ {qn(x + lα)} ≤ 1/4− 2/n; hence, by
Property (4) of X̃n ,

|Sm X̃ ′n(x)| ≥
mqn

e(qn)4
.

On the other hand, Properties (2) and (6) imply that

‖Smϕ
′
− Sm X̃ ′n‖ ≤ qn + m

∑
l≥n+1

1

e(ql )4/2

≤ qn +
2m

e(qn+1)4/2

= o
(

mqn

e(qn)4

)
for the current range of m. The criterion of Proposition 2 thus holds true.

Let now x be as in Proposition 3, that is, 1/n2
≤ {qn x} ≤ 1/n − 1/n2. From (3.5), we

have for any l ≤ qnq ′n that 0≤ {qn(x + lα)} ≤ 1/n; hence, Property (3) implies that

|Sqnq ′n X̃n(x)| ≤
qnq ′n

e(qnq ′n)4
≤

1

e(qnq ′n)3
. (3.13)

From Properties (2) and (5), we get for n sufficiently large,

‖Sqnq ′n

∑
l 6=n

X̃l‖ ≤
q ′n

e(qnq ′n)4
+ qnq ′n

∑
l≥n+1

1

e(ql )4/2

≤
1

e(qnq ′n)3
. (3.14)
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On the other hand, it follows from the definition of convergents in §3.5 and (3.3) that
for any y ∈ T, for any | j |< q ′n , we have

|Sq ′n ei2π j y
| =

∣∣∣∣ sin(π jq ′nα
′)

sin(π jα′)

∣∣∣∣
≤

2π jq ′n
q ′n+1

, (3.15)

which, using (3.4) and (3.5), yields for Yl as in (3.8),

‖Sq ′n

∑
l<n

Yl‖ ≤
1

e(qnq ′n)3
, (3.16)

while clearly

‖Sq ′n

∑
l>n

Yl‖ ≤ e−(q
′

n+1)
4/2
≤

1

e(qnq ′n)3
(3.17)

and

‖Sq ′n Yn‖ ≤
q ′n

e(q ′n)4
≤

1

e(qnq ′n)3
. (3.18)

Putting together (3.16)–(3.18) yields

‖Sqnq ′n

∞∑
l=n0

Yl‖ ≤
1

2e(qnq ′n)2
. (3.19)

In conclusion, (3.6) follows from (3.13), (3.14) and (3.19). �

It remains to construct X̃n satisfying (1)–(6).

3.9. Proof of Proposition 4. Consider on R a C∞ function, 0≤ θ ≤ 1, such that

θ(x)= 0 for x ∈ (−∞, 0],

θ(x)= 1 for x ∈ [1,+∞).

Then we define

θn(x) := θ
(

nqn

(
x −

1
nqn

))
− θ

(
nqn

(
x −

1
4qn
+

2
nqn

))
.

Observe that

θn(x)=


1 for x ∈

[
2

nqn
,

1
4qn
−

2
nqn

]
,

0 for x ∈
[
−∞,

1
nqn

]
∪

[
1

4qn
−

1
nqn

,+∞

]
.

We define on R the following functions:

Un(x)=
∫ x

−∞

θn(u) du;
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then

Vn(x)=Un(x)−Un

(
x −

1
4qn

)
.

Observe that Vn is compactly supported inside [0, 1/2qn] and has derivative equal to 1
for x ∈ Jn = [2/nqn, 1/4qn − 2/nqn] and derivative equal to −1 on 1/4qn + Jn . Define
now the zero-averaged function supported inside [0, 1/qn],

Wn(x)= Vn(x)− Vn

(
x −

1
2qn

)
.

The derivative of Wn is constant and equal to 1 on Jn ∪ (3/4qn + Jn) and constant and
equal to −1 on (1/4qn + Jn) ∪ (1/2qn + Jn). Also, Wn ≡ 0 on [0, 1/nqn] ∪ [1/qn −

1/nqn, 1/qn].
We define the following function on the circle T= R/Z:

X̂n(x) :=
qn

e(qn)4

qn−1∑
k=0

Wn

(
x +

k
qn

)
.

It is easy to check (1), (2), (3) and (4) of Proposition 4 for X̂n .
Now we consider the Fourier series of X̂n(x)=

∑
k∈Z X̂n,kei2πkx and let

X̃n(x) :=
qn+1−1∑

k=−qn+1+1

X̂n,kei2πkx .

From the order of the truncation and the Cr norms of X̂n , it is easy to deduce that for
any r ∈ N,

‖X̃n − X̂n‖Cr ≤
1

e(qnq ′n)5
,

which allows us to check (1), (2), (3) and (4) for X̃n .

Proof of Property (5). As for (3.15), using the definition of convergents in §3.5, we obtain
for any x ∈ T, and for any |k|< qn ,

|Sqn ei2πkx
| ≤

2πkqn

qn+1
;

hence, for X̃l :=
∑ql+1−1

k=−ql+1+1 X̂l,kei2πkx and l ≤ n − 1, we have

‖Sqn X̃l‖ ≤
2πq2

n

qn+1

ql+1−1∑
k=−ql+1+1

|X̂l,k |

≤
4πq3

n

qn+1
‖X̂l‖;

thus, Property (5) follows. �
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Proof of Property (6). For any |k|< qn , we have

|Smei2πkx
| =

∣∣∣∣ sin(πmkα)
sin(πkα)

∣∣∣∣
≤

1
| sin(πkα)|

≤ qn .

Thus, for l ≤ n − 1, we use that |X̂l,k | ≤ 1/(2π |k|)3‖D3
x X̂l‖ and get that

‖Sm X̃ ′l‖ ≤
∑

k:1≤|k|<ql+1

1

(2π |k|)2
ql+1‖D3

x X̂l‖

≤
1

12
ql+1‖D3

x X̂l‖,

from which Property (6) follows. �
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