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Abstract

We present a proof of Herman’s Last Geometric Theorem asserting
that if F' is a smooth diffeomorphism of the annulus having the inter-
section property, then any given F-invariant smooth curve on which
the rotation number of F' is Diophantine is accumulated by a positive
measure set of smooth invariant curves on which F' is smoothly conju-
gated to rotation maps. This implies in particular that a Diophantine
elliptic fixed point of an area preserving diffeomorphism of the plane
is stable. The remarkable feature of this theorem is that it does not
require any twist assumption.

Le dernier théoreme géométrique d’Herman
Résumé

Nous présentons une preuve du dernier théoreme géométrique
d’Herman qui affirme que si un difffomorphisme F' de l'anneau
possede la propriété d’intersection, alors toute courbe C°°, F-
invariante sur laquelle le nombre de rotation de F' est diophantien
est accumulée par un ensemble de mesure positive de courbes invari-
antes C'° sur lesquelles F' est C'™°-conjuguée a une rotation. Ceci
implique en particulier la stabilité des points fixes elliptiques dio-
phantiens des difféomorphismes du plan qui préservent l'aire. Le
caractére remarquable de ce théoreme est qu’il ne requiert aucune
condition diophantienne.

1 Introduction

In his 1998 ICM address [7], M. Herman asked the following question: ” Let
f be a C>- diffeomorphism preserving the Lebesque measure of T! x [—1,1],
homotopic to the identity, that has a finite number of periodic points (...)
and is such that the rotation number p(f”rlx[,l’l]) = « satisfies a diophantine
condition. Is f C*™-conjugated to R,(0,1) = (0 + a,r)?



I would expect a counter-example, but there is some evidence in the op-
posite direction.

We will show elsewhere this is the case if f is C*®-close to R, and [in
this case| f is always C*-conjugated to R, near T' x {+1}.”

By "Herman’s Last Geometric Theorem”!, we shall refer to the latter
local rigidity result (see Corollary 1 for an exact statement), together with
Herman’s discovery that an invariant diophantine circle of an area preserving
planar diffeomorphism is always accumulated by a positive measure set of
invariant circles (see exact statement in Theorem 1).

It is possible to trace back Herman’s first statement of the theorem no
later than 1995 in his ”Séminaire de Systemes Dynamiques” at the Université
Paris VII, and later on in the same seminar at various occasions. To our
knowledge, Herman never wrote a complete proof of the theorem and the
only available material was a set of notes (given to the participants of the
aforementioned seminar) where he explained the strategy of the proof. It
is based on this strategy that we give here a complete proof of "Herman’s
last geometric Theorem” . Of course, the content of the paper is under the
responsibility of the authors.

Aknowledgement We are greatful to Anatole Katok and Jean-Paul Thou-
venot for their continuous interest in the progress of this paper.

1.1 Stability and Ergodicity

Probably the best way to introduce Herman’s last geometric theorem is in
its relation to the stability question of elliptic fixed points. Indeed, the study
of the (Lyapunov) stability of fixed points is a fundamental problem in the
theory of dynamical systems and its applications.

In the case of an area-preserving plane diffeomorphism f, the fixed points
are classified accroding to the eigenvalues of the Jacobian df at these fixed
points in the following way. If the eigenvalues of df are distinct, then the
fixed point is said to be hyperbolic if they are real, and the point is said to
be elliptic if they lie on the unit circle. In the exceptional case of two equal
eigenvalues +1, the point is called parabolic.

While it has been known since very long that hyperbolic fixed points
are unstable, the question of stability of elliptic fixed points remained essen-
tially unsolved until the discovery of KAM theory (named after Kolmogorov,
Arnold and Moser).

Prior to that, Birkhoff had introduced an important tool for the study
of stability, the so called normal forms. They give a simple description, up

!This denomination was suggested to us by A. Katok



to canonical change of coordinates, of the map near an elliptic fixed point,
in the spirit of Taylor series for real functions. For a smooth map F' fixing
the origin, a normal form expression of order NV is given in polar coordinates

(0,7) by .
0,7) — (0 + ) ar' +¢i(0,7), 7+ a(0, r))

i=0
where ¢ and ¢y vanish with their derivatives up to order N — 1 at r = 0.

Birkhoff proved that if a C*° map F' has an irrational elliptic fixed point,
i.e. with eigenvalues that are not roots of unity, then it admits, after canon-
ical coordinate changes, normal forms at any order. He further showed
that there exists a formal power series that conjugates F' to a complete nor-
mal form (0 + >~ a;r*,r) . Clearly, a map that is ezactly a normal form
(0 +> 2, ar',r) is completely integrable and thus stable at the origin. Not
surprisingly, complete integrability turns out to be too much to ask (it was
known to Poincaré that resonant tori usually break up under small pertur-
bations of a completely integrable system) 2 and it was shown by Siegel that
the formal power series that conjugate F' to a complete normal form are in
general divergent.

Nevertheless, Birkhoff normal forms proved to be very useful in the result
of stability discovered by Moser [10] in line with Kolmogorov’s seminal ap-
proach asserting the persistence of a positive measure set of invariant circles
when a completely integrable system is perturbed, provided a non-degeneracy
condition is imposed on the initial system (here the Birkhoff normal form).
One invariant circle being sufficient for Lyapunov stability, it indeed follows
from usual KAM theory that if the series a; contains nonzero terms (torsion)
then an irrational elliptic fixed point is stable. Actually, Moser proved the
stability of an elliptic fixed points in finite regularity (C*), provided that the
eigenvalues merely avoid the six roots of unity of order 1,2,3,4, and that
a; # 0 in the Birkhoff normal form of order 2. The latter is of course a
generic transversality condition.

On the other hand, Anosov and Katok constructed in [1] smooth area
preserving diffeomorphisms of the unit disc in R?, with an irrational elliptic
fixed point at the origin, that are ergodic. These examples showed that
the existence of torsion was necessary in establishing stability in the KAM
setting, at least when no arithmetical conditions, besides avoiding the first
six roots of unity or even having irrational arguments, are imposed on the
eigenvalues.

2Note however that, in the holomorphic case, complete integrability is equivalent to
stability; see Siegel’s theorem in the next section.



In fact, besides being infinitely tangent to the rotation at the origin, the
Anosov-Katok examples were obtained only for a family of rotation numbers
(arguments of the eigenvalues) at the origin that contained a dense Gs-set of
the circle but that avoided all Diophantine numbers.

While the strength of Moser’s result lies in the fact that stability is insured
by the finite number of conditions stated above, its non-zero torsion condition
involves the behavior of the map in the neighborhood of the fixed point. A
tantalizing question naturally arose, to decide whether as it is the case with
instability for hyperbolic fixed points, a sole information on the Jacobian at
a fixed elliptic point could be enough to insure stability.

This is precisely what was established in the real analytic category by H.
Riissmann who proved in [11] the following dichotomy, that implies stability,
if the rotation number of the fixed elliptic point satisfies a Brjuno condi-
tion: either the Birkhoff normal form has some non zero term, in which case
Moser’s Theorem applies, or the Birkhoff form completely vanishes and the
map is analytically linearizable in the neighborhood of the fized point.

This dichotomy clearly fails in the smooth category, as is shown by the
following example (in cylindrical coordinates) : (r,6) — (r,0 + a + e~ /7).

Thus, the question of whether an elliptic fixed point with a Diophantine
rotation number (satisfying no a priori twist condition) is always stable re-
mained unsolved for smooth maps until Herman gave it an affirmative answer
as a corollary of his last geometric theorem

Theorem 1. Let F' be a smooth diffeomorphism of the annulus having the
intersection property. Then given a smooth curve I' invariant by F' on which
the rotation number o of F is Diophantine, it holds that T' is accumulated
by a positive measure set of smooth invariant curves on which F' is smoothly
conjugated to rotation maps.

The result stems actually from the following alternative: either there is
an open neighborhood of I' on which F' is conjugated to a rigid rotation of
the annulus of rotation number equal to that of F on I'" or I' is accumulated
by smooth invariant curves on which F' is smoothly conjugated to rotation
maps with frequencies covering a positive measure set inside a Diophantine
class obtained by slightly relaxing the Diophantine condition on «.

Besides the elegance and conciseness of the result, its importance lies in
the fact that in many of the physical situations where quasi-periodic stability
is involved, the non degeneracy of torsion is either hard to prove or at least
untrue at the first orders.

The technique used to prove the theorem is based on a general approach to
KAM theory where useful dynamical informations are obtained from Whit-
ney dependent normal forms (which are derived from a systematic use of
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Hamilton’s Implicit function theorem in judicious Fréchet spaces). This ap-
proach proved to be very helpful in dealing with delicate KAM problems such
as, for example, Herman’s rigorous approach to a proof of Arnol’d’s results
on the stability of the solar system (a proof of which was nicely written by
Jacques Féjoz [5]).

Before stating more precisely the main results of this paper, let us men-
tion that the ergodic examples of Anosov and Katok on the unit disc were
extended in [4] to cover all Liouville rotation numbers at the origin (and the
boundary) which gives, together with Herman’s last geometric theorem, an
additional example of the complete dichotomy between Diophantine stable
and Liouville unstable paradigms.

Theorem 2 ([4]). For any given Liouville number «, there exists a smooth
area-preserving diffeomorphism of the unit disk, preserving the boundary and
having rotation number a on the boundary, which is weakly mixing with re-
spect to Lebesgue measure.

In fact, the method of the proof of Theorem 1 shows that given a Dio-
phantine class to which a belongs, there exists a class of differentiability of
the map F' that insures the validity of Theorem 1, with however invariant
curves that will have less regularity then the map F' itself. On the other
hand, given a Diophantine class, it is also possible to construct by quantita-
tive Anosov-Katok methods, as the one used in [4], weakly mixing examples
as in Theorem 2 but with finite regularity.

1.2 Results

We now pass to a more detailed description and precise statement of Her-
man’s results.

We denote the circle by T = R/Z. We denote by Diff’ (T), » € NU {oo}
the group of orientation preserving diffeomorphisms of the circle of class C".
We represent the lifts of these diffeomorphisms as elements of D"(T), the
group of C"-diffeomorphisms f of the real line such that f—Idg is Z-periodic.

Following Poincaré, one can define the rotation number of a circle homeo-
morphism f as the uniform limit p(f) = limyj . (f7(2) — ) /jmod[1], where
f7 (j € Z) denotes the j-th iterate of a lift f to R of f. A rotation map of
the circle with angle «, that we denote by R, : * +— x + «, has clearly a
rotation number equal to «.

Denote the infinite annulus by A = T x R. We shall use coordinates (6, r)
on A. We denote by Diff;°(A) the set of diffeomorphisms of the annulus that
are homotopic to the identity (see Section 2). Denote by C*°(R) the set of



smooth real maps f : R — R and by C°°(T,R) the set of smooth real maps
f € C*(R) that are 1-periodic.

We denote by T’y the circle T x {0} in A. More generally, we shall call
circle in A any closed curve I' = {(6,7(0)) }ger, where v belongs to C*(T, R).
For ¢ € R, we denote by G° the set of circles I' = {(6,v(0)), 6 € T} such
that [ v(0)dd = c.

We say that a diffeomorphism F' € Diffg”(A) has the intersection property
if for any non homotopically trivial continuous curve I' C A, F(I') N T # 0.
A circle is said to be F-invariant if F(I') = T, that is, if there exists f €
Diff *(T) such that F'(0,v(6)) = (f(0),v(f(#))). The restriction of F' on I'
is then said to be smoothly conjugate to a rotation Rz on I' if there exists
h € Diff(T) such that f = ho Rgoh™'. In this case, we will say that F is
linearizable on T'.

We denote by S, the rotation of angle o on the annulus, that is the map

A — A
Se: (0,1) — (04 a,r).

Finally, for a pair of constants (o, 7) such that o > 0 and 7 > 1, we denote
by DC(o, 7) the set of real numbers « satisfying the Diophantine condition:

1
V(k,l) e N* X Z, |ka—1] > —.
(k. ) ka1l > o
If 7 > 1 and o is big enough then DC(co,7) has positive Lebesgue mea-
sure. The set DC(7) := J,.,DC(o, 7) is by definition the set of diophan-
tine number of exponent T and is a set of full Lebesgue measure provided
7 > 1. Without any further specification, a diophantine number is a point

in |J,.,DC(7).
Theorem 3. Assume that F' € Diff°(A) satisfies the following assumptions:

o ['y is F-invariant and the rotation number a = p (F\Fo> of the cuircle
diffeomorphism induced by F' on I'g s Diophantine;

e [ has the intersection property.
Then, Ty is accumulated by F-invariant circles on which F' is linearizable.

More precisely, given any pair of constants (o,7) such that ¢ > 0 and
7 > 1, we will obtain ¢ > 0 and a C' map B : (—¢,&) — R such that
whenever B(c) € DC(o, ), there exists an F-invariant circle I'(c) € G° on
which the restriction of the diffeomorphism F' is C'*°-conjugate to the rotation
Rp(c)-

Also, if we consider o' < o and 7" > 7+ 1, there exists €1 for which the
following alternative holds:



1. either the application (3 is locally constant at 0 € (—ey1,€1) , in which
case there exists an F-invariant neighborhood O of the circle Ty in A
such that the diffeomorphism F' restricted to O is C'*°-conjugate to the
rotation S, on the annulus A.

2. or the application 3 is not constant at 0 in which case for any 0 < &’ <
e1, we have Leby (G(—¢’,e") NDC(o’, 7)) > 0, that is, the frequencies
on the invariant circles accumulating Iy cover a set of positive Lebesqgue
measure. Moreover, denoting by Gr(e1) the set of F-invariant circles
contained in T X (—e1,e1), we have Leby(Gr(e1)) > 0.

Remark 1. A diffeomorphism F' € Diff°(A) preserving the area and fixing
some circle I" has the intersection property, hence the consequences of the
theorem hold for an area preserving diffeomorphism of the annulus. On
the other hand, if it is not assumed that the diffeomorphism F' has the
intersection property the proof of Theorem 3 would provide translated curves
(F(I') =T+ p, pn € R) instead of invariant ones.

Remark 2. The following alternative also holds (”locally constant” in the
last Theorem being replaced by ”constant”)

1. either the application [3 is constant on (—ey,€1), in which case there
exists an invariant neighborhood O of the circle Iy in A foliated by the
circles I'(c), ¢ € (—ey,e1) such that the diffeomorphism F' restricted to
O is C*-conjugate to the rotation S, on the annulus A.

2. or the application [ is not constant on (—e1,€1) in which case

Leb; (8(—¢1,e1) NDC(o’,7")) > 0 and Leby(Gr(e1)) > 0

Remark 3. If the diffeomorphism F is only defined on A, = T x [0, 00), the
results of the theorem remain true with 5 defined on [0, ) instead of (—¢, ¢).
The reason is that F' can be extended to a smooth diffeomorphism of A. It is
not necessary however to require the intersection property for the extended
map beyond A, since this property is only used in the proof of Theorem 3
to insure that a translated curve is actually invariant. We refer the reader
to the Appendix for further details.

Remark 4. There exists an integer k (resp. kp) depending only on o, 7 for
which the constants € (resp. ¢;1) in the preceding theorem can be chosen
uniformly in F as long as® ||F' — Sa||x < 1 (resp. ||F — Sallr, < 1).

3If U is an open set of R, f : U — R is a smooth map, we define the C*-norm Ifllex oy
of f (or for short || f|x) by ||fllx := maxjj<jsup,ega |8’ f(x)|, where we use Whitney’s
notations : if j = (j1,...,ja) € N? we define |j| =j1 + -+ jgand & f = 9] --- &' f
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A consequence of the alternative described in Theorem 3 is the follow-
ing local rigidity result for diffecomorphisms of the closed annulus T x [0, 1]
that are free of periodic points* and that satisfy a Diophantine condition

on the boundary. We denote by Diff;°(T x [0, 1]) the subset of Diff;°(A) of
diffeomorphisms fixing the circles I'y = T x {O}and I'y = T x {1}.

Corollary 1. For any pair of positive constants (o, T) such that T > 1, there
exist 7 > 0 and s € N such that given any F € Diff °(T x [0,1]) satisfying
the following conditions:

e p(Fr,) € DC(o,7),

e [ has the intersection property,

e [ has only finitely many periodic point in T x (0,1),
o [|[F— 5.

os(Tx[o,1)) <

is C*-congugate to S, on T x [0,1].

M. Herman asked whether the rigidity result of Corollary 1 remains true
in a global setting, i.e. without the assumption that F' is close to S,.

Question 1. Can one find a C*-diffeomorphism F on T x [0,1] with the
intersection property, having a Diophantine rotation number o on one of the
boundary circles and no periodic point in T x [0,1], that is not C*°-conjugate
on T x [0,1], to the map S, : (8,r) — (0 4+ a,r)?

1.3 Examples of application: Elliptic fixed points and
Siegel Theorem

Let F': D — D, F(z,y) = (f(z,vy),9(x,y)) be a smooth diffeomorphism
of the disk such that F'(0) = 0. We say that 0 is an irrational elliptic
fixed point if DF(0) (the derivative of F' at 0) has eigenvalues of the form
et o € R — Q. As is well known, one can reduce the study of such a
diffeomorphism to that of a map of the annulus in the following way. First,
one can assume (after conjugation) that DF'(0) is a rotation matrix of angle
a. If we introduce the diffeomorphism H : T x (R — {0}) — C — {0} ~
R? — {(0,0)} defined by H(0,r) = re*® ~ (rcos(2rf), rsin(276)) one has
Fo H(0,r) = e™ere?™@ (0, r). The function

f(rcos(2m0), rsin(2n8)) + ig(r cos(2mh), r sin(270)))
re2mi(0+a)

Uu@,r) =

4or equivalently have only a finite number of periodic points
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is clearly C*° and equals 1 on R/Z x {0}; the function log U (6, ) is then also
smooth on a neighborhood of R/Z x {0}, where log is a branch of logarithm

such that log1 = 0. Consequently, there exist smooth functions (6, r),
R(0,7) (R(f,r) > 0) such that on a neighborhood of R/Z x {0}

R(6,7)e*™ O — 17(g, r), FoH(0,r) =rR(f,r)e2m0Ftatoln),

This proves that the function F := H 'o F o H can be extended as a smooth
function which is clearly a diffeomorphism of T x R.

Geometric properties of F' such as the intersection property translate to
F. A nice application of this fact in the holomorphic setting was given by M.
Herman to provide a new proof of Siegel Theorem : if f(z) = €™z 4+ O(2?)
1s a holomorphic germ and if o is diophantine, then it is linearizable at
0. Indeed, if we denote by f : A} — C the smooth map of the annulus
provided by the previous construction we see that f restricted to T x {0} is
the diophantine rotation by angle «. This map has the intersection property
because otherwise this would mean that f sends a neighborhood of 0 € D
strictly inside itself; but, this is clearly impossible by Schwarz Lemma. Hence,
there is some f-invariant circle around 0, which means the existence of an
invariant domain around 0. Conformal representation and Scharwz Lemma
give the conclusion.

Theorem 3 has also an immediate consequence for surface diffeomor-
phisms. We recall that a fixed point p for a surface diffeomorphism f is
said to be elliptic if the Jacobian D f(p) of f at the point p is an elliptic ma-
trix. We then say that p is Diophantine if D f(p) is conjugate to a rotation
matrix with a Diophantine angle o. Diophantine elliptic periodic points are
defined similarly.

Theorem 4. Let f be a surface diffeomorphism that has the intersection
property. If p is a Diophantine elliptic periodic point for f with period q,
then p is accumulated by a positive measure set of fl-invariant circles. In
particular, an area preserving surface diffeomorphism with a Diophantine
elliptic periodic point is not ergodic.

2 Notations and Preliminaries

Define the set Diff**(A) of smooth diffeomorphisms F' of the annulus as

follows:
A — A

Foo(0,r) = (f(0,r),9(0,r)),
where f and g are maps in C*(R?,R) that are 1-periodic with respect to the
first variable.



More generally, for any neighborhood U of the circle I'y = {(0,0),0 € T}
in the annulus A, we define the set Diff>(U, A) of maps F' such that:

U — A
F: (9,7‘) = (f(ear)vgw"r))a

where f: U — R and g : U — R are smooth maps that are 1-periodic with
respect to 6.
We denote

C2(T,R) = {v € C®(T,R) / /U(t)dt — 0}

For Yo € C(C))O(T7R) we denote 8(7076)8 = {7 € C(C)>0<T7R) / H7 - 70”5 <
e}.

We identify any circle I' = {(6,7(6))}per with the associated smooth
application v € C*°(T,R).

2.1 Tame Fréchet spaces/maps

For this section, we refer the reader to [6], [2], [9].

A topological vector space E is said to be locally convez if its topology
derives from a family of seminorms (|| - ||,) (n € N) (a seminorm satisfies
all the properties of a norm except for ”||z|| = 0 implies x = 07), that is
if the family U;; = {(||z]; < 77'},(i,7) € N x N*, constitutes a basis of
neighborhoods for the topology of E. The space FE is Hausdorff if v € E
vanishes if and only if for all n € N, (||z]|,) = 0.

A Fréchet space is a locally convex topological vector space that is Haus-
dorff and complete for the metric given by d(z,y) = 3,5, 27|z — yl|,-

Example. The space C{°(R/Z) with the topology given by the C” semi-
norms (|| - ||;)jen (If1l; = sup,er |07 f(x)]) is a Fréchet space. More trivially,
every Banach space is a Fréchet space. The collection of norms reduces to a
single one.

A graded family of semi-norms on a Fréchet space satisfies ||z||, , = ||z,
for every z € E and i € N. Any family of semi-nroms can be transformed into
a graded family by simply summing up for every ¢« € N the first ¢ semi-norms.

Definition 1. A family of smoothing operators on a graded Fréchet space
(E, (|| - []i)ien) is a real 1-parameter family (S;);>; of continuous linear appli-
cations from F to itself, such that there exist an integer r and real constants
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Cik, (J, k) € N? such that, for any vector x € E, for any ¢ > 1 and any j < k
both following inequalities hold:

{ 1Szl < Ciejt* =7+l
13 =Sy)ll; < Copt? = [

A tame Fréchet space is a graded Fréchet space endowed with a smoothing
operators family.

Example. It is not difficult to see, using Fourier series, that the space
C3°(T,R) is a tame Fréchet space. A simple choice for the family S; is given
by the truncation operators:

(Sh@)= 3 fReme, k) = / F()e 2k g

kEZ,|k|<t

for f € C°(R/Z) (f(k) is the k-th Fourier coefficient of f); with this choice
one can choose r = 2. Using Fourier integrals instead of Fourier series,
it is possible to prove the existence of a family of smoothing operators on
C3°(T,R) for which r = 0 (this is useful when one wants to prove accurate
Hadamard inequalities); see [8].

Definition 2. Let E and F' be two Fréchet spaces and consider ¢ : U — F
a continuous map from an open subset U in E to F. The map ® is said to
be Gateaux differentiable, if there exists an application

Dd: UxE — F
(v,Ax) +— D®(x)- Az,

continuous in (z, Az) and linear in the second variable, such that for every
(z,Az) € U x E, the following limit exists and satisfies
hII(l) O(x + tAZU) — O(x)
t—

By induction, it is possible to define C* differentiability of ® for k > 2. The
map ® is said to be of class O if it is of class C* for every integer k.

= DP(x) - Ax.

Definition 3. An application ® : U C F — F is tame if for any point z in
U there exists a neighborhood V' of ¢ in U, an integer p € N and a sequence
of strictly positive constants {cj}j cy Such that for any = € E, for any j € N

(@) [l; < ¢ (1 + [l2]l45)

The application @ is a C*-tame application (k € NU {oo}) if ® is of class
C* and if all its differentials of order j < k are tame. We use the notation
® € CK(U, F). The map ® is a C*-tame diffeomorphism if it is invertible and
if ® and its inverse ®~! are C*-tame applications.
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Remark 5. The integer p that appears in the previous definition is called the
differentiability loss of the application ®, with reference to the particular case
where E and F are graded function spaces endowed with the C*-topologies.

Example. If ® is a linear map its tameness is equivalent to the existence of
r,p € N such that for any j € N

1®fl; < Csllzllr + ll]l4)-

Proposition 1 ([6]). Le M be a compact smooth finite dimensional manifold,
and let E and F' be two real vector spaces of finite dimension. Then,

(i) the space C*(X, E) is a tame Fréchet space
(i1) the composition map

C®(X,E) x C*(E,F) — C~(X,F)
(f.9) =  golf,

1s well defined and is a C* tame map.

(i17) if f € C®(E, E) is invertible, and if U is a sufficiently small neighbor-
hood of f, then
U — C®(E,E)
g — g

is a C* tame map, where g~' denotes the inverse map of g.

2.2 Hamilton Inversion Theorem

Theorem 5 ([6]). Consider two tame Fréchet spaces E and F', an open set
UinE, f atame C" (r =22, r € NU{oc}) map from U to F, zq a point
in U and yo = f(xo). Suppose there exists an open neighborhood Vi of xq
i U and a tame continuous map which s linear in the second variable :
J : Vo x F — E and such that if © € Vi then Df(x) is invertible and its
inverse is J. Then, there exist open neighborhoods V- C Vo and W C F of xg
and yo respectively such that f -V — W is a tame C" diffeomorphism.

A corollary of the preceding theorem is the implicit function theorem in
tame Fréchet spaces.

Corollary 2 (Implicit function theorem [6]). Let E, F' be two tame Fréchet
spaces, U C E, V C F open sets such that (xo,y0) € UXV and G: U XV —
F a tame map of class C™ (r > 2) such that G(xg,yo) = 0. Assume that there
exrists a tame continuous map J : U XV X F — F linear in the third variable
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and such that for any (z,y) € U x V the linear map D,G(z,y) is invertible
and its inverse is J(x,y). Then there exist a neighborhoods Uy of xy € U, Vj
of yo € V and a map g : Uy — F of class C” such that for any (z,y) € Uy x Vj
the equality G(x,y) = 0 holds if and only if y = g(x).

2.3 The Diophantine condition and the linearized equa-
tion.

The following elementary fact known as the triviality of linear cohomology
above Diophantine rotations lies nevertheless at the heart of the proof of
Theorem 3 and more generally underlies all the stability results related to
the Diophantine paradigm.

Proposition 2. Let 0 > 0, 7 > 0 and a € DC(0, 7). Then, for any smooth
map f € C°(T,R) and any real number a there ezists a unique map g €

C(T,R) such that:
VOeT, f(0)=n+g(0+a)—ag)

with n = [, f(6)df. Moreover, the application

Loq:C®(T,R) — RxCZ(T,R)
f > (n,9),

is a C*-tame (linear) map. In the following we shall denote g by Loof.

Proof. The proof is obtained by a simple Fourier series computation and is
based on the fact that for any pair of constants (o, 7) such that o > 0 and
7 > 0, there exists a positive constant C'(¢) such that:

1

Va € R, Va € DC(0,7), Yn€Z ,|5——| < C|n|".
eZ’TI'TLa_a/

]

Remark 6. Actually, the proof of proposition 2 gives that for any pair of
constants (o, T) such that o > 0 and 7 > 0, there exist p(7) € N and C(0)
such that for o € DC(0,7), k € N and f € C§°(T,R)

[Laa(F)lp < ClS sy

p=1+1+1).

13



Remark 7. If the application f is strictly positive, then there exist a positive
constant v = exp ([ In f(0)dA) and a unique strictly positive g € C*(T,R)
such that for every 6 € T,

g0+ «)
f0) = v=—r—
9(0)
Here also, the application that associates the map g to the map f is a C*°-
tame application (with a uniform derivative loss as « satisifes a given Dio-
phantine condition).

In the proof of Theorem 3, we need to insure that « is well accumulated
(from both sides and with positive measure) by numbers satisfying a single
Diophantine condition. For this, it is sufficient to relax the Diophantine
condition satisfied by «, as shown by the following.

Proposition 3. Let o« € DC(o, 7). Then, for any0 < o' <o and 7" > 17+1,
and for any ¢ € C*(R,R) such that o(0) = «, the set {x € [-4,d] | p(x) €
DC(o’, ")} has a strictly positive Lebesgue measure for every § > 0.

Proof. We just have to show that for any ¢ > 0, we have A[DC(d¢’,7") N
(a —e,a)] > 0, as well as A[DC(0’,7") N (o, + €)] > 0 (where A(+) is the
one-dimensional Lebesgue measure). The proof of the two inequalities being
identical, we will only consider the latter. For ¢ > 1, define

/

p o
Ly={x€(a,a+¢) : E|p€Z/’$—5|< qr’+1}

We want to show that A\[U;>1L,] < . We actually claim that for ¢ > 0
sufficiently small A\[U,>1L,] < € —e(0 — 0')/2. Observe first that

20'e 20’
o T

AMLg) <

The fact that 7/ > 7 4+ 1 directly implies that

Hence, there exists ¢y > 0 such that if € < ¢y we have
Z ALy) < 5(0 —a').
q>5 1+‘r
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On the other hand, for any 1 < ¢ < 5_“%7, x € L, and since a € DC(o, 7)
we get

/

o o
r—o> q‘r+1 o F
oc—o
> e(o—0')
and the claim follows. O]

2.4 Plan of the proof of the main result Theorem 3.

First, the application of the Herman-Yoccoz theorem on smooth lineariz-
ability of diffeomorphisms of the circle with diophantine number allows to
reduce the problem to that of a diffeomorphism of the annulus F' fixing I’y
on which its restriction is a diophantine rotation R,. Using the Diophan-
tine property of a and the intersection property of F' we can perform a
change of coordinates that allows to write F', in the neighborhood of I'y, in a

Birkhoff Normal Form given by F(6,r) = (9 +a+ Zf\gl a;rt, r) +0 (rV).
In this perturbative context, it is then possible to look for invariant circles
using the Hamilton implicit function theorem. To insure the solvability of
the linearized equations we have to introduce parameters as it is the case
often in KAM theory. Namely, given a diophantine frequency [, then to
any sufficiently close to 0 height ¢, it is possible to find a curve I' of which
the average height on the annulus is ¢ and two parameters A and g such
that F(0,c+~(0)) = A+ hoRgoh ™ u+c+~y(hoRzoh™)) where h is
a smooth conjugacy that depends on ¢ and 3. This is the content of Section
5.

It is crucial to note that whenever A(3, ¢) = 0, this means that the curve
['=(0,c+v(0)) is a translated curve by F' (F(I') = I' + u); and since F is
supposed to have the intersection property, p is then bound to be null and
we end up with an invariant curve ¢+~ on which the restricted dynamics of
Fis C*° conjugated to Rg.

The object of Sections 7 and 8 is to let 3 vary and solve implicitly
A(B(c),c) = 0. For this, the dependence on [ of A is studied in Section
7 and to insure its regularity [ is restricted to a single Diophantine class K
(to fix the loss of differentiability in the linearized equations). The Whitney
dependance of \ on 3 allows then to extend A to a C" function A defined on a
neighborhood of (0, ) in R2. Since A(3,0) = A(3,0) = a— 3, it will be possi-
ble to apply the (usual) implicit function theorem to find a function ¢ — ((c)
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such that A\(3(c),c) = 0. Now, if 8(c) € K, then A(3(c),c) = M(B(c),c) =0
and the curve ¢ + v(4(c), c) is indeed invariant by F with rotation number
B(c). The alternative of the Main Theorem follows hence from the fact that
either 3 happens to be locally constant in the neighborhood of 0 equal to
B(0) = o € K, or [ varies and takes on a positive measure set of heights
c values in K since the Diophantine set K is chosen as in Proposition 3 so
that « is well accumulated (from both sides and with positive measure) by
numbers in K. This is explained in Section 8.1 while the proof of Corollary
1 is given in Section 8.2.

3 Herman-Yoccoz theorem on the boundary

By the Theorem of Herman and Yoccoz ([8], [14]), since the restriction of the
smooth diffeomorphism F to I'y has a Diophantine rotation number «, it is
possible to conjugate F', via a C°°-diffeomorphism of A, to a diffeomorphism
fixing [y and equal to the circle rotation R, on I'g. More generally one can
prove:

Proposition 4. If the diffeomorphism F' of A has a smooth invariant graph
I' := {(0,7(0)),0 € T} on which the dynamics has a diophantine rotation
number «, then, there exists a diffeomorphism G of A which sends I' to T’y
and such that F := GoFoG™! has 'y as an invariant curve and F restricted
to I'y is the rotation of angle a.

Proof. Assume that F(0,7) = (0+a+ ¢(0,7),1(0,r)) and that F(6,~(0)) =
(f(0),7(f(9))) where f is a diffeomorphism of the circle of rotation num-
ber a. By the Theorem of Herman and Yoccoz, there exists a smooth
diffeomorphism h of the circle such that f = ho R, o h™!. If we de-
fine K : (0,r) — (0,7 —~(0)) and H : (0,r) — (h=(0),r), we can take
G=HoK. O

Therefore, we will assume hereafter that Fir, = R,.

4 Birkhoff Normal Form reduction

Using the Diophantine property of o and the intersection property of F' we
get the following Birkhoff Normal Forms for F' in the neighborhood of I'y 5:

°In the case of an elliptic fixed point of an area preserving surface map, the Diophantine
property would not be necessary and the same Birkhoff normal form can be obtained by
a symplectic change of coordinate for any irrational rotation number [10].
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Proposition 5. For any N > 2, there exist a neighborhood U of T'g in the
annulus A and a smooth diffeomorphism G € Dift*(A) leaving the circle T'y
tmvariant such that,

o the smooth diffecomorphism F = GoFoG ™! leaves the circle Ty invariant
and has the intersection property;

o there exist (N — 1) constants a; € R,i=1,..., N — 1, and two smooth
maps ¢; € C*(A,R), j = 1,2 such that, for any (0,7) € U:

N—1
F(0,r) = <0+ a+ Z air' + 1V (0,7), 7 + TNQDQ(Q,T)> :

i=1
We shall use the short hand notation
) N-1

FO,r) = <9+a+ Zairi,r) +0 (rY).
i=1

Proof. Since we assumed that the restriction of F' to the circle I'y is the
rotation map R,, we have

F(0,r) = (0 +a+¢u(0)r,¢2(0)r) + O (17)

with ¢; € C*(T,R), i« = 1,2. Since F is a smooth diffeomorphism, ¢
never vanishes (notice that the Jacobian of F' at the points (6, 0) is equal to
®2(0)). Without any loss of generality, we can assume that ¢, > 0. Since
a is Diophantine, there exists (see Remark 7) go € C*°(T,R), go > 0 and a
constant Cs > 0 such that: for any 6 in T,

92(0)
g0+ )

$2(0) = C
Define G5 € Diff°(A) as follows: for any (6,r) in A,
Go(6,7) = (0, g2(0)r).
Then, conjugating the diffeomorphism F' by G5, we get:
F(0,7) =G0 FoGyH0,7) = (0 + a+ ¢ (0)r, Cor) + O(r?),

where ¢, € C(T,R) is defined by $1(0) = ¢1(0)/g2(0), for any 6 € T. The
conjugate diffeomorphism F' has the intersection property, because F' has it,
hence, a posteriori, Cy = 1.
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Using the Diophantine property again (see Proposition 2), we get another
smooth application g; € C*°(T,R) and a constant a; such that: for any 0 in
T,

¢1(0) = a1 + 91(0) — g1 (0 + ).

Define a smooth application G; € C*(A) as follows: for any (0,r) in A,
G1(9,7") = (6 + 7"91((9), ’l”).

On a neighborhood of I'y, the application G; induces a smooth diffeomor-
phism on its image, and we can assume that G, is extended to a diffeo-
morphism of A without altering it in a neighborhood of I'y. Also, in the
neighborhood of T'y, the inverse of G has the form

G710, r) = (0 —1g1(0) +O(r*), 7).

Conjugating the diffecomorphism F by Gy, we get: for any (#,7) in a small
neighborhood of I'y in A,

Fy(0,7) = Gyo FoGTHO,r) = (0 + o+ ayr,r) + O(r?).

Developing further, we can locally write: for any (,r) in a small neighbor-
hood of 'y in A,

Fy(0,r) = (0 + a + arr + o2 (0)r%,r + 657 (0)r*) + O(r?),

with ¢\ € C(T,R), i = 1,2.

Once again, using the Diophantine condition on «, there exists a constant
6’2(2) and a smooth application g§2) € C*(T,R) such that ¢§2> 0) = 02(2) +
952)(9) - 952)(9 + ). Consider the smooth application Géz) € C*™(A) defined,
for any (0,7) in A by GgQ)(H, r) = (0,7 +r%g(#)). This application induces a
local diffeomorphism on some neighborhood of I'y in A. Locally conjugating
F5, we thus get: for any (6,r) in some neighborhood of T,

~ -1 ~
By(0.1) = GFoFro(GF)  (0.7) = (b+a+arr+( (0%, r+CP13)+0(),

where ¢\ € C*(T,R).

Again, the intersection property yields 02(2) = 0 a postertori. In this way,
alternating local coordinate changes of the form (6,7) — (6,7 + r'g(#)) and
(6,7) — (0 +1'g(6),r) we obtain the normal form writing announced in the
proposition. O
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In conclusion, and as far as will be necessary for us in the sequel, thanks to
Proposition 5 where we take N = 2, we can assume that there exist a constant
a; € R, a neighborhood V of I'y in A and two maps ¢; € C*(V,R), j=1,2
such that for (0,r) € V

F(0,r) = (9—|—a—|—alr+r2g01(«9,r),r+7’2<p2(9,r)) (1)

with possibly a; = 0.

5 Introducing a rotation parameter (3

The results contained in this section are valid for a diffeomorphism F' €
Diff**(A) that can be expressed in a neighborhood V' of Ty as

F0,r) =0+ ¢0,7),r +1*(0,7)) (2)
with ¢, 1 € C§°(T x R) such that
¢(0,0) = « (3)

for every # € T. No arithmetic condition on « will be needed.

Clearly, a diffeomorphisms as in (1) satisfies the latter conditions.

We denote Uy = {u € CP(R/Z) / |lull;x < 1}, and introduce E =
Uy x Uy X T x R. The goal of this section is to prove the following.

Theorem 6. Let F' € Diff°(A) that satisfies (2)-(3), and let 5 be a Dio-
phantine number. Then, there exists € > 0 and a C* map

Vs (—¢,¢) E
c

H
= (hyy A )
such that the diffeomorphism of the circle h = id 4+ h satisfies

F(6,c+7(6)) = (A+hoRgoh™  u+ctr(hoRgoh™)).

It is crucial to note that whenever A(c, 3) = 0, this means that (6, c+7(6))
is a translated curve by F' (F(y) = v + p); and since F is supposed to have
the intersection property, i is then bound to be null and we end up with an
invariant curve c++ on which the restricted dynamics of F' is C'* conjugated
to Rﬁ.

It will be the object of the next section to let 5 vary and solve implicitly
A, B(c)) = 0. For this, the dependence on 3 of Wz will have to be studied
and to insure its regularity 3 will be restricted to a single Diophantine class.

In the current section however, 3 will be fixed.
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Proof. We have
F(0,¢+7(8)) = (6 + (68, ¢ +7(8)), ¢ +7(0) + (c +7(8)*¢(8, ¢ + 7(6)))

so that the equations we need to solve with a good choice of h, v, A and p
are ®1(c, (h,v, A\, 1)) (0) = 0 and Po(c, (h, v, A, 1))(0) = 0 where

®y(c, (b7, A w)(0) = X+hoRgoh™(0) — (0 + ¢(0,c+~(0)))
Dy(c, (h, v, \,1)(0) = p+v(hoRgoh™(0)) —(0) — (c+~(0))*¥(0, c +~(0))

Let
F=C*R/Z) x C*(R/Z)

(so E and F' are isomorphic tame Frechet spaces) and define
O:RxE — F
(c, (v, A ) = (‘Pl(a (R, v, A 1)), (e, (R v, A, u))>.

First of all, observe that
®(0,0,0,a — 3,0) = 0.

Next we want to apply Hamilton’s Implicit Function Theorem (Corollary 2)
in the neighborhood of (0,0,0,a — 3,0).

Indeed, it is clear that the map ® is C*°-tame and to prove the existence
of the map W3 as in the statement of theorem 6, it is enough to prove that
for any (c, h,v, \, 1) in some neighborhood of (0,0,0,« — 3,0) in R x E, the
partial derivative D'®(c, h,~, A, 1) (D’ in all this section denotes the partial
derivative with respect to (h,7, A, it)) is invertible with a tame inverse.

We start by computing AA = D'®(c, h, v, A\, i) - (Ah, Ay, AN, Ap) and
AB = D'®y(c,h,y,\, 1) - (Ah, Ay, AN, Ap):

— hoRg  — _
AA = AN+ (AhoRg— ¥ /BAh) oh ™t —0,¢(-,c+ ) Ay, (4)
AB = Ap+A 1y g/ -U. (AR LRI AT
B = Apt+Ay(hoRgoh™ ) +7/(hoRgoh™)- | AhoRg————Ah Joh

— Ay = ((c+7)°0(,c+9) +2(c+NY(-7)) Ay (5)
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We now prove that if (¢, h,y, A, ) is in a small neighborhood of (0, 0,0, a—
£3,0) in R x E, then given AA, AB one can find (Ah, Ay, A\, Ap) solving
these equations. The system of equations (4) and (5) is equivalent to (4) and

AB = Ap+ Ay(hoRgoh™)
+9'(hoRgoh™)- (Ath—i—aT(b(h,c—i-fyoh)Ayoh—A)\> oh™!

— Ay = ((c+9)°00(,c+7) + 2(c+7)(-, 7)) Ay

which in its turn is equivalent to

ABoh—7+'(ho Rg)AAoh — Au++'(ho Rg)AX
= (Ayoh)oRg—(1+n)(Ayoh) (6)

where

='(ho Rg)0,¢(h,c+~yoh)
— ((c+7y0h)’0(h, ¢+~ 0h)+2(c+yoh)p(h,yoh))

is small in norm C* as ¢ is small and + and h are small in the C* topology.
Since in addition ( is supposed to be Diophantine, if 7 is small enough, we
can write (cf. Remark 7) 141 = ago Rz/g where the constant a > 0 is close
to 1 and g is some smooth function close to 1 in the C'*° topology and (6)
finally becomes

g;R(ABoh—ymoR@Ath_Au+vmoR@AM
5
Avyoh Avyoh
= (L) e By —a =20 (D)

Since ( is Diophantine this equation can be solved in A~ if the left hand
side has zero mean. More precisely, given A\, Au such that

Au / A / 7' (ho Rg) /ABoh—’y’(hoRﬁ)Ath
goRps goRg T goRps

there is a unique A~y of zero mean solving equation (7), namely

Ay=¢goh™

+gOh_1ﬁg7a(ABOh_7,(h}§ Rg)AAoh (A,u—”y’(h]; Rg)A)\)) oh .
go g go fig
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where the constant £ € R is chosen so that Ay has zero mean: this is possible
since g is close to 1. We write this solution as

Ay=¢Egoh™ + P — AuQ + AXR,

1 1
=goh 'Ly, - / h!
@=ge B’(goRﬂ TQOf%)O

R:goh—lﬁﬁﬂ(’y(hoRﬁ) _/V(hoRﬂ))oh—l
go Rg T goRg

1 5 - goh_1
cgoh =~ [ P+Ap [ Q-AN[R)g §=+—.
T T T ngOh

P=goh™'U

U_r ABoh—19'(hoRg)AAoh [ ABoh—+'(hoRg)AAoh oh-L
o T go R

with

go Rg

Notice that if v and h are sufficiently small in the C* topology it is
possible to make R and () also small.
The AA-equation (4) becomes

— 1 Ah Ah
AA = — P) AN + wA — - —
o, — A+ wdut (o= 57 ), ®
where
_ 1 )
AA:h’oRg Ath—l—dw(h,c—i—fyoh)(Poh—goh/TP)],
and

_ Opp(h,c+yoh) .
P T T o R, ROh_gOh/TR |

_ aT¢(h,c+yoh)( oh_Goh )
¥ e (Qen—gon [ o).

We notice again that p and w are small if ¢, h, and ~ are small.
Equation (8) has a unique solution Ah of mean zero provided

1 __
A)\/ _/ LA /w: AA.
(Th/ORﬂ Tp) a T T
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which equals B
Ah=NLso(V)+ ChH

with ( € R and V' defined by

Ju W Ls0V
Jel

V:M—( — p)AXN — wAp, (=—

h/ORﬁ

The constants A\, Ay are then determined as the unique solution of the
system

AN [y h’olR = Jpp)+An fqrw = JpAA
O[T N s St
which is invertible since it is almost in triangular form with diagonal close to
1. With this choice for (AX, Au) we get Ah and A~y that solve (8) and (7),
or equivalently (4) and (5).

To summarize, we have a obtained a map ¢ : R x £ — F' (with £ and F
isomorphic tame Fréchet spaces) such that ® is C*°-tame and ®(0,0,0,« —
3,0) = 0, and if we denote by (c,u) (u = (h,7, A\, 1)) the variables in R x E,
we have proved that for (¢, u) in a small neighborhood of (0, (0,0, — 3,0))
then D,® is invertible. Furthermore, it is not hard to see from the proof
and from propositions 2 and 7 that the inverse of D,® is in fact tame. The
result of Theorem 6 then follows from Hamilton’s Implicit Function Theorem
(Corollary 2).

m

6 Hamilton’s Theorem in Whitney spaces

6.1 Whitney spaces

We refer the reader to [9] and [5] for this section. Let (E,(|| - ;) and
(F, (|| - |l:)) be tame Fréchet spaces, K a compact set of R? and v € R and
p € N such that p < v < p+ 1. We say that an element z(-) € E¥ is in
Lip”(K, E) if for any 0 < j < p there exist elements z9)(-) with (¥ = z and
R; € EX*K guch that for any o, 3 € K

| 20+ (g
29 (B) = Z %(ﬁ —a)' + R;(B,q),

l7+<p
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(we use here Whitney’s multi-indices notations®) satisfying the following es-
timates (for any j, «, 3):

lzDls < Mo, 1R (8, @)lls < Myl B~ af .

The choice for the ) (j # 0) is in general not unique (unless d = 1 and K
does not contain isolated points). We denote by ||z(+)||s the infimum of M,
for all the possible choices of 29); it is not difficult to check that these are
seminorms and that (Lip” (K, E), (]| - ||s)) is a Fréchet space. One can define
smoothing operators by

VG e K, (S@)x())(8) = St)=(9),

which makes the Whitney space (Lip”(K, E), (]| - ||s)) a tame Fréchet space.
The notion of tame maps between Whitney spaces is then clear.

6.2 Whitney Extension

We mention a general result about extensions of Whitney regular functions,

that we will only need in the simple case of a finite dimensional target space
E.

Theorem 7 (Whitney Extension Theorem (cf. [12]). For any integer d >
1, there exists a positive constant kg, such that for any closed set K C
R? and any integer v > 1, there exists a linear extension operator Ext, :
Lip”(K, E) — Lip"(R% E), such that for any x € Lip”(K, E), Ext, (z) , = =,
and for any s € N, the following holds:

[Ext, (2)|| < wall2] -

Remark: It is possible to extend Whitney’s Extension Theorem to the case
where F is a Tame Fréchet space.

7 Whitney dependence in (3

In this section we improve Theorem 6 into the following central theorem of
the paper.

61f § = (J1s---5Ja) € N?, 2z = (21,...,2q) we define |j| = j1 + -+ + ja, 5! =1l ja!
23, If i is also in N? we write ¢ < j iff i1 < j1,...,iq < ja. Also (Z) is by

and 27 = z{* - .-
definition (1) --- (49
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Theorem 8. Let F' € Diff°(A) that satisfies (2)—(3), and let T, o be positive
numbers and denote K = DC(o,7) N [0,1]. Fiz v > 0. Then, there ezists
e >0 and a C*®-tame map ¥V : (—¢,e) — Lip" (K, E) such that if ¢ € (—¢,¢),
Be K, and (h,y,\ i) = (¥(c))(B), we have

F(0,c+~(0) = (A+hoRgoh ' (0),n+ c+y(hoRzgoh™'(0))).

The above theorem states that the familly of maps Wz obtained by the
implicit function theorem in Theorem 6 actually depends CV-Whitney on 3
as 3 belongs to a compact set of numbers satisfying a Diophantine condition
with fixed constant and exponent.

The rest of the current section is devoted to the proof of Theorem 8. We
will see in the next section how this theorem easily implies Theorem 3. We
refer the reader to the last section of the Appendix for further consequences
of Theorem 8; in particular we explain how this normal form theorem can
be used to give short proofs of Moser’s twist theorem and of a theorem of
Cheng and Sun [3] and Xia [13] (see also the survey of J.-C. Yoccoz [15]).

Rename ®3 the map that was introduced in the proof of Theorem 6.
Recall that the pair (c,u) = (c, (h,7, A, 1t)) denotes the variables in R x E.
If we denote by (ug)ger = (0,0, — 3,0) 5, We have that ©45(0,ug) = 0.

From the proof of the invertibility of D,®s in Section 5, it is easy to
observe that there exist [ € N and ¢ > 0 and a € N, such that for every
s € N there exists a constant Cj, such that if || < e, ||k < & V] < &,
ApeR (AN <1, |p <1)and § € K, then D,Ps(c,u) is invertible and if
Js(c,u) denotes its inverse, we have

[ 75(c; u) - Aulls < Cs((1 4 [Jullsva) [ Aulla + [ At s1a),

for every |c|, [|h]|oi, 7]l < &, for every A, p € R (|A] < 1, |u| < 1) and for
every Au € E.

This implies Theorem 8 due to the following Implicit Function Theorem
that in its turn will be obtained by the application of Hamilton’s Implicit
Function Theorem in some adequate tame Whitney spaces.

Theorem 9. Fiz v > 0. Consider three Fréchet spaces E, F and G, two
open sets U C E and C C G, a relatively compact open set O C R?, d € N,
and a C*-tame application

OxCxU — F
Q:  (Bc,u) = Dgle,u) =B, c,u)

such that there exists co € C and u® € C=(0,U) satisfying

VB € 0, ®(3,co,u®(B)) =0.
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Assume, moreover, that there exists a closed set K C O such that the
following property holds : there exist open sets C C C and U C U (containing
all u®(B3), 8 € K) such that for each 3 € K, there exists a continuous map
NE C xU x F — E linear with respect to the third variable, which is the
inverse map of D,®g; assume moreover that this map satisfies a uniform
tameness condition: there exists a € N, and for every s € N there exists a
constant Cy, such that

|Ts(e; ) - Aulls < Cs((1+ [[ullsra) |Aulla + [ Au] s1a), (9)

for every € K, (c,u) € C x U and Au € F.

Then there exist an open neighborhood Cy of ¢y in C, a neighborhood V
of the function u® in Lip” (K, U) and a C*®-tame map ¥ : Cy — Vi such
that ®(5, ¢, (V(c))(B)) = 0. Moreover, (¢, ¥(c)(+)) is the unique element of
Co x Vo such that for all B € K this identity is satisfied.

Before giving the proof of Theorem 9 we give a useful specification of the
result of Theorem 8.

Remark 8. Rescaling the variable r, equation (1) can be written as
F(0,r) = (0 + a+ darr + 6°r*p, (6, 0r),r + 6r°F,(0,67)) . (10)

The same proof as that of Theorem 8 would then yield a smooth tame map E
(—6,6)2 — Lip”(K, E) such that if (¢, d) € (—e,e)?, f € K, and (h, 7, \, w) =
(¥(c,6))(5), then

P(8,c+7(0)) = (A\+ho Ry h'(0), 11+ ¢+ 7(ho Ry h™'(6))

But it is clear that for any 3, h(c,0,3) = 0, v(c,0,8) = 0, u(c,0,3) = 0,
while A(¢,0,8) = a+ ayc — . Hence, letting |d| be sufficiently small, we
can consider that for any § € K, the maps (0,¢) — (6,c+ v(c, 3)(0)), and
(0,¢) — (h(c,8)(0),c) obtained in Theorem 8, are smooth diffeomorphisms
from some open neighborhood of I'y in A onto its images, which will be useful
in the proof of Theorem 3.

Proof of Theorem 9.
Step 1. Notice that the map

C x Lip"(K,U) —  Lip"(K,F)
P (c, (u5>ﬂeK) = (®(B, ¢, uﬁ))ﬁeK
is well defined and C'*°-tame. This follows from Taylor formula with integral
remainder.
Step 2. The following proposition shows that under the uniformity condition

(9) there is a tame inverse to Dy® (where Dy® denotes the derivative with
respect to the variable u(-)):
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Proposition 6. Assume that E and F are two Fréchet spaces and V' is an
open subset of E. Assume that

L:RIXVXE—F
(B,u, Au) — L(B,u) - Au

is a C*®-tame map, linear in the third factor with the following property:

1. for each B € K there exists a continuous tame map linear in the second
factor

Jg VXF—FE
(u, Au) — Jg(u) - Au,

such that

Js(u) - L(B,u) = Idg, L(B,u)- Jsg(u) =1dp

2. there are constants a,Cy such that for any 0 € K, any s € N and any
(u,Au) € V x F

17(8,u) - Aulls < Co((T+ [Jullsra) [Aulla + [|Aul|sta),
(J(B,u) = Ja(u)).

Then, for any choice of v > 0, the map

J : Lip"(K,V) x Lip"(K, F) — Lip" (K, E)
(u(), Au()) = J(,u(-) - Au(:)

1s well defined and is a continuous tame map linear in the second factor.

The proof of this proposition will be given in the Appendix.

Step 3. Observe that we have ®(cy, u(?(-)) = 0gex. From steps 1 and 2, and
the hypothesis on the inverse of D, ®3 we thus obtain by Hamilton’s Implicit
Function Theorem applied to ®: There exists Cy a neighborhood of ¢q in C,
a neighborhood Vj of the function u(®) in Lip” (K, U) and a C'"*°-tame map W :
Cy — Vj such that ®(c, ¥(c)(-)) = 0gex which satisfies ®(8, ¢, (¥(c)(5)) = 0
for all ce Cy and all g € K. O
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8 Proof of Theorem 3 and Corollary 1

8.1 Proof of Theorem 3

If we take v = 2 in Theorem 8, we have that A(-,-) is in Lip?*(K x (—¢,¢),R).
Thanks to Theorem 7, we are thus allowed to consider the extended ap-
plication A € C*([0,1] x (—¢,¢),R) such that A(3,¢) = A(B,c) for each
(B,¢) € K x (—¢,¢). Recall that A(a,0) = A(,0) = 0 and that more gener-
ally for 8 € K we have \(3,0) = \(3,0) = a — 3. Since « is not isolated in
K (see Proposition 3) we have that ds\(a,0) = —1. We thus obtain by the
implicit function theorem applied to A that there exists &’ > 0 and a C' map

(_5,7 8/) -
g: ¢ = Bl
such that A(8(c),c) = 0.

Assume now that c is such that 3(c) € K, then A(5(c), c) = M(B(c),c) =0
and the curve ¢+ (3(c), ¢) obtained in Theorem 8 is p-translated by F' with
= pu(B(c), c). By the intersection property, this implies that g = 0 and that
the curve is actually invariant by F.

There are hence two possible scenarios: in the first one, there exists ¢” > 0
such that §(c) = a for all ¢ € [—£",€"] in which case the curves ¢ + v(c, a)
are invariant since @ € K. The annulus O bounded by —&” 4+ ~y(—¢", ) and
e’ 4+ ~(¢”, ) is then completely foliated by the invariant curves ¢ + (¢, ),
c € [—€",¢"]. This is due to the continuity of the maps ¢ — ¢+ v(c¢, a)(0)
for any given € € T. The annulus O is a neighborhood of the circle I'y since
7(0, ) = 0. As pointed out in Remark 8, the maps G : A? = Tx [—¢", "] —
O, (0,¢) — (0,c+~(c)(0)), and Gy : A” — A” (0,¢) — (h(c)(0),c), are C°-
diffeomorphisms (here h(c) = h(c,a) and v(¢) = (¢, @) since B(c) = a on
[—€",€"] ). The composition G := G o Gy gives a C*°-conjugation between
F on O and the rotation S, on the annulus T x [—¢”,£"].

The second part of the alternative derives from Proposition 3 and from
the fact that ¢+ v(c, 3(c)) € C(T,R) converges to 0 in the C! topology as
c— 0.

8.2 Proof of Corollary 1

Let us denote by k; and €; > 0 the constants given by Remark 4. Given
F € Diff°(T x [0, 1]) as in Corollary 1, we first extend it to a diffeomorphism
of A such that [|[F' — Sq|[pigr () < 21- Next, given the contraction Ct, (0,7) =
(6,7re1), consider F = C., o F o C'. Since C;, 0 S, 0 Cot = Id, it is
plain that if 7 > 0 is chosen sufficiently small we will have that the C*:
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distance on T x [—1, 1] between F and S, is less than 1. Hence, there exists
B : [~e1,e1] — R such that Theorem 3 applies to F but with ”translated
circles” instead of invariant ones (cf. Remark 1), namely : if 5(c) € DC(o’, 7')
there exists a translated curve I'.. Notice that the circles T x {0}, T x {e;}
are F -invariant and that the dynamics of F on these circles is R,. Moreover,
the dynamics of F on T x [0, £;] has the intersection property. From Section
9.1 of the Appendix, any translated curve having a part in T x [0,&4] is
in fact invariant. The fact that F' does not have any periodic point in the
annulus T x [0, ] implies by Poincaré’s last geometric theorem that there
are no two invariant curves with different rotation numbers included in this
annulus. Hence, (§ has to be constant on [0,&;]. Now, the arguments given
in the previous Subsection 8.1 to conclude the proof of Theorem 3 apply in
this situation also.

9 Appendix

9.1 Diffeomorphisms on the closed semi annulus

Let F' be a diffeomorphism of the closed semi annulus A, := T x [0, 00),
having the intersection property. We can write F'(0,r) = (Fi(0,7), F5(0,7))
with F5(0,0) =0 for all @ € T, F5(0,r) > 0 if » > 0 and we can also assume
that F is a Birkhoff normal form: on R/Z x [0, 4] it is close in C*-topology
to the diffeomorphism G : (6,7) — (6 + a + P(r),r) which is defined on the
annulus Ag := R/Z x [0, 4], for § sufficiently small. Since any real valued
smooth function f : [0;00) — R can be extended as a smooth function on R,
for any integer k the Fourier coefficients Fj(r) (i = 1,2) of Fy(-,r), which
define a smooth function, can be extended for any value of r € R. The same
is then true for F;(6,r). If we denote by F_(F}, ) the extended map, it will
still be close in C'-topology to G on As := R/Z x [—6, §] (maybe for a smaller
) and hence F is a diffeomorphism on that annulus. A simple argument
shows that F*! sends A; N {r > 0} and As; N {r < 0} into themselves. We
claim that any graph I' := {(0,7(6)),0 € T} in Ay, which has a part above
the circle T and such that F*(T) is in As has the intersection property.
If the graph T' is strictly above the circle T, this is clear since F' has the
intersection property on that region. Otherwise, this means that there exists
a graph I' which intersects the circle and which has no intersection with its
image. This last property implies that either V0 € T, Fy(0,~(0)) > v(6) or
VO € T, Fy(0,7(6)) < v(6). Let us assume that the image of ' by F is above
' and let J be the set of points § € T where Fy(0,v(6)) > 0. It is an open
set different from T such that g~!(J) C J where g is the homeomorphism of
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the circle defined by g(0) = F1(6,7(0)). Since g~! coincide with the rotation
R_,, on the boundary of J and since g and R, are homotopic, we also have
R_,J C J, which is in contradiction with the fact that J is an open set
different from T . The case where the image of I is below I, is dealt with in
an analogous way.

9.2 Proof of Proposition 6

We sketch the proof in the case v = p+ 1. In the proof we shall make use of
Whitney’s multi-indices notations. Since the map L : R% x V >< E— FisC™
tame, it holds for any o € K that there exist tame maps Y. VxE->E
linear in the second factor such that

, A B —a)t
L(BJ)(% Au) = Z Lg“) (u) - Au(l—!) + R;(B, a,u)A
l7+1<p

such that 4
1LY (w) - Aulls < Csll|Aulssa + llullstal Aulla),
IR; (3, a, u)Au, [|s < Co([|Aullsya + [[ullsrall Aulla)| 6 — a7,

Also, LY (u) - Au, Rj(B, a)(u) - Au are continuous in (u, Au). We now define
by induction for any 5 € K and r : |r| < p,

J(T’) J(T—k) L(k)
B B —B_ 4(0)
o 2. (r—k)! Kl o (11)

0<k<r,k#£0

By construction
a)k
(ZJ )(ZL > = id 4+ Mj_, (12)
ll<p k|<p

where (u, Au) — Mg_,(u) - Au is continuous, tame and is a polynomial in
6 — a with terms of total degree larger or equal to p + 1. We then have by

construction
(ZJ )Lﬂ—Zd—FNﬁa

1]<p

where Nj3_, is also continuous, tame and polynomial in 3 —a with monomials
of total degree not smaller than p 4 1. Since Jg o Lg = id we get

( ZJ )Lﬁ_NM

l1|<p
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Since Lgl is uniformly tame in the sense of Hypothesis 2 in Proposition 6,
we get that

ZJU +Ro(ﬁ, )

[1<p

where |3 — a|" PV Ry(8, a) is tame and continuous in (u, Au).

The consistency relations between each J and the corresponding higher
order terms can be checked similarly using uniform tameness of L/gl and
formal identities relating Taylor expansions of L with those of J (in the
special case where K is a compact set without isolated point of the real line
this is easier to prove). Let us be more specific. By definition we have the
following formal identity

(Z JO ) (Z Lgyﬂ%) =id + Qpi1(T)

ll<p Im|<p

(where ()p11 is a polynomial in the indeterminates T3,...,T}; all terms of
which are of total degree larger or equal to p + 1). Now, applying the dif-
ferential operator Oy := 07 --- 07 to the product in the left hand side and
using Leibniz formula we get for any n = (nq,...,nq) : |n| < p—|r|

J(kH) [ (r—k+m)

Z(Z) 2 T =0 (13)

k<r l+m=n

We can now prove the consistency relations by induction on r: from (11) and
the induction assumption

(r) r—k+l k+m
Jﬂ L(O) J( +1) L( +m)

S A DD DCEEDY (r— k) Kim!

k<r:k#0 n l+m=n

(r—k+1) L(k+m)

1 T n Ja [
- X ()X ¥

k<r:k#0 n l+m=n
(r—k+1) L(k+m)

:_% CRUADY (/:) 2 Jaz! o

n k<r:k#0 l+m=n

but, in view of (13)
(r—k+1) L(k—l—m)

> ()= DI

k<r:k#0 l+m=n l+m=n

JirH L( m)
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so that

Jg") o 1 JirtD) pm)
Sl =g 2 el 3L S Ui - )
[n|<p—|r| I+m=n
1 0([7‘+l) l Lgm)
(X Ere-a) (X Ee-ar) - o)
1] <p—|r| [m|<p—|r]

where Upy1-jp(B—a), Vp1-)p(B—a) are polynomials the monomials of which
are of total degree larger or equal to p+ 1 — |r| and are continuous and tame
in (u, Au). Observing that

) Jér—l—l) ‘
Jé):( > Il (5—oz)l)(’d—Rp+1r|(ﬁ,a)L51)+Vp+1|r|(5—0‘)L51>

ltl<p—|r|

gives the proof of the consistency relations (here we use again the fact that
Lgl is uniformly tame). The proof of the proposition is complete.

9.3 Other applications of the normal form writing of
Theorem 8.

Nonzero twist. Moser’s Twist Theorem (see [15]). Consider the case
where F' is a perturbation of a twist map Fy(6,r) = (0 + ¢(r),r), with ¢’
bounded away form zero (this corresponds to a twist coefficient a; # 0 in
the Birkhoff normal form of F'). The map Aq associated to Fy as in Theorem
8 satisfies A\o(c, ) = ¢(c) — 3, and hence is such that d.\o(c, 5) is bounded
away from zero, while \o(¢~1(3),3) = 0, for every (3 in the range of ¢. By
the (usual) Implicit Function Theorem, it is hence possible to find a map
B +— ¢(B) such that A(c(B),5) = 0, where A is the map corresponding to
F. This yields an invariant curve of frequency (3, whenever g € DC(o, 7).
Furthermore, to obtain the full strength of Moser’s Twist Theorem it is
suffient to observe as in Theorem 8 that the map associating an invariant
curve to € DC(o, 1) is Whitney.

Note that Herman’s Last Geometric Theorem cannot be generalized to
symplectic maps of T*T" ~ T" x R", for arbitrary n, although the twisted
normal form writing as in theorem 8 still holds (if we assume that the map
admits a Birkhoff normal form writing after canonical coordinate change).
The reason is that the map ¢ — [(c), even if it is not locally constant,
does not have to pass through a Diophantine vector. Nevertheless, the same
argumentation described in this remark does yield Moser’s Twist Theorem
in arbitrary dimension.
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Maps of the solid torus ([3],[13],[15]). Consider the case where F'is a
volume preserving perturbation of a completely integrable solid torus map
Fo(0,r) = (0 + ¢(r),7), 0 € T™. In the neighborhood of any invariant torus
of Fy, it is possible to obtain a normal form writing for F' as in Theorem 8,
as well as a map ¢ — ((c) such that A(c, 5(c)) vanishes. Assume that ¢ is
nonplanar. In this case the map ¢ — [3(c) is also nonplanar which forces it to
pass by Diophantine vectors, thus yielding a positive measure set of invariant
tori for F.

References

1]

D. V. Anosov, A. B. Katok. New ezamples in smooth ergodic theory. Er-
godic diffeomorphisms. (Russian) Trudy Moskov. Mat. Obs¢. 23 (1970),
3-36.

J.-B. Bost. Tores invariants des systemes dynamiques hamiltoniens
(d’aprés Kolmogorov, Arnol’d, Moser, Riissmann, Zehnder, Herman,
Pdéschel, . ..), Séminaire Bourbaki, Vol. 1984/85. Astérisque 133-134
(1986), 113-157.

C. Q. Cheng, Y. S. Sun, Ezistence of invariant tori in three-dimensional
measure-preserving mappings, Celestial Mech. Dynam. Astronom. 47
(1989/90), no. 3, 275-292.

B. Fayad, M. Saprykina. Weak mizing disc and annulus diffeomorphisms
with arbitrary Liouville rotation number on the boundary. Ann. Sci.
Ecole Norm. Sup. (4) 38 (2005), no. 3, 339-364.

J. Féjoz. Démonstration du ‘théoréeme d’Arnold’ sur la stabilité du
systéme planétaire (d’aprés Herman), Ergodic Theory Dynam. Systems
24 (2004), no. 5, 1521-1582.

R. Hamilton The inverse function theorem of Nash and Moser, Bull.
Amer. Math. Soc. (N.S.) 7 (1982), no. 1, 65-222.

M.R. Herman Some open problems in dynamical systems, Proceedings
of the International Congress of Mathematicians, Vol. IT (Berlin, 1998).
Doc. Math. 1998, Extra Vol. II, 797-808

M.R. Herman Sur la conjugaison différentiable des difféomorphismes du
cercle a des rotations. Publ. Math. Inst. Hautes Etudes Sci. 49 (1979),
5-233.

33



[9]

[10]

R. Krikorian Réductibilité des systemes produits-croisés a valeurs dans
des groupes compacts, Astérisque 259 (1999), vi+216 pp.

J. Moser Stable and random motions in dynamical systems. With special
emphasis on celestial mechanics, Annals of Mathematics Studies 77.

H. Risssmann Stability of elliptic fixed points of analytic area-preserving
mappings under the Bruno condition, Ergodic Theory and Dynam. Sys-
tems 22 (2002), no. 5, 1551-1573.

E.M. Stein. Singular Integrals and Differentiability Properties of Func-
tions, Princeton Univ. Press, (1970)

Z. Xia, FExistence of invariant tori in volume-preserving diffeomor-
phisms, Ergodic Theory Dynam. Systems 12 (1992), no. 3, 621-631.

J.-C. Yoccoz, Conjugaison différentiable des difféomorphismes du cercle
dont le nombre de rotation vérifie une condition diophantienne, Ann.
Sci. Ecole Norm. Sup. (4) 17 (1984), no. 3, 333-359.

J.-C. Yoccoz, Travauxr de Herman sur les tores invariants, Séminaire
Bourbaki, Vol. 1991/92. Astérisque No. 206 (1992), Exp. No. 754, 4,
311-344.

Bassam Fayad, CNRS LAGA

Université Paris 13, 93430 Villetaneuse, France

et LPMA Université Paris 6, 75252—Paris Cedex 05, France
email: fayadb@math.univ-paris13.fr

Raphal Krikorian, Laboratoire de Probabilités et Modeles aléatoires
Université Pierre et Marie Curie, Boite courrier 188
75252—Paris Cedex 05, France

email: krikoria@ccr.jussieu.fr

34



