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I. Motivations

• Serre’s question [1989] on the Néron-Tate pairing over an ell. c. E/Q:
x , η ∈ E (Q), < x , η > = 0⇒ x or η torsion ?

NB : can’t hope this for a n.f. k 6= Q, nor on an ab. var. A/Q with g > 1.

• Zilber-Pink for a curve in the (4-dim’l) Poincaré bi-extension P× of the
Legendre curve E/S (cf. [B 2013], [B.-Edixhoven]).
Reduces to two "mixed" RMM problems :

P1 (recently solved by F. Barroero): let (x , η) ∈ E ×S E(S). If xt , ηt are
End(Et)-lin. dep. for inft’ly many CM t ∈ S, then x , η are (Z)-lin. dep.

P2: let E/Q̄ with CM, and let s be section of a non constant semi-ab.
scheme G ∈ ExtS(E ,Gm) η ∈ Ê (S) \ Ê (C) : if st is a Ribet point of Gt
for inft’ly many t ∈ S(Q̄), is then s a Ribet section ?
NB : let x be the projection of s to E (S). Then,

st Ribet ⇒ xt , ηt are Endantisym(E )-related ⇒ < xt , ηt >= 0.
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Isotropic abelian subvarieties

For A/k , k a n.f., L symmetric ample, and P the Poincaré bundle on A× Â
< x , η > := hP(x , η) = − < x , y >L, where η = φL(y).

< σx , ση >=< x , η > for σ ∈ Gal(Q̄/k), and < x , f (y) >=< y , f̂ (x) >,
so orthogonality occurs as soon as η = f (x) with f ∈ Homantisym(A, Â), or
because of relations on conjugates.
More generally, let B = Bx ,η be the abelian variety generated by (x , η) in
A× Â. Then, P|B torsion (⇔ c1(P|B) = 0) implies that hP(x , η) = 0.

Conjecture [B 1994] : let A/Q and (x , η) ∈ (A× Â)(Q). Then
hP(x , η) = 0⇒ c1(P|B) = 0 ?

NB 1: rigidifying P× above A× 0, the relation P|B = 0 provides a canon’l
point sR above (x , η) (a). We call sR the Ribet point of Gη ∈ Ext(A,Gm)
above x . Ditto for its orbit under (Gm)tors .
NB 2 : c1(P|B) = 0⇔ ∃F ∈ Homas(A× Â, Â× A) and N ∈ N such that
N.(η, x) = F (x , η). If x generates A, ⇔ ∃f ∈ Homas(A, Â) s.t. Nη = f (x).
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One archimedean place

Bloch’s construction of < x , η > = hη(x). By the product formula, the
(absolute, logarithmic) normalized height on Gm(k) is

h(α) = Σv∈Mk
[kv :Qp ]
[k:Q] |`og(|α|v )|.

For G = Gη and v ∈Mk , there is a unique extension of `og |.|v to
λv = λ

(η)
v : G (kv )→ R :

0 −→ k∗v −→ G (kv )
π−→ A(kv ) −→ 0

↓ `og |.|v ↓ (λv , π) ‖
0 −→ R −→ R× A(kv )

π−→ A(kv ) −→ 0
Then, ker(λv ) = maximal compact subgroup G (kv )c of G (kv ), and for any
s ∈ Gη(k) above x :

< x , η > = Σv∈Mk
[kv :Qp ]
[k:Q] λv (s)

We may choose s with all finite λv ’s vanishing, so if k has just one inf’te
place, < x , η > = 0⇔ this s lies in G (kv )c for all v ∈Mk .
NB : if c1(P|B) = 0, the Ribet point sR ∈ Gη(k) above x satisfies this
property for any number field k .
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II. Transcendence

Set L = `og(Q̄×) ⊃ Q.`og(Q×).
Still assume that k has only one infinite place ∞, but take any s ∈ Gη(k)
above x . Then,

< x , η >= 0⇒ ∃α ∈ k×, s + α ∈ G (k∞)c ⇒ λ∞(s) ∈ L.
To turn this into an amenable transcendence problem, we’d rather have a
complex analytic expression for λ∞, which happens if ∞ is real. This leads
to :
Question : assume that the n.f. k has at least one real place w , and that
λw (s) ∈ L. Then, c1(P|B) = 0 ? (If so, s will lie in the Gm-orbit of sR .)

This may be too bold, so let’s go back to an elliptic curve E , firstly over C,
with ℘, ζ, σ, ωi , ηi as usual, u = logE (x), v = logE (η), and

κv (ωi ) = ζ(v)ωi − ηiv , (i = 1, 2).
These are the basic periods of the standard logarithmic form ξη on E with
residue divisor −1.(0) + 1.(−η).
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Let G = Gη (maybe G−η ?). Then, G π−→E admits a rational section
ρ : E 99K G , with (ρ) = (−η)− (0), and the exponential map of G is

LG (C) 3
(

t
z

)
7→
(

fv (z) et

(℘, ℘′)(z)

)
∈ G (C)

where fv (z) = σ(v+z)
σ(v)σ(z)e

−ζ(v)z , so dfv
fv = 1

2
℘′(z)−℘′(v)
℘(z)−℘(v) dz = exp∗E (ξη).

Over k ⊂ C, a point s ∈ G (k) above x ∈ E (k) is given by

s =

(
δs
x

)
, logG (s) =

(
−g(u, v) + ζ(v)u + `s

u

)
where δs := s − ρ(x) ∈ k×, `s = `og(δs), and

g(u, v) = `og
σ(u + v)

σ(v)σ(u)

is the “Green function" for the divisor ∆± − E × 0− 0× E on E × E .

G (C) ' C2/ΩG , where ΩG = Z$0 ⊕ Z$1 ⊕ Z$2 with

$0(λ) =

(
2πi
0

)
, $1 =

(
κv (ω1)
ω1

)
, $2 =

(
κv (ω2)
ω2

)
.
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Assume now that ∞ is a real place of k . Then, E (R)0 = Rω1/Zω1 and
G (R)c = R$1/Z$1 is 1-dim’l (while dimR(G (C)c) = 3). So,

s ∈ G (R)c ⇔ det
(
−g(u, v) + ζ(v)u + `s ζ(v)ω1 − η1v

u ω1

)
= 0

⇔ g(u, v)− η1
ω1
uv = `s (= `og(δs) ∈ L).

Not a surprise : this is the restriction to R of the log of the "polar form" of
the Klein form k(u) = σ(u)exp(−1

2η(u)u).
We can now forget about the reality assumption and consider any k ⊂ C.

Conjecture (b) : assume E , x , η defined over Q̄, u, v , u + v /∈ ΩE . Then,
g(u, v)− η1

ω1
uv ∈ L ⇒ x or η is a torsion point. (⇒ yes to Serre)

Known : 1) if g(u, v)− ζ(v)u ∈ L, then η is torsion.
2) in the CM case, let s2 ∈ Q̄, given by the Hecke form of weight 2.

If ∃f ∈ Endas(E ), η = f (x), then g(u, v)− s2uv ∈ L (c).
But for a complex place, s ∈ G (k) ∩ G (C)c does not imply c1(P|B) = 0.
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p-adic interlude

Kim Minhyong has given an "anabelian-Chabauty" proof of Siegel’s
theorem on E (Z), when E/Q has rank 1 (i.e. just above the analogue of
Chabauty’s condition). The idea is that E (Z) is contained in the set of
zeroes of a non trivial p-adic analytic function on E (Zp).
Take p ordinary, so there is a p-adic height hp on E (Q), which is the sum
of the p-adic log of a rational number and of logp(σ(u))− κu2 (with
κ = 1

2s2 in the CM case).
For x ∈ E (Z), the first term vanishes, so hp(x) = logp(σ(u))− κu2. Now,
hp(x)
u2 is a constant C since hp is quadratic and rk(E (Q)) = 1. Therefore

E (Z) is contained in the set of zeroes of the p-adic analytic function
logp(σ(z))− (κ+ C )z2, non trivial since (say by Ax-Schanuel on Gx)
log(σ(z)) and z are algebraically independent over C. Done !
It’s anabelian because log(σ(u)) is an iterated integral

∫ x
0 ω(

∫
0 η), which

Kim relates to πunip
1 (E (C) \ 0).
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Additive interlude

For an ell. c. E over k ⊂ R, let Ẽ ∈ Ext(E ,Ga) be its universal extension.
Its maximal compact subgroup Ẽ (R)c is Rω̃1/Zω̃1 for the real period ω̃1 of
Ẽ . Let x̃ ∈ Ẽ (k), above x ∈ E (k); then (cf. [B 1998]),

x̃ ∈ Ẽ (R)c ⇔ κu(ω1)/ω1 ∈ k ⇔ x̃ ∈ Ẽtors .

Indeed, logẼ (x̃) =

(
ζ(u)− α

u

)
(for some α ∈ k) and ω̃1 =

(
η1
ω1

)
are

R-lin. dep. iff ζ(u)ω1 − η1u = αω1 ⇒ x ∈ Etor ⇒ x̃ ∈ Ẽtor .

But much better : let k ∈ C be any n.f , let A′ = Â ' Pic0(A) be an ab.
var., with universal extension Ã′ ∈ Ext(A′,Ω1

A), and let η̃ ∈ Ã′(k), above
η ∈ A′(k). Then [Bost-Künnemann 2009]:

η̃ ∈ Ã′(C)c ⇔ η̃ ∈ Ã′tor .

Idea : η̃ ∈ Ã′! Gη, plus a connection on the line bundle (Gη ∪ 0)/A!
a character χα of π1(A), for some α = α(η̃) ∈ Hom(LieA, LieGm) ' Ω1

A,
and η̃ ∈ Ã′(C)c iff χα is unitary (⇒ ±1 over R). E.g. on an elliptic curve :
|χα(γ))| = 1⇔ κv (ω)− αω ∈ iR.

D. Bertrand (UPMC) (Heights and Applications to Unlikely Intersections)Transcendence problems related to heights.
Fields Inst., U. Toronto, Feb. 13-17, 2017 10

/ 15



Unlikely intersections

Let S be a curve over Q̄, E/S an elliptic scheme, x , η two sections. On
E(S) (and E(S ′) for S ′ → S), we have the Néron-Tate height at the
generic point and its polar form < x , η >, non degenerate on E(S)/E],
where E] is the Manin kernel (= torsion + constant parts).

• Assume that there are infin’ly many CM points t ∈ S(Q̄) such that
< xt , ηt > = 0 in Et(Q̄). If E/S not isoconstant, then (Silverman) hη(x) =
< x , η > = 0. Requires conditions on S to go further.

• In Problem P2 on Zilber-Pink for P×, over an E with CM, all xt , ηt are
End(E )-dep., so hS(t) is bounded (d). How to use End(E )as?

• On G/k , the relative height hG ,rel (s) = Σv∈Mk
[kv :Qp ]
[k:Q] |λv (s)| is "linear"

and vanishes on Ribet points. Under suitable conditions on G/S , it too
satisfies limhS (t)→∞

hGt ,rel (st)
hS (t)

= hG,rel (s). Does (not) lead to study sections
s in G(S) with hG,rel (s) = 0.
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III. Functional transcendence

Geometric heights have no “transcendental" parts, but the following alg.
indep. results may help for an o-minimal approach to P2.
Let S/C,K = C(S) ⊂ F , embedded in some diff’l field of meromorphic
functions, let E/K ,G/F ∈ ExtF (E ,Gm) y ∈ E (F ), x ∈ E (F ), and let
E0,G0 be the constant parts. The universal extension G̃ = G ×E Ẽ of G
has dimension 3, and carries differential operators ∇LG̃ : LG̃ → LG̃ ,
∂lnG̃ := ∇LG̃ ◦ logG̃ : G̃ → LG̃ . Ditto with Ẽ . Their solutions generate the
Picard-Vessiot extensions K ]

LẼ
= K (ω1,2, η1,2) of K = K ]

Ẽ
and

F ]
LG̃

= F (ω1,2, η1,2, κv (ω1,2)) of F , while F ]
G̃
/F is still mysterious. Finally,

let u = logE (x), v = logE (y).

Ax-Schanuel (on G0): if E and G are constant (so v := v0 ∈ E0(C)), y
not torsion, x not constant and ` ∈ F arbitrary, then

tr .degKK (u, ζ(u), ℘(u), `, e` exp(g(u, v0))) ≥ 3.
For instance, if x ∈ E0(K ) \E0(C) : tr .degK (u, ζ(u), g(u, v0)− η1

ω1
uv0) = 3.
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Assume now that y ∈ E (K ), so G/K . For s ∈ G (F ), set logG (s) = U.

Theorem
(Exponential Ax = L-W) [B.-Pillay 2016] Let U ∈ LG (K ), projecting to
u ∈ LE (K ), such that ∀H 6= G ,U /∈ LH + LG0(C). Let Ũ ∈ LG̃ (K ) be any
lift of U, and let s̃ = expG̃ (Ũ) ∈ G̃ . Then,

tr .deg .(K ]

G̃
(s̃)/K ]

G̃
) =

{
3 in general , except
1 if u ∈ LE0(C).

(Logarithmic Ax) [B.-Masser-Pillay-Zannier 2016] Let s ∈ G (K ), proj.
to x ∈ E (K ), such that ∀H 6= G , s /∈ H + G0(C). Let s̃ ∈ G̃ (K ) be any lift
of s, and let Ũ = lnG̃ (s̃) ∈ LG̃ . Then,

tr .deg .(K ]

LG̃
(Ũ)/K ]

LG̃
) =


3 in general , except
1 if N x ∈ End(E )y (mod . E0(C)), except
0 if s is Ribet (mod . G0(C)).
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In particular, assume that y ∈ E (K ) \ E ] where E ] = E0(C) + Etors , i.e.
G/K is not isoconsant nor isotrivial, and that x ∈ E (F ) \ E ]. Then,

Exponential Ax : if u ∈ K and ` ∈ K×,
tr .degKK (℘(u), ζ(u), σ(u+v)

σ(u)σ(v)e
`−ζ(v)u) = 3.

Logarithmic Ax : if x ∈ E (K ) \ E ] and ` = `og(α), where α ∈ K×,
tr .degK(ω1,2,η1,2)(u, v , ζ(u), ζ(v), g(u, v))− `)

is equal to
- 5 , in general, e.g. if E is not constant and x , y are lin. indep. over Z;
- 3 , if E = E0 and x , y are lin. dep. over End(E0) mod E0(C),

unless x , y are Endas(E0)-related mod E0(C), in which case ∃` ∈ log(K×)
such that it is equal to

- 2 , and indeed g(u, v)− s2uv then lies in log(K×) := L.

Corollary (e) : let x , y ∈ E (K ), not both constant if E = E0. Then
g(u, v)− η1

ω1
uv ∈ L⇒ x or y is torsion.

So, the functional version of the Conjecture holds true (but to no avail...).
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Further comments

(a) That is, if (x , η) itself lies in B . In the general case, sR is defined only
up to addition of a root of unity.
(b) (answering a question of B. Zilber) This conjecture would follow from
Grothendieck’s period conjecture, applied to the 1-motive [Z→ Gη ×Gm,
1 7→ (s, α)] with α ∈ Q̄×.
(c) In fact, g(u, v)− s2uv ∈ L ⇔ ∃N ∈ N, f ∈ Endas(E ),Nη = f (x),
unless x or η is torsion. See Springer LN 1068, p. 19-22, Corollaire 3.
(d) assuming that x and η are End(E )-linearly independent modulo E (Q̄).
(e) This corollary also follows from Ayoub’s theorem on the functional
analogue of Grothendieck’s conjecture.
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