# Transcendence problems related to heights. 

D. Bertrand (UPMC)

Heights and Applications to Unlikely Intersections

Fields Inst., U. Toronto, Feb. 13-17, 2017

## References

[Serre 1989] Lectures on Mordell-Weil ...; Vieweg, Aspects E15.
[B 1994] 1-motifs et relations d'orthogonalité ...; Mat. Zap. 2, 7-22.
[B 1995] Minimal heights and polarizations...; Duke MJ 80, 223-250.
[B 1998] Relative splitting of 1-motives; Contemp. Maths 210, 3-17
[Bost-Künnemann 2009] Hermitian... II; Astérisque 327, 361-424.
[Kim 2010] Massey products for ell. c. of rank 1; JAMS 23, 725-747.
[B 2013] Unlikely intersections ...; NDJFL 54, 365-375, 2013.
[B-Masser-Pillay-Zannier 2016] RMM on semi-ab...; PEMS 59, 837-875.
[B-Pillay, 2016] Galois theory, functional LW ...; Pacific JM 281, 51-82.
[B-Edixhoven] Pink's conjecture, Poincaré biextensions and generalised Jacobians; in prep. (see also ArXiv 1104.5178v1).
(*) Comments added after talk: see last slide.

## I. Motivations

- Serre's question [1989] on the Néron-Tate pairing over an ell. c. $E / \mathbb{Q}$ :

$$
x, \eta \in E(\mathbb{Q}),<x, \eta>=0 \Rightarrow x \text { or } \eta \text { torsion ? }
$$

NB : can't hope this for a n.f. $k \neq \mathbb{Q}$, nor on an ab. var. $A / \mathbb{Q}$ with $g>1$.

- Zilber-Pink for a curve in the (4-dim'l) Poincaré bi-extension $\mathcal{P}^{\times}$of the Legendre curve $\mathcal{E} / S$ (cf. [B 2013], [B.-Edixhoven]).
Reduces to two "mixed" RMM problems:
P1 (recently solved by F . Barroero): let $(x, \eta) \in \mathcal{E} \times{ }_{S} \mathcal{E}(S)$. If $x_{t}, \eta_{t}$ are End $\left(\mathcal{E}_{t}\right)$-lin. dep. for inft'ly many $C M t \in S$, then $x, \eta$ are $(\mathbb{Z})$-lin. dep. P2: let $E / \overline{\mathbb{Q}}$ with $C M$, and let $s$ be section of a non constant semi-ab. scheme $\mathcal{G} \in \operatorname{Ex} t_{S}\left(E, \mathbb{G}_{m}\right) \rightsquigarrow \eta \in \hat{E}(S) \backslash \hat{E}(\mathbb{C})$ : if $s_{t}$ is a Ribet point of $\mathcal{G}_{t}$ for inft'ly many $t \in S(\overline{\mathbb{Q}})$, is then $s$ a Ribet section ?
NB : let $x$ be the projection of $s$ to $E(S)$. Then, $s_{t}$ Ribet $\Rightarrow x_{t}, \eta_{t}$ are End ${ }^{\text {antisym }}(E)$-related $\Rightarrow\left\langle x_{t}, \eta_{t}\right\rangle=0$.


## Isotropic abelian subvarieties

For $A / k, k$ a $n$.f., $L$ symmetric ample, and $\mathcal{P}$ the Poincaré bundle on $A \times \hat{A}$

$$
<x, \eta>:=h_{\mathcal{P}}(x, \eta)=-<x, y>_{L}, \text { where } \eta=\phi_{L}(y) .
$$

$<\sigma x, \sigma \eta>=<x, \eta>$ for $\sigma \in G a l(\overline{\mathbb{Q}} / k)$, and $\langle x, f(y)\rangle=<y, \hat{f}(x)>$, so orthogonality occurs as soon as $\eta=f(x)$ with $f \in \operatorname{Hom}^{\text {antisym }}(A, \hat{A})$, or because of relations on conjugates.
More generally, let $B=B_{x, \eta}$ be the abelian variety generated by $(x, \eta)$ in $A \times \hat{A}$. Then, $\mathcal{P}_{\mid B}$ torsion $\left(\Leftrightarrow c_{1}\left(\mathcal{P}_{\mid B}\right)=0\right)$ implies that $h_{\mathcal{P}}(x, \eta)=0$.
Conjecture $[\mathrm{B} \mathrm{1994]}$ : let $A / \mathbb{Q}$ and $(x, \eta) \in(A \times \hat{A})(\mathbb{Q})$. Then

$$
h_{\mathcal{P}}(x, \eta)=0 \Rightarrow c_{1}\left(\mathcal{P}_{\mid B}\right)=0 ?
$$

NB 1: rigidifying $\mathcal{P}^{\times}$above $A \times 0$, the relation $\mathcal{P}_{\mid B}=0$ provides a canon'l point $s_{R}$ above $(x, \eta)(\mathrm{a})$. We call $s_{R}$ the Ribet point of $G_{\eta} \in \operatorname{Ext}\left(A, \mathbb{G}_{m}\right)$ above $x$. Ditto for its orbit under $\left(\mathbb{G}_{m}\right)_{\text {tors }}$.
NB $2: c_{1}\left(\mathcal{P}_{\mid B}\right)=0 \Leftrightarrow \exists F \in \operatorname{Hom}^{a s}(A \times \hat{A}, \hat{A} \times A)$ and $N \in \mathbb{N}$ such that $N .(\eta, x)=F(x, \eta)$. If $x$ generates $A, \Leftrightarrow \exists f \in \operatorname{Hom}^{a s}(A, \hat{A})$ s.t. $N \eta=f(x)$.

## One archimedean place

Bloch's construction of $\langle x, \eta\rangle=h_{\eta}(x)$. By the product formula, the (absolute, logarithmic) normalized height on $\mathbb{G}_{m}(k)$ is

$$
h(\alpha)=\Sigma_{v \in \mathcal{M}_{k}} \frac{\left[k_{v}: \mathbb{Q}_{p}\right]}{[k: \mathbb{Q}]}\left|\log \left(|\alpha|_{v}\right)\right| .
$$

For $G=G_{\eta}$ and $v \in \mathcal{M}_{k}$, there is a unique extension of $\ell o g|\cdot|_{v}$ to $\lambda_{v}=\lambda_{v}^{(\eta)}: G\left(k_{v}\right) \rightarrow \mathbb{R}:$


Then, $\operatorname{ker}\left(\lambda_{v}\right)=$ maximal compact subgroup $G\left(k_{v}\right)^{c}$ of $G\left(k_{v}\right)$, and for any $s \in G_{\eta}(k)$ above $x$ :

$$
<x, \eta>=\Sigma_{v \in \mathcal{M}_{k}} \frac{\left[k_{v}: \mathbb{Q}_{p}\right]}{[k: \mathbb{Q}]} \lambda_{v}(s)
$$

We may choose $s$ with all finite $\lambda_{v}$ 's vanishing, so if $k$ has just one inf'te place, $\langle x, \eta\rangle=0 \Leftrightarrow$ this $s$ lies in $G\left(k_{v}\right)^{c}$ for all $v \in \mathcal{M}_{k}$. NB : if $c_{1}\left(\mathcal{P}_{\mid B}\right)=0$, the Ribet point $s_{R} \in G_{\eta}(k)$ above $x$ satisfies this property for any number field $k$.

## II. Transcendence

$$
\text { Set } \mathcal{L}=\log \left(\overline{\mathbb{Q}}^{\times}\right) \supset \mathbb{Q} \cdot \log \left(\mathbb{Q}^{\times}\right)
$$

Still assume that $k$ has only one infinite place $\infty$, but take any $s \in G_{\eta}(k)$ above $x$. Then,

$$
<x, \eta>=0 \Rightarrow \exists \alpha \in k^{\times}, s+\alpha \in G\left(k_{\infty}\right)^{c} \Rightarrow \lambda_{\infty}(s) \in \mathcal{L}
$$

To turn this into an amenable transcendence problem, we'd rather have a complex analytic expression for $\lambda_{\infty}$, which happens if $\infty$ is real. This leads to :

Question : assume that the n.f. $k$ has at least one real place $w$, and that $\lambda_{w}(s) \in \mathcal{L}$. Then, $c_{1}\left(\mathcal{P}_{\mid B}\right)=0$ ? (If so, $s$ will lie in the $\mathbb{G}_{m}$-orbit of $s_{R}$.)
This may be too bold, so let's go back to an elliptic curve $E$, firstly over $\mathbb{C}$, with $\wp, \zeta, \sigma, \omega_{i}, \eta_{i}$ as usual, $u=\log _{E}(x), v=\log _{E}(\eta)$, and

$$
\kappa_{v}\left(\omega_{i}\right)=\zeta(v) \omega_{i}-\eta_{i} v,(i=1,2)
$$

These are the basic periods of the standard logarithmic form $\xi_{\eta}$ on $E$ with residue divisor $-1 .(0)+1 .(-\eta)$.

Let $G=G_{\eta}$ (maybe $G_{-\eta}$ ?). Then, $G \xrightarrow{\pi} E$ admits a rational section $\rho: E \rightarrow G$, with $(\rho)=(-\eta)-(0)$, and the exponential map of $G$ is

$$
L G(\mathbb{C}) \ni\binom{t}{z} \mapsto\binom{f_{v}(z) e^{t}}{\left(\wp, \wp^{\prime}\right)(z)} \in G(\mathbb{C})
$$

where $f_{v}(z)=\frac{\sigma(v+z)}{\sigma(v) \sigma(z)} e^{-\zeta(v) z}$, so $\frac{d f_{v}}{f_{v}}=\frac{1}{2} \frac{\wp^{\prime}(z)-\wp^{\prime}(v)}{\wp(z)-\zeta(v)} d z=\exp _{E}^{*}\left(\xi_{\eta}\right)$.
Over $k \subset \mathbb{C}$, a point $s \in G(k)$ above $x \in E(k)$ is given by

$$
s=\binom{\delta_{s}}{x}, \log _{G}(s)=\binom{-g(u, v)+\zeta(v) u+\ell_{s}}{u}
$$

where $\delta_{s}:=s-\rho(x) \in k^{\times}, \ell_{s}=\log \left(\delta_{s}\right)$, and

$$
g(u, v)=\log \frac{\sigma(u+v)}{\sigma(v) \sigma(u)}
$$

is the "Green function" for the divisor $\Delta^{ \pm}-E \times 0-0 \times E$ on $E \times E$.
$G(\mathbb{C}) \simeq \mathbb{C}^{2} / \Omega_{G}$, where $\Omega_{G}=\mathbb{Z} \varpi_{0} \oplus \mathbb{Z} \varpi_{1} \oplus \mathbb{Z} \varpi_{2}$ with

$$
\varpi_{0}(\lambda)=\binom{2 \pi i}{0}, \varpi_{1}=\binom{\kappa_{v}\left(\omega_{1}\right)}{\omega_{1}}, \varpi_{2}=\binom{\kappa_{v}\left(\omega_{2}\right)}{\omega_{2}} .
$$

Assume now that $\infty$ is a real place of $k$. Then, $E(\mathbb{R})^{0}=\mathbb{R} \omega_{1} / \mathbb{Z} \omega_{1}$ and $G(\mathbb{R})^{c}=\mathbb{R} \varpi_{1} / \mathbb{Z} \varpi_{1}$ is 1 -dim'l (while $\operatorname{dim}_{\mathbb{R}}\left(G(\mathbb{C})^{c}\right)=3$ ). So,

$$
\begin{aligned}
s \in G(\mathbb{R})^{c} & \Leftrightarrow \operatorname{det}\left(\begin{array}{cc}
-g(u, v)+\zeta(v) u+\ell_{s} & \zeta(v) \omega_{1}-\eta_{1} v \\
u & \omega_{1}
\end{array}\right)=0 \\
& \Leftrightarrow g(u, v)-\frac{\eta_{1}}{\omega_{1}} u v=\ell_{s}\left(=\log \left(\delta_{s}\right) \in \mathcal{L}\right)
\end{aligned}
$$

Not a surprise : this is the restriction to $\mathbb{R}$ of the log of the "polar form" of the Klein form $\mathfrak{k}(u)=\sigma(u) \exp \left(-\frac{1}{2} \eta(u) u\right)$.
We can now forget about the reality assumption and consider any $k \subset \mathbb{C}$.
Conjecture (b) : assume $E, x, \eta$ defined over $\overline{\mathbb{Q}}, u, v, u+v \notin \Omega_{E}$. Then, $g(u, v)-\frac{\eta_{1}}{\omega_{1}} u v \in \mathcal{L} \Rightarrow x$ or $\eta$ is a torsion point. ( $\Rightarrow$ yes to Serre)
Known: 1) if $g(u, v)-\zeta(v) u \in \mathcal{L}$, then $\eta$ is torsion.
$2)$ in the CM case, let $s_{2} \in \overline{\mathbb{Q}}$, given by the Hecke form of weight 2 .
If $\exists f \in E n d^{a s}(E), \eta=f(x)$, then $g(u, v)-s_{2} u v \in \mathcal{L}(c)$.
But for a complex place, $s \in G(k) \cap G(\mathbb{C})^{c}$ does not imply $c_{1}\left(\mathcal{P}_{\mid B}\right)=0$.

## $p$-adic interlude

Kim Minhyong has given an "anabelian-Chabauty" proof of Siegel's theorem on $E(\mathbb{Z})$, when $E / \mathbb{Q}$ has rank 1 (i.e. just above the analogue of Chabauty's condition). The idea is that $E(\mathbb{Z})$ is contained in the set of zeroes of a non trivial $p$-adic analytic function on $E\left(\mathbb{Z}_{p}\right)$.
Take $p$ ordinary, so there is a p -adic height $h_{p}$ on $E(\mathbb{Q})$, which is the sum of the $p$-adic log of a rational number and of $\log _{p}(\sigma(u))-\kappa u^{2}$ (with $\kappa=\frac{1}{2} s_{2}$ in the CM case).
For $x \in E(\mathbb{Z})$, the first term vanishes, so $h_{p}(x)=\log _{p}(\sigma(u))-\kappa u^{2}$. Now, $\frac{h_{p}(x)}{u^{2}}$ is a constant $C$ since $h_{p}$ is quadratic and $\operatorname{rk}(E(\mathbb{Q}))=1$. Therefore $E(\mathbb{Z})$ is contained in the set of zeroes of the $p$-adic analytic function $\log _{p}(\sigma(z))-(\kappa+C) z^{2}$, non trivial since (say by Ax-Schanuel on $G_{x}$ ) $\log (\sigma(z))$ and $z$ are algebraically independent over $\mathbb{C}$. Done! It's anabelian because $\log (\sigma(u))$ is an iterated integral $\int_{0}^{x} \omega\left(\int_{0} \eta\right)$, which Kim relates to $\pi_{1}^{\text {unip }}(E(\mathbb{C}) \backslash 0)$.

## Additive interlude

For an ell. c. $E$ over $k \subset \mathbb{R}$, let $\tilde{E} \in \operatorname{Ext}\left(E, \mathbb{G}_{a}\right)$ be its universal extension. Its maximal compact subgroup $\tilde{E}(\mathbb{R})^{c}$ is $\mathbb{R} \tilde{\omega}_{1} / \mathbb{Z} \tilde{\omega}_{1}$ for the real period $\tilde{\omega}_{1}$ of $\tilde{E}$. Let $\tilde{x} \in \tilde{E}(k)$, above $x \in E(k)$; then (cf. [B 1998]),

$$
\tilde{x} \in \tilde{E}(\mathbb{R})^{c} \Leftrightarrow \kappa_{u}\left(\omega_{1}\right) / \omega_{1} \in k \Leftrightarrow \tilde{x} \in \tilde{E}_{\text {tors }} .
$$

Indeed, $\log _{\tilde{E}}(\tilde{x})=\binom{\zeta(u)-\alpha}{u}$ (for some $\left.\alpha \in k\right)$ and $\tilde{\omega}_{1}=\binom{\eta_{1}}{\omega_{1}}$ are $\mathbb{R}$-lin. dep. iff $\zeta(u) \omega_{1}-\eta_{1} u=\alpha \omega_{1} \Rightarrow x \in E_{\text {tor }} \Rightarrow \tilde{x} \in \tilde{E}_{\text {tor }}$. But much better : let $k \in \mathbb{C}$ be any n.f, let $A^{\prime}=\hat{A} \simeq \operatorname{Pic}^{0}(A)$ be an ab. var., with universal extension $\tilde{A}^{\prime} \in \operatorname{Ext}\left(A^{\prime}, \Omega_{A}^{1}\right)$, and let $\tilde{\eta} \in \tilde{A}^{\prime}(k)$, above $\eta \in A^{\prime}(k)$. Then [Bost-Künnemann 2009]:

$$
\tilde{\eta} \in \tilde{A}^{\prime}(\mathbb{C})^{c} \Leftrightarrow \tilde{\eta} \in \tilde{A}_{\text {tor }}^{\prime}
$$

Idea : $\tilde{\eta} \in \tilde{A}^{\prime} \longleftrightarrow G_{\eta}$, plus a connection on the line bundle $\left(G_{\eta} \cup 0\right) / A \nsim$ a character $\chi_{\alpha}$ of $\pi_{1}(A)$, for some $\alpha=\alpha(\tilde{\eta}) \in \operatorname{Hom}\left(\operatorname{LieA}, \operatorname{Lie} \mathbb{G}_{m}\right) \simeq \Omega_{A}^{1}$, and $\tilde{\eta} \in \tilde{A}^{\prime}(\mathbb{C})^{c}$ iff $\chi_{\alpha}$ is unitary $(\Rightarrow \pm 1$ over $\mathbb{R})$. E.g. on an elliptic curve : $\left.\mid \chi_{\alpha}(\gamma)\right) \mid=1 \Leftrightarrow \kappa_{v}(\omega)-\alpha \omega \in i \mathbb{R}$.

## Unlikely intersections

Let $S$ be a curve over $\overline{\mathbb{Q}}, \mathcal{E} / S$ an elliptic scheme, $x, \eta$ two sections. On $\mathcal{E}(S)$ (and $\mathcal{E}\left(S^{\prime}\right)$ for $S^{\prime} \rightarrow S$ ), we have the Néron-Tate height at the generic point and its polar form $\langle x, \eta\rangle$, non degenerate on $\mathcal{E}(S) / \mathcal{E}^{\sharp}$, where $\mathcal{E}^{\sharp}$ is the Manin kernel ( $=$ torsion + constant parts).

- Assume that there are infin'ly many $C M$ points $t \in S(\overline{\mathbb{Q}})$ such that $<x_{t}, \eta_{t}>=0$ in $\mathcal{E}_{t}(\overline{\mathbb{Q}})$. If $\mathcal{E} / S$ not isoconstant, then (Silverman) $h_{\eta}(x)=$ $<x, \eta\rangle=0$. Requires conditions on $S$ to go further.
- In Problem P2 on Zilber-Pink for $\mathcal{P}^{\times}$, over an $E$ with CM, all $x_{t}, \eta_{t}$ are End $(E)$-dep., so $h_{S}(t)$ is bounded (d). How to use End $(E)^{\text {as }}$ ?
- On $G / k$, the relative height $h_{G, r e l}(s)=\Sigma_{v \in \mathcal{M}_{k}} \frac{\left[k_{v}: \mathbb{Q}_{p}\right]}{[k: \mathbb{Q}]}\left|\lambda_{v}(s)\right|$ is "linear" and vanishes on Ribet points. Under suitable conditions on $\mathcal{G} / S$, it too satisfies $\lim _{h_{s}(t) \rightarrow \infty} \frac{h_{G_{t}, \text { rel }}\left(s_{t}\right)}{h_{s}(t)}=h_{\mathcal{G}, \text { rel }}(s)$. Does (not) lead to study sections $s$ in $\mathcal{G}(S)$ with $h_{\mathcal{G}, \text { rel }}(s)=0$.


## III. Functional transcendence

Geometric heights have no "transcendental" parts, but the following alg. indep. results may help for an o-minimal approach to P2.
Let $S / \mathbb{C}, K=\mathbb{C}(S) \subset F$, embedded in some diff'l field of meromorphic functions, let $E / K, G / F \in \operatorname{Ext} t_{F}\left(E, \mathbb{G}_{m}\right) \rightsquigarrow y \in E(F), x \in E(F)$, and let $E_{0}, G_{0}$ be the constant parts. The universal extension $\tilde{G}=G \times{ }_{E} \tilde{E}$ of $G$ has dimension 3, and carries differential operators $\nabla_{L \tilde{G}}: L \tilde{G} \rightarrow L \tilde{G}$, $\partial \ln _{\tilde{G}}:=\nabla_{L \tilde{G}} \circ \log _{\tilde{G}}: \tilde{G} \rightarrow L \tilde{G}$. Ditto with $\tilde{E}$. Their solutions generate the Picard-Vessiot extensions $K_{\tilde{L}}^{\sharp}=K\left(\omega_{1,2}, \eta_{1,2}\right)$ of $K=K_{\tilde{E}}^{\sharp}$ and $F_{L \tilde{G}}^{\sharp}=F\left(\omega_{1,2}, \eta_{1,2}, \kappa_{v}\left(\omega_{1,2}\right)\right)$ of $F$, while $F_{\tilde{G}}^{\sharp} / F$ is still mysterious. Finally, let $u=\log _{E}(x), v=\log _{E}(y)$.

Ax-Schanuel (on $G_{0}$ ): if $E$ and $G$ are constant (so $v:=v_{0} \in E_{0}(\mathbb{C})$ ), y not torsion, $x$ not constant and $\ell \in F$ arbitrary, then

$$
\operatorname{tr} \cdot \operatorname{deg}_{K} K\left(u, \zeta(u), \wp(u), \ell, e^{\ell} \exp \left(g\left(u, v_{0}\right)\right)\right) \geq 3
$$

For instance, if $x \in E_{0}(K) \backslash E_{0}(\mathbb{C}): \operatorname{tr} \cdot \operatorname{deg}_{K}\left(u, \zeta(u), g\left(u, v_{0}\right)-\frac{\eta_{1}}{\omega_{1}} u v_{0}\right)=3$.

Assume now that $y \in E(K)$, so $G / K$. For $s \in G(F)$, set $\log _{G}(s)=U$.

## Theorem

(Exponential $\mathbf{A x}=\mathrm{L}-\mathrm{W}$ ) [B.-Pillay 2016] Let $U \in L G(K)$, projecting to $u \in L E(K)$, such that $\forall H \neq G, U \notin L H+L G_{0}(\mathbb{C})$. Let $\tilde{U} \in L \tilde{G}(K)$ be any lift of $U$, and let $\tilde{s}=\exp _{\tilde{G}}(\tilde{U}) \in \tilde{G}$. Then,

$$
\text { tr.deg. }\left(K_{\tilde{G}}^{\sharp}(\tilde{s}) / K_{\tilde{G}}^{\sharp}\right)=\left\{\begin{array}{cc}
3 & \text { in general, except } \\
1 & \text { if } u \in L E_{0}(\mathbb{C}) .
\end{array}\right.
$$

(Logarithmic Ax) [B.-Masser-Pillay-Zannier 2016] Let $s \in G(K)$, proj. to $x \in E(K)$, such that $\forall H \neq G, s \notin H+G_{0}(\mathbb{C})$. Let $\tilde{s} \in \tilde{G}(K)$ be any lift of $s$, and let $\tilde{U}=\ln _{\tilde{G}}(\tilde{s}) \in L \tilde{G}$. Then,
tr.deg. $\left(K_{L \tilde{G}}^{\sharp}(\tilde{U}) / K_{L \tilde{G}}^{\sharp}\right)=\left\{\begin{array}{cc}3 & \text { in general, except } \\ 1 & \text { if } N x \in \operatorname{End}(E) y\left(\bmod . E_{0}(\mathbb{C})\right), \text { except } \\ 0 & \text { if } s \text { is Ribet }\left(\bmod . G_{0}(\mathbb{C})\right) .\end{array}\right.$

In particular, assume that $y \in E(K) \backslash E^{\sharp}$ where $E^{\sharp}=E_{0}(\mathbb{C})+E_{\text {tors }}$, i.e. $G / K$ is not isoconsant nor isotrivial, and that $x \in E(F) \backslash E^{\sharp}$. Then, Exponential Ax: if $u \in K$ and $\ell \in K^{\times}$,

$$
\operatorname{tr} . \operatorname{deg}_{K} K\left(\wp(u), \zeta(u), \frac{\sigma(u+v)}{\sigma(u) \sigma(v)} e^{\ell-\zeta(v) u}\right)=3
$$

Logarithmic Ax: if $x \in E(K) \backslash E^{\sharp}$ and $\ell=\log (\alpha)$, where $\alpha \in K^{\times}$,

$$
\left.\operatorname{tr} . \operatorname{deg}_{K\left(\omega_{1,2}, \eta_{1,2}\right)}(u, v, \zeta(u), \zeta(v), g(u, v))-\ell\right)
$$

is equal to

- 5 , in general, e.g. if $E$ is not constant and $x, y$ are lin. indep. over $\mathbb{Z}$;
- 3 , if $E=E_{0}$ and $x, y$ are lin. dep. over $E n d\left(E_{0}\right) \bmod E_{0}(\mathbb{C})$, unless $x, y$ are $E n d^{a s}\left(E_{0}\right)$-related mod $E_{0}(\mathbb{C})$, in which case $\exists \ell \in \log \left(K^{\times}\right)$ such that it is equal to
- 2 , and indeed $g(u, v)-s_{2} u v$ then lies in $\log \left(K^{\times}\right):=\mathfrak{L}$.

Corollary (e) : let $x, y \in E(K)$, not both constant if $E=E_{0}$. Then

$$
g(u, v)-\frac{\eta_{1}}{\omega_{1}} u v \in \mathfrak{L} \Rightarrow x \text { or } y \text { is torsion. }
$$

So, the functional version of the Conjecture holds true (but to no avail...).

## Further comments

(a) That is, if $(x, \eta)$ itself lies in $B$. In the general case, $s_{R}$ is defined only up to addition of a root of unity.
(b) (answering a question of B . Zilber) This conjecture would follow from Grothendieck's period conjecture, applied to the 1-motive $\left[\mathbb{Z} \rightarrow G_{\eta} \times \mathbb{G}_{m}\right.$, $1 \mapsto(s, \alpha)]$ with $\alpha \in \overline{\mathbb{Q}}^{\times}$.
(c) In fact, $g(u, v)-s_{2} u v \in \mathcal{L} \Leftrightarrow \exists N \in \mathbb{N}, f \in E n d^{a s}(E), N \eta=f(x)$, unless $x$ or $\eta$ is torsion. See Springer LN 1068, p. 19-22, Corollaire 3. (d) assuming that $x$ and $\eta$ are End $(E)$-linearly independent modulo $E(\overline{\mathbb{Q}})$.
(e) This corollary also follows from Ayoub's theorem on the functional analogue of Grothendieck's conjecture.

