Transcendence problems related to heights.

D. Bertrand (UPMC)

Heights and Applications to Unlikely Intersections

Fields Inst., U. Toronto, Feb. 13-17, 2017

D. Bertrand (UPMC) (Heights and AppliTranscendence problems related to height

[Serre 1989] Lectures on Mordell-Weil ...; Vieweg, Aspects E15. [B 1994] 1-motifs et relations d'orthogonalité ...; Mat. Zap. 2, 7-22. [B 1995] Minimal heights and polarizations...; Duke MJ 80, 223-250. [B 1998] Relative splitting of 1-motives; Contemp. Maths 210, 3-17 [Bost-Künnemann 2009] Hermitian... II; Astérisque 327, 361-424. [Kim 2010] Massey products for ell. c. of rank 1; JAMS 23, 725-747. [B 2013] Unlikely intersections ...; NDJFL 54, 365-375, 2013. [B-Masser-Pillay-Zannier 2016] RMM on semi-ab...; PEMS 59, 837-875. [B-Pillay, 2016] Galois theory, functional LW ...; Pacific JM 281, 51-82. [B-Edixhoven] Pink's conjecture, Poincaré biextensions and generalised Jacobians; in prep. (see also ArXiv 1104.5178v1).

(*) Comments added after talk : see last slide.

• • = • • = •

• Serre's question [1989] on the Néron-Tate pairing over an ell. c. E/\mathbb{Q} : $x, \eta \in E(\mathbb{Q}), \langle x, \eta \rangle = 0 \Rightarrow x \text{ or } \eta \text{ torsion } ?$

NB : can't hope this for a n.f. $k \neq \mathbb{Q}$, nor on an ab. var. A/\mathbb{Q} with g > 1.

• Zilber-Pink for a curve in the (4-dim'l) Poincaré bi-extension \mathcal{P}^{\times} of the Legendre curve \mathcal{E}/S (cf. [B 2013], [B.-Edixhoven]).

Reduces to two "mixed" RMM problems :

P1 (recently solved by F. Barroero): let $(x, \eta) \in \mathcal{E} \times_S \mathcal{E}(S)$. If x_t, η_t are $End(\mathcal{E}_t)$ -lin. dep. for inft'ly many CM $t \in S$, then x, η are (\mathbb{Z}) -lin. dep.

P2: let $E/\overline{\mathbb{Q}}$ with CM, and let *s* be section of a non constant semi-ab. scheme $\mathcal{G} \in Ext_S(E, \mathbb{G}_m) \rightsquigarrow \eta \in \hat{E}(S) \setminus \hat{E}(\mathbb{C})$: if s_t is a Ribet point of \mathcal{G}_t for inft'ly many $t \in S(\overline{\mathbb{Q}})$, is then *s* a Ribet section ?

NB : let x be the projection of s to E(S). Then, s_t Ribet $\Rightarrow x_t, \eta_t$ are $End^{antisym}(E)$ -related $\Rightarrow \langle x_t, \eta_t \rangle = 0$.

Isotropic abelian subvarieties

For A/k, k a n.f., L symmetric ample, and \mathcal{P} the Poincaré bundle on $A \times \hat{A}$ $< x, \eta > := h_{\mathcal{P}}(x, \eta) = - < x, y >_L$, where $\eta = \phi_L(y)$. $< \sigma x, \sigma \eta > = < x, \eta >$ for $\sigma \in Gal(\overline{\mathbb{Q}}/k)$, and $< x, f(y) > = < y, \hat{f}(x) >$, so orthogonality occurs as soon as $\eta = f(x)$ with $f \in Hom^{antisym}(A, \hat{A})$, or because of relations on conjugates.

More generally, let $B = B_{x,\eta}$ be the abelian variety generated by (x,η) in $A \times \hat{A}$. Then, $\mathcal{P}_{|B}$ torsion ($\Leftrightarrow c_1(\mathcal{P}_{|B}) = 0$) implies that $h_{\mathcal{P}}(x,\eta) = 0$.

$$\begin{array}{l} \textbf{Conjecture} \; [\mathsf{B} \; 1994] : \; \textit{let} \; A/\mathbb{Q} \; \textit{and} \; (x,\eta) \in (A \times \hat{A})(\mathbb{Q}). \; \; \textit{Then} \\ h_\mathcal{P}(x,\eta) = 0 \Rightarrow c_1(\mathcal{P}_{|B}) = 0 \; ? \end{array}$$

NB 1: rigidifying \mathcal{P}^{\times} above $A \times 0$, the relation $\mathcal{P}_{|B} = 0$ provides a canon'l point s_R above (x, η) (a). We call s_R the **Ribet point** of $G_{\eta} \in Ext(A, \mathbb{G}_m)$ above x. Ditto for its orbit under $(\mathbb{G}_m)_{tors}$.

NB 2: $c_1(\mathcal{P}_{|B}) = 0 \Leftrightarrow \exists F \in Hom^{as}(A \times \hat{A}, \hat{A} \times A) \text{ and } N \in \mathbb{N} \text{ such that}$ $N.(\eta, x) = F(x, \eta).$ If x generates $A, \Leftrightarrow \exists f \in Hom^{as}(A, \hat{A}) \text{ s.t. } N\eta = f(x).$

One archimedean place

Bloch's construction of $\langle x, \eta \rangle = h_{\eta}(x)$. By the product formula, the (absolute, logarithmic) normalized height on $\mathbb{G}_m(k)$ is

$$h(\alpha) = \sum_{\nu \in \mathcal{M}_k} \frac{[k_{\nu}:\mathbb{Q}_p]}{[k:\mathbb{Q}]} |\log(|\alpha|_{\nu})|.$$

For $G = G_{\eta}$ and $v \in \mathcal{M}_k$, there is a unique extension of $log|.|_v$ to $\lambda_v = \lambda_v^{(\eta)} : G(k_v) \to \mathbb{R} :$ $0 \longrightarrow k_v^* \longrightarrow G(k_v) \xrightarrow{\pi} A(k_v) \longrightarrow 0$ $\downarrow log|.|_v \qquad \downarrow (\lambda_v, \pi) \qquad ||$ $0 \longrightarrow \mathbb{R} \longrightarrow \mathbb{R} \times A(k_v) \xrightarrow{\pi} A(k_v) \longrightarrow 0$ Then, $ker(\lambda_v) =$ maximal compact subgroup $G(k_v)^c$ of $G(k_v)$, and for any $s \in G_{\eta}(k)$ above x :

$$\langle x, \eta \rangle = \sum_{v \in \mathcal{M}_k} \frac{[k_v:\mathbb{Q}_p]}{[k:\mathbb{Q}]} \lambda_v(s)$$

We may choose *s* with all finite λ_v 's vanishing, so if *k* has just **one inf'te** place, $\langle x, \eta \rangle = 0 \Leftrightarrow$ this *s* lies in $G(k_v)^c$ for all $v \in \mathcal{M}_k$. NB : if $c_1(\mathcal{P}_{|B}) = 0$, the Ribet point $s_R \in G_\eta(k)$ above *x* satisfies this property for any number field *k*.

II. Transcendence

Set
$$\mathcal{L} = log(\bar{\mathbb{Q}}^{\times}) \supset \mathbb{Q}.log(\mathbb{Q}^{\times}).$$

Still assume that k has only one infinite place ∞ , but take any $s \in G_{\eta}(k)$ above x. Then,

$$\langle x,\eta \rangle = 0 \Rightarrow \exists lpha \in k^{\times}, s + lpha \in G(k_{\infty})^{c} \Rightarrow \lambda_{\infty}(s) \in \mathcal{L}.$$

To turn this into an amenable transcendence problem, we'd rather have a *complex analytic* expression for λ_{∞} , which happens if ∞ is real. This leads to :

Question : assume that the n.f. k has at least one real place w, and that $\lambda_w(s) \in \mathcal{L}$. Then, $c_1(\mathcal{P}_{|B}) = 0$? (If so, s will lie in the \mathbb{G}_m -orbit of s_R .)

This may be too bold, so let's go back to an elliptic curve E, firstly over \mathbb{C} , with $\wp, \zeta, \sigma, \omega_i, \eta_i$ as usual, $u = \log_E(x), v = \log_E(\eta)$, and

$$\kappa_{\mathbf{v}}(\omega_i) = \zeta(\mathbf{v})\omega_i - \eta_i \mathbf{v}, \ (i = 1, 2).$$

These are the basic periods of the standard logarithmic form ξ_{η} on *E* with residue divisor $-1.(0) + 1.(-\eta)$.

・ロン ・個 と ・ ヨン ・ ヨン …

Let $G = G_{\eta}$ (maybe $G_{-\eta}$?). Then, $G \xrightarrow{\pi} E$ admits a rational section $\rho : E \dashrightarrow G$, with $(\rho) = (-\eta) - (0)$, and the exponential map of G is

$$LG(\mathbb{C}) \ni \begin{pmatrix} t \\ z \end{pmatrix} \mapsto \begin{pmatrix} f_{v}(z) e^{t} \\ (\wp, \wp')(z) \end{pmatrix} \in G(\mathbb{C})$$

where $f_v(z) = \frac{\sigma(v+z)}{\sigma(v)\sigma(z)}e^{-\zeta(v)z}$, so $\frac{df_v}{f_v} = \frac{1}{2}\frac{\wp'(z)-\wp'(v)}{\wp(z)-\wp(v)}dz = exp_E^*(\xi_\eta)$.

Over $k \subset \mathbb{C}$, a point $s \in G(k)$ above $x \in E(k)$ is given by

$$s = \begin{pmatrix} \delta_s \\ x \end{pmatrix}, \ \log_G(s) = \begin{pmatrix} -g(u,v) + \zeta(v)u + \ell_s \\ u \end{pmatrix}$$

where $\delta_s := s - \rho(x) \in k^{\times}$, $\ell_s = \ell og(\delta_s)$, and

$$g(u,v) = \log \frac{\sigma(u+v)}{\sigma(v)\sigma(u)}$$

is the "Green function" for the divisor $\Delta^{\pm} - E \times 0 - 0 \times E$ on $E \times E$. $G(\mathbb{C}) \simeq \mathbb{C}^2 / \Omega_G$, where $\Omega_G = \mathbb{Z} \varpi_0 \oplus \mathbb{Z} \varpi_1 \oplus \mathbb{Z} \varpi_2$ with $\varpi_0(\lambda) = \begin{pmatrix} 2\pi i \\ 0 \end{pmatrix}, \varpi_1 = \begin{pmatrix} \kappa_v(\omega_1) \\ \omega_1 \end{pmatrix}, \varpi_2 = \begin{pmatrix} \kappa_v(\omega_2) \\ \omega_2 \end{pmatrix}.$ Assume now that ∞ is a real place of k. Then, $E(\mathbb{R})^0 = \mathbb{R}\omega_1/\mathbb{Z}\omega_1$ and $G(\mathbb{R})^c = \mathbb{R}\varpi_1/\mathbb{Z}\varpi_1$ is 1-dim'l (while dim_{\mathbb{R}}($G(\mathbb{C})^c$) = 3). So,

$$s \in G(\mathbb{R})^c \Leftrightarrow \det \left(egin{array}{c} -g(u,v)+\zeta(v)u+\ell_s & \zeta(v)\omega_1-\eta_1v\ u & \omega_1 \end{array}
ight)=0$$

$$\Leftrightarrow g(u,v) - \frac{\eta_1}{\omega_1} uv = \ell_s \ (= \ell og(\delta_s) \in \mathcal{L}).$$

Not a surprise : this is the restriction to \mathbb{R} of the log of the "polar form" of the Klein form $\mathfrak{k}(u) = \sigma(u) \exp(-\frac{1}{2}\eta(u)u)$.

We can now forget about the reality assumption and consider any $k \subset \mathbb{C}$.

Conjecture (b) : assume E, x, η defined over $\overline{\mathbb{Q}}$, $u, v, u + v \notin \Omega_E$. Then, $g(u, v) - \frac{\eta_1}{\omega_1} uv \in \mathcal{L} \Rightarrow x \text{ or } \eta \text{ is a torsion point. } (\Rightarrow \text{ yes to Serre})$

Known : 1) if $g(u, v) - \zeta(v)u \in \mathcal{L}$, then η is torsion.

2) in the CM case, let $s_2 \in \overline{\mathbb{Q}}$, given by the Hecke form of weight 2. If $\exists f \in End^{as}(E), \eta = f(x)$, then $g(u, v) - s_2uv \in \mathcal{L}$ (c).

But for a complex place, $s \in G(k) \cap G(\mathbb{C})^c$ does not imply $c_1(\mathcal{P}_{|B}) = 0$.

p-adic interlude

Kim Minhyong has given an "anabelian-Chabauty" proof of Siegel's theorem on $E(\mathbb{Z})$, when E/\mathbb{Q} has rank 1 (i.e. just above the analogue of Chabauty's condition). The idea is that $E(\mathbb{Z})$ is contained in the set of zeroes of a non trivial *p*-adic analytic function on $E(\mathbb{Z}_p)$.

Take *p* ordinary, so there is a p-adic height h_p on $E(\mathbb{Q})$, which is the sum of the *p*-adic log of a rational number and of $log_p(\sigma(u)) - \kappa u^2$ (with $\kappa = \frac{1}{2}s_2$ in the CM case).

For $x \in E(\mathbb{Z})$, the first term vanishes, so $h_p(x) = log_p(\sigma(u)) - \kappa u^2$. Now, $\frac{h_p(x)}{u^2}$ is a constant *C* since h_p is quadratic and $rk(E(\mathbb{Q})) = 1$. Therefore $E(\mathbb{Z})$ is contained in the set of zeroes of the *p*-adic analytic function $log_p(\sigma(z)) - (\kappa + C)z^2$, non trivial since (say by Ax-Schanuel on G_x) $log(\sigma(z))$ and *z* are algebraically independent over \mathbb{C} . Done ! It's anabelian because $log(\sigma(u))$ is an iterated integral $\int_0^x \omega(\int_0 \eta)$, which Kim relates to $\pi_1^{unip}(E(\mathbb{C}) \setminus 0)$.

《曰》 《聞》 《臣》 《臣》 三臣

Additive interlude

For an ell. c. E over $k \subset \mathbb{R}$, let $\tilde{E} \in Ext(E, \mathbb{G}_a)$ be its universal extension. Its maximal compact subgroup $\tilde{E}(\mathbb{R})^c$ is $\mathbb{R}\tilde{\omega}_1/\mathbb{Z}\tilde{\omega}_1$ for the real period $\tilde{\omega}_1$ of \tilde{E} . Let $\tilde{x} \in \tilde{E}(k)$, above $x \in E(k)$; then (cf. [B 1998]),

$$ilde{x}\in ilde{E}(\mathbb{R})^{\mathsf{c}}\Leftrightarrow \kappa_u(\omega_1)/\omega_1\in k\Leftrightarrow ilde{x}\in ilde{E}_{\mathit{tors}}.$$

Indeed, $log_{\tilde{E}}(\tilde{x}) = \begin{pmatrix} \zeta(u) - \alpha \\ u \end{pmatrix}$ (for some $\alpha \in k$) and $\tilde{\omega}_1 = \begin{pmatrix} \eta_1 \\ \omega_1 \end{pmatrix}$ are \mathbb{R} -lin. dep. iff $\zeta(u)\omega_1 - \eta_1 u = \alpha\omega_1 \Rightarrow x \in E_{tor} \Rightarrow \tilde{x} \in \tilde{E}_{tor}$. But much better : let $k \in \mathbb{C}$ be any n.f, let $A' = \hat{A} \simeq Pic^0(A)$ be an ab. var., with universal extension $\tilde{A}' \in Ext(A', \Omega_A^1)$, and let $\tilde{\eta} \in \tilde{A}'(k)$, above

 $\eta \in A'(k)$. Then [Bost-Künnemann 2009]:

$$ilde\eta\in ilde A'(\mathbb{C})^{c}\Leftrightarrow ilde\eta\in ilde A_{tor}'.$$

Idea : $\tilde{\eta} \in \tilde{A}' \iff G_{\eta}$, plus a connection on the line bundle $(G_{\eta} \cup 0)/A \iff$ a character χ_{α} of $\pi_1(A)$, for some $\alpha = \alpha(\tilde{\eta}) \in Hom(LieA, Lie\mathbb{G}_m) \simeq \Omega^1_A$, and $\tilde{\eta} \in \tilde{A}'(\mathbb{C})^c$ iff χ_{α} is unitary $(\Rightarrow \pm 1 \text{ over } \mathbb{R})$. E.g. on an elliptic curve : $|\chi_{\alpha}(\gamma))| = 1 \Leftrightarrow \kappa_v(\omega) - \alpha\omega \in i\mathbb{R}$.

Unlikely intersections

Let S be a curve over $\overline{\mathbb{Q}}$, \mathcal{E}/S an elliptic scheme, x, η two sections. On $\mathcal{E}(S)$ (and $\mathcal{E}(S')$ for $S' \to S$), we have the Néron-Tate height at the generic point and its polar form $\langle x, \eta \rangle$, non degenerate on $\mathcal{E}(S)/\mathcal{E}^{\sharp}$, where \mathcal{E}^{\sharp} is the Manin kernel (= torsion + constant parts).

• Assume that there are infin'ly many CM points $t \in S(\overline{\mathbb{Q}})$ such that $\langle x_t, \eta_t \rangle = 0$ in $\mathcal{E}_t(\overline{\mathbb{Q}})$. If \mathcal{E}/S not isoconstant, then (Silverman) $h_{\eta}(x) = \langle x, \eta \rangle = 0$. Requires conditions on S to go further.

• In Problem P2 on Zilber-Pink for \mathcal{P}^{\times} , over an E with CM, all x_t, η_t are End(E)-dep., so $h_S(t)$ is bounded (d). How to use $End(E)^{as}$?

• On G/k, the relative height $h_{G,rel}(s) = \sum_{v \in \mathcal{M}_k} \frac{[k_v:\mathbb{Q}_p]}{[k:\mathbb{Q}]} |\lambda_v(s)|$ is "linear" and vanishes on Ribet points. Under suitable conditions on \mathcal{G}/S , it too satisfies $\lim_{h_S(t)\to\infty} \frac{h_{G,rel}(s_t)}{h_S(t)} = h_{\mathcal{G},rel}(s)$. Does (not) lead to study sections s in $\mathcal{G}(S)$ with $h_{\mathcal{G},rel}(s) = 0$.

《曰》 《聞》 《臣》 《臣》 三臣

Geometric heights have no "transcendental" parts, but the following alg. indep. results may help for an o-minimal approach to **P2**.

Let $S/\mathbb{C}, K = \mathbb{C}(S) \subset F$, embedded in some diff'l field of meromorphic functions, let $E/K, G/F \in Ext_F(E, \mathbb{G}_m) \rightsquigarrow y \in E(F), x \in E(F)$, and let E_0, G_0 be the constant parts. The universal extension $\tilde{G} = G \times_E \tilde{E}$ of Ghas dimension 3, and carries differential operators $\nabla_{L\tilde{G}} : L\tilde{G} \to L\tilde{G}$, $\partial ln_{\tilde{G}} := \nabla_{L\tilde{G}} \circ log_{\tilde{G}} : \tilde{G} \to L\tilde{G}$. Ditto with \tilde{E} . Their solutions generate the Picard-Vessiot extensions $K_{L\tilde{E}}^{\sharp} = K(\omega_{1,2}, \eta_{1,2})$ of $K = K_{\tilde{E}}^{\sharp}$ and $F_{L\tilde{G}}^{\sharp} = F(\omega_{1,2}, \eta_{1,2}, \kappa_v(\omega_{1,2}))$ of F, while $F_{\tilde{G}}^{\sharp}/F$ is still mysterious. Finally, let $u = log_E(x), v = log_E(y)$.

Ax-Schanuel (on G_0): if E and G are constant (so $v := v_0 \in E_0(\mathbb{C})$), y not torsion, x not constant and $\ell \in F$ arbitrary, then

 $tr.deg_{\mathcal{K}}\mathcal{K}(u,\zeta(u),\wp(u),\ell,e^{\ell}\exp(g(u,v_{0}))) \geq 3.$ For instance, if $x \in E_{0}(\mathcal{K}) \setminus E_{0}(\mathbb{C})$: $tr.deg_{\mathcal{K}}(u,\zeta(u),g(u,v_{0})-\frac{\eta_{1}}{\omega_{1}}uv_{0}) = 3.$ Assume now that $y \in E(K)$, so G/K. For $s \in G(F)$, set $log_G(s) = U$.

Theorem

(Exponential Ax = L-W) [B.-Pillay 2016] Let $U \in LG(K)$, projecting to $u \in LE(K)$, such that $\forall H \neq G, U \notin LH + LG_0(\mathbb{C})$. Let $\tilde{U} \in L\tilde{G}(K)$ be any lift of U, and let $\tilde{s} = exp_{\tilde{G}}(\tilde{U}) \in \tilde{G}$. Then,

$$tr.deg.(\mathcal{K}^{\sharp}_{\widetilde{G}}(\widetilde{s})/\mathcal{K}^{\sharp}_{\widetilde{G}}) = egin{cases} 3 & \textit{in general}, except\ 1 & \textit{if } u \in LE_0(\mathbb{C}). \end{cases}$$

(Logarithmic Ax) [B.-Masser-Pillay-Zannier 2016] Let $s \in G(K)$, proj. to $x \in E(K)$, such that $\forall H \neq G$, $s \notin H + G_0(\mathbb{C})$. Let $\tilde{s} \in \tilde{G}(K)$ be any lift of s, and let $\tilde{U} = ln_{\tilde{G}}(\tilde{s}) \in L\tilde{G}$. Then,

$$tr.deg.(\mathcal{K}_{L\tilde{G}}^{\sharp}(\tilde{U})/\mathcal{K}_{L\tilde{G}}^{\sharp}) = \begin{cases} 3 & \text{in general, except} \\ 1 & \text{if } N \times \in End(E)y \pmod{E_0(\mathbb{C})}, \text{ except} \\ 0 & \text{if s is Ribet (mod. } G_0(\mathbb{C})). \end{cases}$$

In particular, assume that $y \in E(K) \setminus E^{\sharp}$ where $E^{\sharp} = E_0(\mathbb{C}) + E_{tors}$, i.e. G/K is not isoconsant nor isotrivial, and that $x \in E(F) \setminus E^{\sharp}$. Then,

Exponential Ax : if $u \in K$ and $\ell \in K^{\times}$, $tr.deg_{K}K(\wp(u), \zeta(u), \frac{\sigma(u+v)}{\sigma(u)\sigma(v)}e^{\ell-\zeta(v)u}) = 3.$

Logarithmic Ax : if $x \in E(K) \setminus E^{\sharp}$ and $\ell = \ell og(\alpha)$, where $\alpha \in K^{\times}$,

$$tr.deg_{\mathcal{K}(\omega_{1,2},\eta_{1,2})}(u,v,\zeta(u),\zeta(v),g(u,v))-\ell)$$

is equal to

- 5 , in general, e.g. if E is not constant and x, y are lin. indep. over \mathbb{Z} ; - 3 , if $E = E_0$ and x, y are lin. dep. over $End(E_0) \mod E_0(\mathbb{C})$, unless x, y are $End^{as}(E_0)$ -related mod $E_0(\mathbb{C})$, in which case $\exists \ell \in log(K^{\times})$ such that it is equal to

- 2 , and indeed $g(u,v) - s_2 uv$ then lies in $log(K^{ imes}) := \mathfrak{L}$.

Corollary (e) : let $x, y \in E(K)$, not both constant if $E = E_0$. Then $g(u, v) - \frac{\eta_1}{\omega_1}uv \in \mathfrak{L} \Rightarrow x \text{ or } y \text{ is torsion.}$

So, the functional version of the Conjecture holds true (but to no avail...).

(a) That is, if (x, η) itself lies in *B*. In the general case, s_R is defined only up to addition of a root of unity.

(b) (answering a question of B. Zilber) This conjecture would follow from Grothendieck's period conjecture, applied to the 1-motive $[\mathbb{Z} \to G_{\eta} \times \mathbb{G}_m, 1 \mapsto (s, \alpha)]$ with $\alpha \in \overline{\mathbb{Q}}^{\times}$.

(c) In fact, $g(u, v) - s_2 uv \in \mathcal{L} \Leftrightarrow \exists N \in \mathbb{N}, f \in End^{as}(E), N\eta = f(x)$, unless x or η is torsion. See Springer LN 1068, p. 19-22, Corollaire 3.

(d) assuming that x and η are End(E)-linearly independent modulo $E(\overline{\mathbb{Q}})$. (e) This corollary also follows from Ayoub's theorem on the functional analogue of Grothendieck's conjecture.