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I . Manin’s theorem of the kernel

II . Relative Manin-Mumford for families of semi-abelian
surfaces.
 boils down (cf. D. Masser’s talk) to algebraic independence of
functional logarithms.

III. Polynomial Pell equations with non-square free
discriminants
 replace jacobians by generalized jacobians.
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I. Manin’s theorem

1. A multiplicative analogue and its use.
S/C affine curve, K = C(S) (or its alg. closure), ∂ ∈ Der(K/C).
T = Gn

m, commutative alg. group defined over C = K∂ .
LT = Lie(T ), with connection ∇LT (x1, ..., xn) = (∂x1, ..., ∂xn).
p = (y1, ..., yn) ∈ T (K ) = K ∗n → x“ = ”`n(p) ∈ LT , analytic on
some disk in S(C).
Fp := K (x) = K (`n(p)) depends only on p.
Theorem (Ax) : tr .deg .(Fp/K ) < n⇒ ∃ alg. subgroup H ( T
such that p ∈ H(K ) + T (C).
Proof in 2 steps, based on the logarithmic derivative

∂`n(p) := ∇LT (`n(p)) = (∂y1/y1, ...∂yn/yn) ∈ LT (K ).

View x as any solution of the inhomogeneous equation

∇LT (x) = ∂`n(p) , with Ker(∇LT ) := (LT )∇ ' Cn.
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Clearly, Fp = K (x) = K (`n(p)) depends only on the class of
∂`n(p) in LT (K )/∇LT (LT (K ))  a “Manin map" :

MK : T (K )→ LT (K )/∇LT (LT (K )) = Coker(∇LT ;K ).

• 1st step (Ostrowski) : take any a = (a1, ..., an) ∈ LT (K ) and
consider ∇LT (x) = a. Assume that deg .tr .K (x)/K ) < n. Then,
a1, ..., an are lin. dep. over C modulo ∂(K ).
Proof : Gal∂(K (x)/K ) = N∇ ⊂ (LT )∇, where N is the smallest
∇LT -submodule N/K of LT such that a ∈ N(K ) +∇LT (T (K )).
So, deg .tr .(Fp/K ) < n⇒ ∃c1, ..., cn ∈ C, not all zero, and ξ ∈ K
such that c1 ∂y1

y1 + ...+ cn ∂yn
yn

= ∂ξ.
• 2nd step (integral structure) : of course, ∂`n(K ∗) ↪→ K/∂K , i.e.
Ker(MK ) = T (C). But in fact : ∂`n(K ∗)⊗ C ↪→ K/∂K .
So, for a = ∂`n(p), there is a relation over Z, with ξ ∈ C. So ∃
alg. subgroup H ( T such that p ∈ H(K ) + T (C).
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Assume that p ∈ T (K ) is non-degenerate : for any alg. subgroup
H ( T , p /∈ H(K ) + T (C). Then, for any strict ∇LT -submodule
N/K of LT , the “Manin-Chai map"

MK : T (K )→ Coker{∇LT/N : (LT/N)(K )→ (LT/N)(K )}

sending p to the class of ∂`n(p) modulo N(K ) +∇LT (LT (K ))
does not vanish at p.
Conclusion : for any p ∈ T (K ), the smallest ∇LT -submodule
N/K such that ∂`n(p) ∈ N(K ) + LT (C) is LH, where H is the
smallest alg. subgroup of T such that p ∈ H + T (C).
So, with H as above, we derive : deg .tr(Fp/K ) = dim(H).
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2. Abelian Manin-Chai and its use.
A/S abelian scheme  A/K , with K/C-trace A0/C.
p ∈ A(S) = A(K )→ x“ = ”`nA(p) ∈ LA, analytic on some disk.
But if A 6= A0, no connection on LA = Lie(A) killing the periods
(i.e. the ambiguity on `nA). So, we must introduce the universal
vectorial extension Ã, with its Gauss-Manin connection ∇LÃ :

0→WA → Ã→ A→ 0, ∇LÃ : LÃ→ LÃ

where WA = H1(A,OA)∗. The periods of Ã (' quasiperiods of A)
generate (LÃ)∇ over C.
Lift p to p̃ ∈ Ã. Then, ∂`nÃ(p̃) := ∇LÃ(`nÃ(p̃)) is well defined, and
its class modulo ∇LÃ(LÃ(K )) depends only on p  the Manin map

MK : A(K )→ LÃ(K )/∇LÃ(LÃ(K )) = Coker(∇LÃ;K ).

K (`nÃ(p̃)) = K (
∫ p
0 η, η ∈ H1

dR(A/K )) depends on the path, so we
must introduce FA = K ((LÃ)∇). And now,
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Fp := FA(`nÃ(p̃)) = FA(x̃), x̃ = `nÃ(p̃)

depends only on p. Let n = dim(A), so dim(Ã) = 2n.
Theorem (∼ André) : tr .deg .(Fp/FA) < 2n⇒ ∃ alg. subgroup
H ( A such that p ∈ H(K ) + A0(C).

Proof in 2 steps, based on the logarithmic derivative

∂`nÃ(p̃)) := ∇LÃ(`nÃ(p̃)) ∈ LÃ(K ).

View x̃ = `nÃ(p̃) as any solution of the inhomogeneous equation

∇LÃ(x̃) = ∂`nÃ(p̃).

• 1st step (Picard-Vessiot theory) Take any a ∈ LÃ(K ) and
consider the inhomogeneous equation ∇LÃ(x̃) = a. Then,
Gal∂(F (x̃))/F ) = N∇ ⊂ (LÃ)∇, where N/K is the smallest
∇LÃ-submodule of LÃ such that a ∈ N(K ) +∇LÃ(LÃ(K )).

Proof and statement use the semi-simplicity of the ∇-module LÃ.
D. Bertrand (IMJ) Manin kernels, algebraic independence and diophantine equations over function fields.
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deg .tr .(Fp/FA) < 2n⇒ ∃N ( LÃ, ∂`nÃ(p̃) ∈ N(K )+∇LÃ(LÃ(K )).
• 2nd step (Hodge structure) : analogue of ∂`n(K ∗) ↪→ K/∂K is

(Manin) : Ker(MK ) = Ator + A0(C) (= points of height 0).

And in fact (∼ Manin-Chai) : for any strict ∇LÃ-submodule N/K
of LÃ, the “Manin-Chai map"

MK : A(K )→ Coker{∇LÃ/N : (LÃ/N)(K )→ (LÃ/N)(K )}

sending p to the class of ∂`n(p̃) modulo N(K ) +∇LÃ(LÃ(K )) does
not vanish on the set of non-degenerate p’s (same def. as above).
Conclusion : for any p ∈ A(K ), the smallest ∇LÃ-submodule N/K
such that ∂`n(p̃) ∈ N(K ) +∇LÃ(LÃ(K )) is LH̃, where H is the
smallest alg. subgroup of A such that p ∈ H + A0(C).

D. Bertrand (IMJ) Manin kernels, algebraic independence and diophantine equations over function fields.



0. Plan
I. Manin’s theorem

II. Relative Manin-Mumford
III. Polynomial Pell

So, with H as above, we derive deg .tr(Fp/FA) = 2dim(H).
The proof of Manin-Chai requires André’s normality theorem on
VMHS: the differential Galois group is a normal subgroup of the
generic Mumford-Tate group. Therefore, N is stable under MTA,
hence carries a sub-Hodge structure of LÃ, hence is of the form LH̃.

Remark 1 : further work by J. Ayoub : Une version relative de la
conjecture des périodes de Kontsevich-Zagier (Ann. Math., 2013).
Remark 2 (current work with A. Pillay, answering a question of
Hrushovski) : assume that A is simple and traceless.
i) Then, MK ⊗ 1Q is injective on A(K )⊗Q, and by Manin-Chai,

MK ⊗ 1C : A(K )⊗ C ↪→ LÃ(K )/∇LÃ(LÃ(K )) .

ii) Following Buium, model theory uses another Manin map :

µ : A(K )→ LÃ/∇LÃ(WA) 'DAG Gn
a .

Ker(µ) = Ator , but ∃A,Ker(µ⊗ 1C) 6= 0.
D. Bertrand (IMJ) Manin kernels, algebraic independence and diophantine equations over function fields.
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II. RMM for semi-abelian surfaces
S is now an affine curve over Q, K = Q(S). If A/S is an abelian
scheme, we let Ator be the union of all torsion points on all fibers
Aλ, λ ∈ S(Q).
In David’s talk, we learnt :
Theorem (Masser-Zannier) : let A/S be an abelian surface
scheme, and let s ∈ A(S) be a section of A/S. Assume that the set
{λ ∈ S(Q), s(λ) ∈ Ator} is infinite. Then, s factors through a strict
subgroup scheme of A/S.
With an eye on “Pell units in non-maximal orders" (cf. Part III), we
would like this to hold for generalized jacobians, in particular
semi-abelian surface schemes, such as an S-extension

1→ Gm → G → E → 0

of an elliptic scheme E/S by Gm.
D. Bertrand (IMJ) Manin kernels, algebraic independence and diophantine equations over function fields.
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However, there are counterexamples to RMM for certain
semi-abelian G ’s, due to the existence of “Ribet sections" when E
has complex multiplications. But they are the only obstruction :
Theorem ([B-M-P-Z]) : let G/S be an extension of E/S by Gm,
and let s ∈ G (S) be a section of G/S. Assume that the set
{λ ∈ S(Q), s(λ) ∈ Gtor} is infinite. Then,
i) either s is a Ribet section;
ii) or s factors through a strict subgroup scheme H of G/S.
In particular, the standard RMM Conclusion (ii) holds as soon as
E/S is not isoconstant.

Proof : exactly the same strategy as Masser-Zannier, reducing to
the transcendence degree of `nG (s) over FG . More precisely :
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let q ∈ Pic0
E/S(S) ' E (S) be the section parametrizing

G ∈ ExtS(E ,Gm), and let p ∈ E (S) be the projection of s to E ,
arbitrarily lifted to p̃, q̃ in Ẽ (S). Then,

Fp = FE (`nẼ (p̃)),FG = FE (`nẼ (q̃)) = Fq,Fpq := Fp.Fq.

Set Ls := Fpq(`nG (s)) (= FG (`nG̃ (s̃)).) Rather than Ls/FG , it
suffices to concentrate on

tr .deg(Ls/Fpq), which is ≤ dim(Gm).

G/K admits a K/C-trace G0 = “constant part" of G , Gm ⊂ G0.
Proposition : Assume that tr .deg(Ls/Fpq) < 1. Then, there exists
a constant section s0 ∈ G0(C) such that
i) either s − s0 is a Ribet section;
ii) or s − s0 factors through a strict subgroup scheme of G/S.
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Proof : compute commutators in the Galois representation

{γ ∈ Gal∂(Ls/K )} → ρG ,s(γ) =

 1 tξq(γ) τs(γ)
0 ρE (γ) ξp(γ)
0 0 1

 , where

Ls
↑
Fpq

↗ ↖
Fq Fp
↖ ↗

FE
↑
K

τs : Gal∂(Ls/Fpq) ↪→ (LGm)∇ ' C
tξq : Gal∂(Fq/FE ) ↪→ (LẼ )∇ ' C2

ξp : Gal∂(Fp/FE ) ↪→ (LẼ )∇ ' C2

ρE : Gal∂(FE/K ) ↪→ SL2(C)

τs = 0 forces a CM relation between p and q (unless they are
torsion or constant sections of E/S)  a Ribet section of G/S .
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III. Non-square free polynomial (Pell-) Fermat equations
SECOND DÉFI AUX MATHÉMATICIENS, FÉVRIER 1657.
II est à peine quelqu’un qui propose des questions purement
arithmétiques, il est à peine quelqu’un qui sache les résoudre.
J’attends la solution de ces questions; si elle n’est fournie ni par
l’Angleterre, ni par la Gaule Belgique ou Celtique, elle le sera par la
Narbonnaise, qui l’offrira à Sir Digby et la lui dédiera en gage d’une
amitié naissante.
Pour éclairer leur marche, je leur propose de démontrer comme
théorème ou de résoudre comme problème l’énoncé suivant; s’ils y
parviennent, ils reconnaîtront au moins que des questions de ce
genre ne le cèdent ni pour la subtilité, ni pour la difficulté, ni pour
le mode de démonstration, aux plus célèbres de la Géométrie :
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Étant donné un nombre non carré quelconque, il y a une infinité de
carrés déterminés tels qu’en ajoutant l’unité au produit de l’un
d’eux par le nombre donné, on ait un carré.
[Oeuvres de Fermat, Tannery - Henry , p. 312, No 81.]

So, for any D ∈ Z>0, D not a square,

X 2 − DY 2 = 1

has at least one (hence infinitely many) solutions X , 0 6= Y ∈ Z. Of
course, we now see this as a theorem on units of orders in a real
quadratic field. Notice that the order needs not be maximal, so the
non-square D can have square factors.

Now, replace Z by C[t], with a polynomial D(t) of even degree.

D. Bertrand (IMJ) Manin kernels, algebraic independence and diophantine equations over function fields.
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Let D ∈ C[t] be a polynomial of degree 6 , not a square in C[t],
and let C be the normalization of the curve w2 = D(t), with two
points ∞+,∞− at infinity. We have just seen in David’s talk that
if D has no multiple root (i.e. is square free, i.e. genus(C ) = 2),
then the “polynomial Pell-Fermat equation"

X 2 − DY 2 = 1

has a solution in polynomials {X , 0 6= Y } ∈ C[t] if and only if the
divisor (∞+)− (∞−) is a torsion point on the Jacobian A = Pic0

C
of C , and that RMM for a family of abelian surfaces Aλ implies :
Corollary (Masser-Zannier) : consider the family of polynomials
Dλ(t) = t6 + t + λ, where λ runs through C. There are only
finitely many complex numbers λ such that there exist polynomials
X (t), 0 6= Y (t) ∈ C[t] satisfying X 2(t)− Dλ(t)Y 2(t) ≡ 1.
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Now, what happens if Dλ(t) is (generically) not square-free ? For
instance, what about the family of polynomials

Dλ(t) = t2(t4 + t + λ) ?

More generally, let ρ(λ) be an algebraic function of λ, defining a
Rieman surface S , and consider the family C/S = {Cλ, λ ∈ S} of
singular curves v2 = (t − ρ(λ))2(t4 + t + λ). The normalisation of
Cλ is the (normalisation of the) curve of genus 1 :

(Eλ) : w2 = ∆λ(t), with ∆λ(t) = t4 + t + λ.

We recover Cλ by pinching Eλ at its points {q+(λ), q−(λ)} with
abscissa t = ρ(λ).
The generalized jacobian Gq = G = Pic0

C/S identifies with the
group of relative divisors of degree 0 on E/S prime to {q+, q−},
modulo the strict equivalence ≈, which for f ∈ K (E ), is defined by

div(f ) ≈ 0⇔ f (q+)/f (q−) = 1.
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Identifying the usual jacobian Pic0
E/S (defined via the standard

equivalence of divisors ∼) with E/S , we have an S-extension

1→ Gm → G → E → 0,

whose class in Ê (S) ' E (S) is given by (q+)− (q−).
Consider the two points ∞+(λ),∞−(λ) on Eλ, and let

s(λ) = class of (∞+(λ))− (∞−(λ)) for ≈, i.e. in Gλ,
p(λ) = class of (∞+(λ))− (∞−(λ)) for ∼, i.e. in Êλ ' Eλ;

So, p ∈ E (S) is the projection of the section s ∈ G (S).
As we have just learnt, the family of elliptic curves E/S (marked at
∞+) is not isoconstant, and p is not a torsion section, so (“likely
intersections") : there is an infinite set Λp of (necessarily algebraic)
values of λ for which p(λ) ∈ Etor , equivalently

D. Bertrand (IMJ) Manin kernels, algebraic independence and diophantine equations over function fields.
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λ ∈ Λp ⇒ X 2 −∆λỸ 2 = 1 solvable in X , 0 6= Ỹ ∈ C[t]

For λ ∈ Λp, denote by f = fλ = X (t) + wỸ (t) a rational function
on Eλ with (f ) = N.(∞+(λ))− N.(∞−(λ)), where ord(p(λ))|N.
Since Dλ(t) = (t − ρ(λ))2∆λ(t), Dλ is “Pell solvable" iff ∆λ has a
Pell solution X , Ỹ with Ỹ (ρ(λ)) = 0, which occurs iff one of these
f ’s satisfies f (q+(λ)) = f (q−(λ)), so iff

s(λ) ∈ Gtor ,

i.e. (“unlikely intersections") iff s lifts the torsion point p(λ) to a
torsion point on Gλ. By RMM on G/S (and since E has no CM),
this may occur only if s factor through a strict subgroup scheme
H/S of G/S . Now,
• if G = Gq is not isosplit, H0 must be Gm, so p must be torsion,
which it is not ⇒ Dλ is Pell solvable for only finitely many λ’s.
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• if Gq ∼ Gm × E , i.e. ∃φ ∈ K (E ), with (φ) = a multiple of
(q+)− (q−) : since p is not torsion, s will then factor iff its
“isoprojection" to Gm, which is given by φ(∞+)/φ(∞−) ∈ K ∗, is a
root of unity.

In our example with ρ(λ) = 0, the extension Gq is not isosplit.
Indeed, q±(λ) = (0,±

√
λ) while by Serre-Tate, torsion sections do

not ramify at λ = 0. We derive :
Corollary ([B-M-P-Z]) : consider the family of polynomials
Dλ(t) = t2(t4 + t + λ), where λ runs through C. There are only
finitely many complex numbers λ such that there exist polynomials
X (t), 0 6= Y (t) ∈ C[t] satisfying X 2(t)− Dλ(t)Y 2(t) ≡ 1.
Or better said : there are infinitely many complex λ’s such that
X 2 − (t4 + t + λ)Ỹ 2 = 1 has a solution X , 0 6= Ỹ ∈ C[t], but only
finitely many produce a solution with Ỹ (0) = 0.
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