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1. Relative Manin-Mumford

Manin-Mumford

F. Beukers-D. Zagier (AA, 1997) : a, b algebraic, ab # 0. Consider
three algebraic solutions (x,y),xy # 0, to (W) : ax + by = 1.
Then, the sum of their logarithmic height is > 0.09. “So",

at most 2 solutions with (x,y) € Gior = (f1oo)?, Where G = G2,

MM : (Raynaud-Hindry) Gy semi-abelian variety over C, W, closed
irred. subvariety of dim. d < dimGg, with Wo N Go tor Zariski-dense
in Wo. Then, Wy is a torsion translate of a strict alg. subgp Hp.

Equivalently : §/C irred. alg. var., G = Gy x S constant group
scheme over S, s : S — G a section of G/S.

Gtor = U/\GS((C)(GA)tor‘
Assume that S&° := {X € S(C),s(\) € Guor} is Z-dense in S and
that dim(S) < dim(G/S). Then, s factors through a strict
subgroup scheme H of G.
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1. Relative Manin-Mumford

Relative Manin-Mumford

RMM : S/C irred. alg. var., G/S semi-abelian scheme, not
necessarily constant, s a section of G/S.

Gtor = U)\eS((C)(C';/\)tor-
Assume that S&° = {\ € S(C),s(\) € Gior} is Z-dense in S and
that dim(S) < dim(G/S). Does then s factor through a strict
subgroup scheme H of G 7
Almost a consequence of Pink’s general conjecture on mixed
Shimura varieties, but not quite. In fact, restricting to a curve
S/Q%8 and to the crucial case: dim(G/S) = 2

e Masser-Zannier : yes if G/S is an abelian scheme.

e [B], [B-E] : no if G € Exts(E,Gp,), not isoconstant, where
E = Ey x S is a constant CM curve, and s is a Ribet section.
¢ [B-M-P-Z] : yes in all other cases.
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1. Relative Manin-Mumford

Unlikely intersections

Bombieri-Masser-Zannier : infinitely many (x, y) € G2,, lying in
(W) : x+y =1 for which 3r,s € Z,x"y* = 1 (likely intersection).
But finitely many if we ask for two independent relations (unlikely
intersection). More generally (Zilber, BMZ, Pink) :

for G/S, W C G, of dimension d < dim(G/S), set
Gl = Uxes(©) FX s{H\c Gy codime, Hy>d} -

Then : W N G Z-dense in W = W lies in a strict subgroup
scheme of G/S 7 In particular:

RMM for a curve S : if dim(G/S) > 2,and s: S — G is a section
of G/S which does not factor through any strict (and flat)
subgroup scheme of G/S, does its image s(S) := W contain only
finitely many points of Gy = G[>9m(G/5)-1] = GI>11 7
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2. Ribet sections

But
2 . What is a Ribet section ?

Relative version of the “deficient points" of [J-R].
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2. Ribet sections

Poincaré biextension

Like M. Jourdain with prose, you may have already met Ribet
sections when looking at Néron-Tate pairing < p, g >, for

p,q € E(Q¥8), a € End(E) = O totally imaginary and p = aq.
<ax,y > =< x,ay >1=— < X,qy >, SO ‘ <aqg,qg>;=0 ‘

This reflects a _property of the Poincaré bundle P on E x E. For

q = ¢u(q) € E -2 < p,q >1=hp((p.q')). On the graph B ~ E
of f =aogrt: E— E (with f = —f € End(E, E)), the pull-back

(f,idg)*P =~ P|p satisfies : hplB((f(q’), ’)) =0, 50 Pg =0 (in
fact, order 1 or 2 in Pico(B)). So, 2P g has a canonical section

s: B — Pjg ~ a point s¢(q') € P above (2f(q’),q’) € E x E.
Now, ¢’ € E ~ Pico(E) defines G := Gy = P*|gxq € Ext(E,Gp):
a semi-abelian surface with a distinguished point s¢(q’) above the
point p = 2f(q’) € E : s¢(q’) is the Ribet point of Gg.
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2. Ribet sections

More generally (A. Chambert-Loir, [B-E]) : S/Q?2 a smooth irred.
alg. var.; A/S an abelian scheme; P = PA the Poincaré biextension
over A x A, with its rigifications above eg x A and above A x &,
and its two families of group laws +1, +>. There are canonical
isomorphisms of Gp,-torsors (over any base S'/S):
Vy e A ze A~ A PA(y, z) ~ PA(z,y)

Vf:B— C,y € B,xe C,P(fy,x) ~ PB(y, fx), so

VE:A— Ay eAxeAri,.,  Pfy,x)—=P(fx,y).
Hence for x = y = g € A (old ¢’) and using the +1 law :

P((f - ?)qa q) = Gm/Sa

yielding on Pjayq = Gg € Ext(A,G,) the Ribet section
se(q) € Gy4(S) above p = (f — F)(q) € A(S).
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2. Ribet sections

Ribet vs RMM

Theorem ([B-E]) : for g € A(S), f € Ends(A, A), let s := s¢(q) be
the Ribet section of G = G4/S € Exts(A,Gp,). Then:

i) se(q) is additive in f, and depends only on f — F € End?2ntisym.
i) se(q) projects to p := (f — f)(q) € A(S);

i) if g(\) € Ax[n], then s(\) = s¢(q(\)) is torsion, of order |n® in

Gy := Gq(n); SO, Stf,;s = Sé,’,q ~ Stﬁ}p. More precisely,
iv) assume q(\) = gy € Ax[n]; then, ‘ n.s(A) = en(f(gr), gr) € n

Now, for £ — f an isogeny, suppose that g factors through no strict
sbgp scheme and Spu7 is Z-dense in S (exists if dimS = dimA/S).
Then, ditto for s. So, s¢(q) contradicts RMM.
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2. Ribet sections

Characterizing Ribet sections via MM (g = 1)

From now on, suppose that A = E is an elliptic curve. So E =

Ey x S, where Ey/Q?%& has CM by O. Also, 5 must be a curve,
and we assume wlog that S = Eo, so “A = g". Finally, we can
suppose that f #+f,ie. h=Ff— f is an isogeny.

Elementary proof of the theorem soon to come.

But first, an easy consequence of (iii). On G = GqLE, the Ribet
section s = s¢(q) lifts all torsion values of p := 7(s) = h(q) to
torsion points of G, i.e.: Sto, SEP (which is infinite).

Let now s’ € Gg4(S) such that 7(s") = p. Assume that Stor
infinite. Then, s’ —s¢(q) =6 € Gm(S) and Sem>Fo(0p) i |nf|n|te.
By Hindry's thm, § must torsion, so s’ = s¢(q) up to a root of
unity.
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3. Special values of o

Whittaker-Watson proof of the Theorem (in the shape : given Gq
and f, there exists a section § enjoying Properties (i) -(iv)), via

3 . Special values of o-functions

p(2) = —=¢'(2), div(p(z) — p(v)) = (q) + (—q) — 2(0).
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3. Special values of o

Uniformizing G,

On Eo/Q?%, identified with £y, fix a dfk w = %, with period lattice
Q = Zwy ® Zw,, and choose a determination v = loge(q) = foq w.

By Weil-Rosenlicht-Barsotti, G,——E admits a rational section

p: E --s Gg, with (p) = (—q) — (0) (identified with g, up to sign).
The 2-cocycle which describes the group law on G, x E is a rat'l
o(z+2'+v)o(z)o (2 )o(v)
o(z+z')o(z+v)o(z/+v) *

So, the exponential morphism expg, on GJ" is represented by

. t f,(z) et
L/eGq9<z>.—>< o(2) >eGq
where f,(z) = Z0rtEhe )z = @ — (((v + 2) = ((2) — ((v))dz
= 19@=0) g, expg(&q), for the standard logarithmic form &g

2 p(z)—p(v)
on E with residue divisor —1.(0) + 1.(—q).

function on E x E, expressed by
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3. Special values of o

Ga" ~ C?/Ng, where Mg = Zwo & Zwy & Zwy with

(5 () e (4).

where k,(w;) = ((v)w; —njv, (i = 1,2) are the basic periods of &,.

Under this description, a section s € G/S above p € E(S), and its
logarithm logg(s) above loge(p) = u, are given by

() = e
where ds := s — p(p) € C(S)* depends only on s (and on the
choice of the section p), s = logg,,(ds), and

ox(u+v) )

ox(v)oa(u)”

is a “Green function" for the divisor A — E x0—0x E on Ex E.-.
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3. Special values of o

CM relations

Assume now that Ey has CM by O. Then Hlr(Eo/Q) splits into

two eigenspaces for O, generated by and by (x — sz)cjj( where

s> = lim._o ZOinQ & |w|e c Q.
In particular, j(w) 1= n(w) — sw,w € Q, satisfies

vy € 0,ij(yw) = 7 ij(w).

Set | 6(z) = o(z)e 227 |, 6(z +w) = €(w)8(2)e")EH), 50 {(2)
= ((z) — s2z). Then, for any v € O, with N(y) =7 :
0(vz) 2
(0(2)N('Y)) =7 eEEE]Ie#O(@(Z) —p(e)).

NB : the RHS is a square as soon as E[vy] N E[2] = {0} or E[2].
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3. Special values of o

The Ribet section, analytically

Reverting the roles of p and g, assume that g = ap, where

a= 03— forsome 3 € O\ Z. Then, (2,a) and (2, + 1) are
either (2) or (1). Furthermore, N(a +1) — N(a) =1 = a+a = 0.
So, choosing as we may v = aw :

I R P (GRS
(P) = S vyo(w) 6(cw)(u)
lies is C(p(u), p'(u)), hence in C(S)*, and defines a section
55(p) = (5(p). p) € Gq(S).

S

Proposition : for G = Ggq, the section 5 = 35(p) € G(S) satisfies
i) 7(3) = p where g = (5 — B)(p); N
iv) if p(\) € E[n], then | n.3(\) = en(ﬂpA,pA)J. So, S&5 = SEP.
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3. Special values of o

Proof of (iv)

[NB: set p" = Np, N = a@. Then, s’ := —Ns € G4(S) projects to
p' = (B — B)q and still satisfies S&° = SEP infinite. So, by the
MM charact'n of Ribet sections, s’ = s3(q) up to a root of unity.]

Proof : /og(Gl)(E) = —g(u,v) 4 ¢{(v)u+ log(8) = ¢(v)u — syuv, so
for pe E[n], u=tw,v=1aw (and a = B - B),

/ogél)(§) — %/ﬂv(w) = %n(w)aw — n—1252aw2 = n%aﬁ(w)w.
Legendre = 27/ = fjow; — Thwe = (T — 7)fhw1 = afj(w)w € 27iZ,
so 3w € Mg such that logg(3) — 1w € 5 Zwg, and § € Gg[n?].
More precisely (at least up to a sign),

en(8p, p) = exp(n(n(62)% —n(£)5%)) = exp(3(8 — B)ij(w)w), so
p € E[n] = n.35(p) = en(Bp, p) € tin.
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4. RMM and Picard-Fuchs

4. Back to relative Manin-Mumford

No other obstruction.
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4. RMM and Picard-Fuchs

Theorem ([B-M-P-Z]) Let E/S be an elliptic scheme over a curve
S/Q?%%, and let G/S be an extension of E/S by Gpmys- Let further
s:S — G be a section of G/S, with image W = s(S).

(A) Assume that W N Gor (= Sg;s) is infinite. Then,
i) either s is a Ribet section;
ii) or s factors through a strict subgroup scheme of G/S.

(B) More precisely, W N Gio is infinite if and only if s is a Ribet
section, or a torsion section, or a non isoconstant section of a strict
subgroup scheme of G/S.

The proof uses Zannier's strategy, in the version developped by
Masser-Zannier for the case of abelian surfaces : lower bounds for
Galois orbits, Pila-Wilkie upper bounds, reducing the problem to
algebraic independence of functional logarithms. This brings us to
another of Frits's territories.
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4. RMM and Picard-Fuchs

Differential Galois theory

Lemma : With S/C, let G/S be an extension by G, of an elliptic
scheme E /S, parametrized by a section q of E/S, and let Gy be
the constant part of G. Let further s be a section of G/S, with
projection p =mos to E/S, and let F,q be the field of generalized
periods of {E, p, q}.

(A) Assume that logg(s) is algebraic over Fpq. Then, there exists
a constant section sy € Go(C) such that

i) either s — sy is a Ribet section;

ii) or s — sy factors through a strict subgroup scheme of G/S.

(B) More precisely, logg(s) is algebraic over Fpq if and only if there
exists a constant section sy € Go(C) such that s — sy is a Ribet
section, or a torsion section, or factors through a strict subgroup
scheme of G/S projecting onto E/S.
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4. RMM and Picard-Fuchs

Ls Ls = Fpq(loga(s)) = Fpq(ts — g(u, v))
1
Fpq Foq = Fp.Fq
/ AN
Fq Fp Fq:FG:F(V7C(V)) Fp:F(U,g(U):
AN /!
F F = Fe = K(wi,w2,m1,72)
1
K K =C(S)
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4. RMM and Picard-Fuchs

1 %(7) () qucgﬁa(é ;({;:;;3): é; ~
PG.s(7) = 8 pEév) Epg’Y) e Galy(FyF) = C2 =
pE : Galp(F/K) — SL>(C)

Then, 7s = 0 < Jsp € Go(C), s — s is Ribet or factors.

As in [J-R], the proof of = uses representation theory. Conversely,
the formulae for § = 99(((5:;;()5)) € C(p(u), ¢'(v)) and for logs(3)
prove < both in the present differential context and in the
Kummer theoretical one of [J-R].
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5. Special subvarieties and Pink's conjecture

5. Pink’s conjecture on mixed Shimura varieties
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5. Special subvarieties and Pink's conjecture

Ribet curves are special

André-Oort : let X be a Shimura variety, let Xs, be its set of
special points, and let W be an irreducible closed subvariety of X.
Assume that W N Xsp is Zariski dense in W. Then, W is a special
subvariety (~ a component of a Hecke transform of a proper
Shimura subvariety of X).

Pink’s conjecture in “amplitude 0" : X ~~ a mixed Shimura variety.
Example 1 (Y. André) : X = E = universal elliptic curve over a
modular curve Y;

Example 2 : X = P = the Poincaré bi-extension of E xy E. Over
a CM point yg ~ Eo, the special subvariety Py := P, can be
viewed as the “universal" extension Gg of (EO)E'O by G,, over its

parameter space Eg (ie. S= Eo,q=gqiy: Eo — (EO)EO).
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5. Special subvarieties and Pink's conjecture

In this context, the counterexample to RMM turns into a

Pro-example : given f € O, let W = s¢(q)(Eo) be the image of
the Ribet section in Go = Py. Then, W passes through a
Zariski-dense set of special points of the mixed Shimura variety Pg
- and is indeed a special curve of Py.

In higher dimension, see [B-E].
Back to g = 1, we have more generally :

Theorem : Let W be an irred. closed curve in P, such that
W NPy is infinite. Then, W is a special curve of P.

Proof : André’s thm for £/Y and [B-M-P-Z], using Po sp C Go,tor-

D. Bertrand (IMJ) Special values of o-functions.



5. Special subvarieties and Pink's conjecture

Pink’s general conjecture

For X a mixed Shimura variety, set

>d
X[ I = UchodimY>d,Y special -

Then : W C X, dimW = d and W N X>9 Zariski-dense in
W = W lies in a strict special subvariety of X ?

e some results for W a curve in X =P (because Po sp C Go,tor !);
e Pila-Tsimerman, Klingler-Ullmo-Yafaev : for a pure X, unifor-
mized by 7 : X — X, the weakly special subvarieties in W are the
images of the maximal algebraic subvarieties in 7=*(W).

e ditto for C3 x § — P (in progress), cf. logg(sa(p)), and the role
of the constant part Gy in the Lemma.
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5. Special subvarieties and Pink's conjecture

Et pour finir :
Joyeux anniversaire,

Frits !
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