Special values of σ-functions.

D. Bertrand (IMJ)

Special numbers and special functions
Frits Beukers 60, Utrecht, July 10-12, 2013

0. References

[J-R] O. Jacquinot, K. Ribet: Deficient points on extensions of abelian varieties by $\mathbb{G}_{m} ;$ J. Number Th., 25, 1987, 133-151.
[B] : Special points and Poincaré biextensions (with an Appendix by B. Edixhoven); ArXiv 1104.5178v1
[B-M-P-Z] D. B., D. Masser, A. Pillay, U. Zannier : Relative Manin-Mumford for semi-abelian schemes; ArXiv 1307.1008v1 [B-E] D.B, B. Edixhoven: Pink's conjecture, Poincaré biextensions and generalised Jacobians; in preparation.
2. Ribet sections

1. Relative Manin-Mumford

Manin-Mumford

F. Beukers-D. Zagier (AA, 1997) : a, b algebraic, $a b \neq 0$. Consider three algebraic solutions $(x, y), x y \neq 0$, to $(W): a x+b y=1$. Then, the sum of their logarithmic height is ≥ 0.09. "So", at most 2 solutions with $(x, y) \in G_{t o r}=\left(\mu_{\infty}\right)^{2}$, where $G=\mathbb{G}_{m}^{2}$.

MM : (Raynaud-Hindry) G_{0} semi-abelian variety over \mathbb{C}, W_{0} closed irred. subvariety of dim. $d<\operatorname{dim} G_{0}$, with $W_{0} \cap G_{0, \text { tor }}$ Zariski-dense in W_{0}. Then, W_{0} is a torsion translate of a strict alg. subgp H_{0}.
Equivalently : S / \mathbb{C} irred. alg. var., $G=G_{0} \times S$ constant group scheme over $S, s: S \rightarrow G$ a section of G / S.

$$
G_{\text {tor }}=\cup_{\lambda \in S(\mathbb{C})}\left(G_{\lambda}\right)_{\text {tor }}
$$

Assume that $S_{\text {tor }}^{G, s}:=\left\{\lambda \in S(\mathbb{C}), s(\lambda) \in G_{\text {tor }}\right\}$ is Z-dense in S and that $\operatorname{dim}(S)<\operatorname{dim}(G / S)$. Then, s factors through a strict subgroup scheme H of G.

Relative Manin-Mumford

RMM : S/C irred. alg. var., G/S semi-abelian scheme, not necessarily constant, s a section of G / S.

$$
G_{\text {tor }}=\cup_{\lambda \in S(\mathbb{C})}\left(G_{\lambda}\right)_{\text {tor }} .
$$

Assume that $S_{\text {tor }}^{G, s}:=\left\{\lambda \in S(\mathbb{C}), s(\lambda) \in G_{\text {tor }}\right\}$ is Z-dense in S and that $\operatorname{dim}(S)<\operatorname{dim}(G / S)$. Does then s factor through a strict subgroup scheme H of G ?
Almost a consequence of Pink's general conjecture on mixed Shimura varieties, but not quite. In fact, restricting to a curve $S / \mathbb{Q}^{\text {alg }}$ and to the crucial case: $\operatorname{dim}(G / S)=2$

- Masser-Zannier: yes if G / S is an abelian scheme.
- [B], [B-E]: no if $G \in \operatorname{Ext} t_{S}\left(E, \mathbb{G}_{m}\right)$, not isoconstant, where $E=E_{0} \times S$ is a constant CM curve, and s is a Ribet section.
- [B-M-P-Z] : yes in all other cases.

Unlikely intersections

Bombieri-Masser-Zannier: infinitely many $(x, y) \in \mathbb{G}_{m}^{2}$, lying in $(W): x+y=1$ for which $\exists r, s \in \mathbb{Z}, x^{r} y^{s}=1$ (likely intersection). But finitely many if we ask for two independent relations (unlikely intersection). More generally (Zilber, BMZ, Pink) : for $G / S, W \subset G$, of dimension $d<\operatorname{dim}(G / S)$, set

$$
G^{[>d]}=\cup_{\lambda \in S(\mathbb{C})} H_{\lambda},\left\{H_{\lambda} \subset G_{\lambda}, \operatorname{codim}_{G_{\lambda}} H_{\lambda}>d\right\}
$$

Then: $W \cap G^{[>d]} Z$-dense in $W \Rightarrow W$ lies in a strict subgroup scheme of G / S ? In particular:
RMM for a curve $S:$ if $\operatorname{dim}(G / S) \geq 2$, and $s: S \rightarrow G$ is a section of G / S which does not factor through any strict (and flat) subgroup scheme of G / S, does its image $s(S):=W$ contain only finitely many points of $G_{\text {tor }}=G^{[>\operatorname{dim}(G / S)-1]} \subset G^{[>1]}$?

But

2. What is a Ribet section ?

Relative version of the "deficient points" of [J-R].

Poincaré biextension

Like M. Jourdain with prose, you may have already met Ribet sections when looking at Néron-Tate pairing $<p, q>_{L}$ for $p, q \in E\left(\mathbb{Q}^{\text {alg }}\right), \alpha \in \operatorname{End}(E)=\mathcal{O}$ totally imaginary and $p=\alpha q$. $<\alpha x, y>_{L}=<x, \bar{\alpha} y>_{L}=-<x, \alpha y>_{L}$, so $\left\langle\alpha q, q>_{L}=0\right.$.
This reflects a property of the Poincaré bundle \mathcal{P} on $E \times \hat{E}$. For $q^{\prime}=\phi_{L}(q) \in \hat{E},-2<p, q>_{L}=\hat{h}_{\mathcal{P}}\left(\left(p, q^{\prime}\right)\right)$. On the graph $B \simeq \hat{E}$ of $f=\alpha \circ \phi_{L}^{-1}: \hat{E} \rightarrow E$ (with $\hat{f}=-f \in \operatorname{End}(\hat{E}, E)$), the pull-back $\left(f, i d_{\hat{E}}\right)^{*} \mathcal{P} \simeq \mathcal{P}_{\mid B}$ satisfies : $\hat{h}_{\mathcal{P}_{\mid B}}\left(\left(f\left(q^{\prime}\right), q^{\prime}\right)\right) \equiv 0$, so $\mathcal{P}_{\mid B} \equiv 0$ (in fact, order 1 or 2 in $\left.\operatorname{Pic}_{0}(B)\right)$. So, $2 \mathcal{P}_{\mid B}$ has a canonical section $s: B \rightarrow \mathcal{P}_{\mid B} \rightsquigarrow$ a point $s_{f}\left(q^{\prime}\right) \in \mathcal{P}$ above $\left(2 f\left(q^{\prime}\right), q^{\prime}\right) \in E \times \hat{E}$. Now, $q^{\prime} \in \hat{E} \simeq \operatorname{Pic}(E)$ defines $G:=G_{q^{\prime}}=\mathcal{P}^{*} \mid E \times q^{\prime} \in \operatorname{Ext}\left(E, \mathbb{G}_{m}\right)$: a semi-abelian surface with a distinguished point $s_{f}\left(q^{\prime}\right)$ above the point $p=2 f\left(q^{\prime}\right) \in E: s_{f}\left(q^{\prime}\right)$ is the Ribet point of $G_{q^{\prime}}$.

More generally (A. Chambert-Loir, $[\mathrm{B}-\mathrm{E}]): S / \mathbb{Q}^{\text {alg }}$ a smooth irred. alg. var.; A / S an abelian scheme; $\mathcal{P}=\mathcal{P}^{A}$ the Poincaré biextension over $A \times \hat{A}$, with its rigifications above $e_{S} \times \hat{A}$ and above $A \times \hat{e}_{S}$, and its two families of group laws $+_{1},+_{2}$. There are canonical isomorphisms of \mathbb{G}_{m}-torsors (over any base S^{\prime} / S):

$$
\begin{aligned}
& \forall y \in \hat{A}, z \in \hat{\hat{A}} \simeq A, \mathcal{P}^{\hat{A}}(y, z) \simeq \mathcal{P}^{A}(z, y) \\
& \forall f: B \rightarrow C, y \in B, x \in \hat{C}, \mathcal{P}^{C}(f y, x) \simeq \mathcal{P}^{B}(y, \hat{f} x), \text { so } \\
& \forall f: \hat{A} \rightarrow A, y \in \hat{A}, x \in \hat{A}, \tau_{f, x, y}: \mathcal{P}(f y, x) \xrightarrow{\longrightarrow} \mathcal{P}(\hat{f} x, y) .
\end{aligned}
$$

Hence for $x=y=q \in \hat{A}$ (old q^{\prime}) and using the $+{ }_{1}$ law :

$$
\mathcal{P}((f-\hat{f}) q, q) \simeq \mathbb{G}_{m / S}
$$

yielding on $\mathcal{P}_{\mid A \times q}=G_{q} \in \operatorname{Ext}\left(A, \mathbb{G}_{m}\right)$ the Ribet section

$$
s_{f}(q) \in G_{q}(S) \text { above } p=(f-\hat{f})(q) \in A(S)
$$

Ribet vs RMM

Theorem ([B-E]) : for $q \in \hat{A}(S), f \in \operatorname{End} d_{S}(\hat{A}, A)$, let $s:=s_{f}(q)$ be the Ribet section of $G=G_{q} / S \in \operatorname{Ext}_{S}\left(A, \mathbb{G}_{m}\right)$. Then:
i) $s_{f}(q)$ is additive in f, and depends only on $f-\hat{f} \in$ End antisym;
ii) $s_{f}(q)$ projects to $p:=(f-\hat{f})(q) \in A(S)$;
iii) if $q(\lambda) \in \hat{A}_{\lambda}[n]$, then $s(\lambda)=s_{f}(q(\lambda))$ is torsion, of order $\mid n^{2}$ in
$G_{\lambda}:=G_{q(\lambda)} ; s o, S_{\text {tor }}^{G, s}=S_{\text {tor }}^{\hat{A}, q} \sim S_{\text {tor }}^{A, p}$. More precisely,
iv) assume $q(\lambda)=q_{\lambda} \in \hat{A}_{\lambda}[n]$; then, $n . s(\lambda)=e_{n}\left(f\left(q_{\lambda}\right), q_{\lambda}\right) \in \mu_{n}$.

Now, for $f-\hat{f}$ an isogeny, suppose that q factors through no strict sbgp scheme and $S_{\text {tor }}^{\hat{A}, q}$ is Z-dense in S (exists if $\operatorname{dim} S=\operatorname{dim} A / S$). Then, ditto for s. So, $s_{f}(q)$ contradicts $R M M$.

Characterizing Ribet sections via MM $(g=1)$

From now on, suppose that $A=E$ is an elliptic curve. So $E=$ $E_{0} \times S$, where $E_{0} / \mathbb{Q}^{\text {alg }}$ has CM by \mathcal{O}. Also, S must be a curve, and we assume wlog that $S=\hat{E}_{0}$, so " $\lambda=q$ ". Finally, we can suppose that $\hat{f} \neq f$, i.e. $h=f-\hat{f}$ is an isogeny.
Elementary proof of the theorem soon to come.
But first, an easy consequence of (iii). On $G=G_{q} \xrightarrow{\pi} E$, the Ribet section $s=s_{f}(q)$ lifts all torsion values of $p:=\pi(s)=h(q)$ to torsion points of G, i.e.: $S_{\text {tor }}^{G, s}=S_{\text {tor }}^{E, p}$ (which is infinite). Let now $s^{\prime} \in G_{q}(S)$ such that $\pi\left(s^{\prime}\right)=p$. Assume that $S_{\text {tor }}^{G, s^{\prime}}$ is infinite. Then, $s^{\prime}-s_{f}(q)=\delta \in \mathbb{G}_{m}(S)$ and $S_{\text {tor }}^{\mathbb{G}_{m} \times E_{0},(\delta, p)}$ is infinite. By Hindry's thm, δ must torsion, so $s^{\prime}=s_{f}(q)$ up to a root of unity.

Whittaker-Watson proof of the Theorem (in the shape : given G_{q} and f, there exists a section \tilde{s} enjoying Properties (i) -(iv)), via

3. Special values of σ-functions

$$
\begin{gathered}
\sigma(z)=z \prod_{\omega \in \Omega, \omega \neq 0}\left(1-\frac{z}{\omega}\right) e^{\frac{z}{\omega}+\frac{1}{2} \frac{z}{\omega^{2}}} \\
\zeta=\frac{\sigma^{\prime}}{\sigma}, \zeta(z+\omega)=\zeta(z)+\eta(\omega) \\
\sigma(z+\omega)=\epsilon(\omega) \sigma(z) e^{\eta(\omega)\left(z+\frac{\omega}{2}\right)} . \\
\wp(z)=-\zeta^{\prime}(z), \operatorname{div}(\wp(z)-\wp(v))=(q)+(-q)-2(0) .
\end{gathered}
$$

Uniformizing G_{q}

On $E_{0} / \mathbb{Q}^{a l g}$, identified with \hat{E}_{0}, fix a dfk $\underline{\omega}=\frac{d x}{y}$, with period lattice $\Omega=\mathbb{Z} \omega_{1} \oplus \mathbb{Z} \omega_{2}$, and choose a determination $v=\log _{E}(q)=\int_{0}^{q} \underline{\omega}$.
By Weil-Rosenlicht-Barsotti, $G_{q} \xrightarrow{\pi} E$ admits a rational section $\rho: E \rightarrow G_{q}$, with $(\rho)=(-q)-(0)$ (identified with q, up to sign). The 2-cocycle which describes the group law on $\mathbb{G}_{m} \times E$ is a rat'l function on $E \times E$, expressed by $\frac{\sigma\left(z+z^{\prime}+v\right) \sigma(z) \sigma\left(z^{\prime}\right) \sigma(v)}{\sigma\left(z+z^{\prime}\right) \sigma(z+v) \sigma\left(z^{\prime}+v\right)}$.
So, the exponential morphism $\exp _{G_{q}}$ on $G_{q}^{a n}$ is represented by

$$
\operatorname{LieG}_{q} \ni\binom{t}{z} \mapsto\binom{f_{v}(z) e^{t}}{\wp(z)} \in G_{q}
$$

where $f_{v}(z)=\frac{\sigma(v+z)}{\sigma(v) \sigma(z)} e^{-\zeta(v) z} \Rightarrow \frac{d f_{v}}{f_{v}}=(\zeta(v+z)-\zeta(z)-\zeta(v)) d z$
$=\frac{1}{2} \frac{\wp^{\prime}(z)-\wp^{\prime}(v)}{\wp(z)-\wp(v)} d z=\exp _{E}^{*}\left(\xi_{q}\right)$, for the standard logarithmic form ξ_{q} on E with residue divisor $-1 .(0)+1 .(-q)$.
$G_{q}^{a n} \simeq \mathbb{C}^{2} / \Pi_{G}$, where $\Pi_{G}=\mathbb{Z} \varpi_{0} \oplus \mathbb{Z} \varpi_{1} \oplus \mathbb{Z} \varpi_{2}$ with

$$
\varpi_{0}=\binom{2 \pi i}{0}, \varpi_{1}=\binom{\kappa_{v}\left(\omega_{1}\right)}{\omega_{1}}, \varpi_{2}=\binom{\kappa_{v}\left(\omega_{2}\right)}{\omega_{2}}
$$

where $\kappa_{v}\left(\omega_{i}\right)=\zeta(v) \omega_{i}-\eta_{i} v,(i=1,2)$ are the basic periods of ξ_{q}. Under this description, a section $s \in G / S$ above $p \in E(S)$, and its logarithm $\log _{G}(s)$ above $\log _{E}(p)=u$, are given by

$$
s=\binom{\delta_{s}}{p=\pi(s)}, \log _{G}(s)=\binom{-g(u, v)+\zeta(v) u+\ell_{s}}{u}
$$

where $\delta_{s}:=s-\rho(p) \in \mathbb{C}(S)^{*}$ depends only on s (and on the choice of the section $\rho), \ell_{s}=\log _{\mathbb{G}_{m}}\left(\delta_{s}\right)$, and

$$
g_{\lambda}(u, v)=\log \left(\frac{\sigma_{\lambda}(u+v)}{\sigma_{\lambda}(v) \sigma_{\lambda}(u)}\right)
$$

is a "Green function" for the divisor $\Delta-E \times 0-0 \times E$ on $E \times E$.를. .

CM relations

Assume now that E_{0} has CM by \mathcal{O}. Then, $H_{d R}^{1}\left(E_{0} / \mathbb{Q}^{\text {alg }}\right)$ splits into two eigenspaces for \mathcal{O}, generated by $\frac{d x}{y}$ and by $\left(x-s_{2}\right) \frac{d x}{y}$, where

$$
s_{2}=\lim _{\varepsilon \rightarrow 0} \sum_{0 \neq \omega \in \Omega} \frac{1}{\omega^{2}} \frac{1}{|\omega|^{\varepsilon}} \in \mathbb{Q}^{\text {alg }} .
$$

In particular, $\tilde{\eta}(\omega):=\eta(\omega)-s_{2} \omega, \omega \in \Omega$, satisfies

$$
\forall \gamma \in \mathcal{O}, \tilde{\eta}(\gamma \omega)=\bar{\gamma} \tilde{\eta}(\omega)
$$

Set $\theta(z)=\sigma(z) e^{-\frac{1}{2} s_{2} z^{2}}, \theta(z+\omega)=\epsilon(\omega) \theta(z) e^{\tilde{\eta}(\omega)\left(z+\frac{\omega}{2}\right)}$, so $\tilde{\zeta}(z)$
$\left.=\frac{\theta^{\prime}}{\theta}=\zeta(z)-s_{2} z\right)$. Then, for any $\gamma \in \mathcal{O}$, with $N(\gamma)=\gamma \bar{\gamma}$:

$$
\left(\frac{\theta(\gamma z)}{\theta(z)^{N(\gamma)}}\right)^{2}=\gamma^{2} \prod_{e \in E[\gamma], e \neq 0}(\wp(z)-\wp(e))
$$

NB : the RHS is a square as soon as $E[\gamma] \cap E[2]=\{0\}$ or $E[2]$.

The Ribet section, analytically

Reverting the roles of p and q, assume that $q=\alpha p$, where $\alpha=\beta-\bar{\beta}$ for some $\beta \in \mathcal{O} \backslash \mathbb{Z}$. Then, $(2, \alpha)$ and $(2, \alpha+1)$ are either (2) or (1). Furthermore, $N(\alpha+1)-N(\alpha)-1=\alpha+\bar{\alpha}=0$. So, choosing as we may $v=\alpha u$:

$$
\tilde{\delta}(p):=\frac{\sigma(u+v)}{\sigma(v) \sigma(u)} e^{-s_{2} u v}=\frac{\theta((\alpha+1) u)}{\theta(\alpha u) \theta(u)}
$$

lies is $\mathbb{C}\left(\wp(u), \wp^{\prime}(u)\right)$, hence in $\mathbb{C}(S)^{*}$, and defines a section

$$
\tilde{s}_{\beta}(p)=(\tilde{\delta}(p), p) \in G_{q}(S)
$$

Proposition : for $G=G_{q}$, the section $\tilde{s}=\tilde{s}_{\beta}(p) \in G(S)$ satisfies
ii) $\pi(\tilde{s})=p$ where $q=(\beta-\bar{\beta})(p)$;
iv) if $p(\lambda) \in E[n]$, then $n \cdot \tilde{s}(\lambda)=e_{n}\left(\beta p_{\lambda}, p_{\lambda}\right)$. So, $S_{\text {tor }}^{G, \tilde{s}}=S_{\text {tor }}^{E, p}$.

Proof of (iv)

[NB: set $p^{\prime}=N p, N=\alpha \bar{\alpha}$. Then, $s^{\prime}:=-N s \in G_{q}(S)$ projects to $p^{\prime}=(\beta-\bar{\beta}) q$ and still satisfies $S_{\text {tor }}^{G, s^{\prime}}=S_{\text {tor }}^{E, p}$ infinite. So, by the MM charact'n of Ribet sections, $s^{\prime}=s_{\beta}(q)$ up to a root of unity.]
Proof: $\log _{G}^{(1)}(\tilde{s})=-g(u, v)+\zeta(v) u+\log (\tilde{\delta})=\zeta(v) u-s_{2} u v$, so for $p \in E[n], u=\frac{1}{n} \omega, v=\frac{1}{n} \alpha \omega$ (and $\alpha=\beta-\bar{\beta}$),

$$
\log _{G}^{(1)}(\tilde{s})-\frac{1}{n} \kappa_{v}(\omega)=\frac{1}{n^{2}} \eta(\omega) \alpha \omega-\frac{1}{n^{2}} s_{2} \alpha \omega^{2}=\frac{1}{n^{2}} \alpha \tilde{\eta}(\omega) \omega .
$$

Legendre $\Rightarrow 2 \pi i=\tilde{\eta}_{2} \omega_{1}-\tilde{\eta}_{1} \omega_{2}=(\bar{\tau}-\tau) \tilde{\eta}_{1} \omega_{1} \Rightarrow \alpha \tilde{\eta}(\omega) \omega \in 2 \pi i \mathbb{Z}$, so $\exists \varpi \in \Pi_{G}$ such that $\log _{G}(\tilde{s})-\frac{1}{n} \varpi \in \frac{1}{n^{2}} \mathbb{Z} \varpi_{0}$, and $\tilde{s} \in G_{q}\left[n^{2}\right]$.
More precisely (at least up to a sign),

$$
\begin{gathered}
e_{n}(\beta p, p)=\exp \left(n\left(\eta\left(\beta \frac{\omega}{n}\right) \frac{\omega}{n}-\eta\left(\frac{\omega}{n}\right) \beta \frac{\omega}{n}\right)\right)=\exp \left(\frac{1}{n}(\bar{\beta}-\beta) \tilde{\eta}(\omega) \omega\right), \text { so } \\
p \in E[n] \Rightarrow n . \tilde{s}_{\beta}(p)=e_{n}(\beta p, p) \in \mu_{n} .
\end{gathered}
$$

4. Back to relative Manin-Mumford

No other obstruction.

Theorem ([B-M-P-Z]) Let E / S be an elliptic scheme over a curve $S / \mathbb{Q}^{\text {alg }}$, and let G / S be an extension of E / S by $\mathbb{G}_{m / s}$. Let further $s: S \rightarrow G$ be a section of G / S, with image $W=s(S)$.
(A) Assume that $W \cap G_{\text {tor }}\left(\simeq S_{\text {tor }}^{G, s}\right)$ is infinite. Then,
i) either s is a Ribet section;
ii) or s factors through a strict subgroup scheme of G / S.
(B) More precisely, $W \cap G_{\text {tor }}$ is infinite if and only if s is a Ribet section, or a torsion section, or a non isoconstant section of a strict subgroup scheme of G / S.

The proof uses Zannier's strategy, in the version developped by Masser-Zannier for the case of abelian surfaces: lower bounds for Galois orbits, Pila-Wilkie upper bounds, reducing the problem to algebraic independence of functional logarithms. This brings us to another of Frits's territories.

Differential Galois theory

Lemma : With S / \mathbb{C}, let G / S be an extension by \mathbb{G}_{m} of an elliptic scheme E / S, parametrized by a section q of \hat{E} / S, and let G_{0} be the constant part of G. Let further s be a section of G / S, with projection $p=\pi \circ s$ to E / S, and let $F_{p q}$ be the field of generalized periods of $\{E, p, q\}$.
(A) Assume that $\log _{G}(s)$ is algebraic over $F_{p q}$. Then, there exists a constant section $s_{0} \in G_{0}(\mathbb{C})$ such that
i) either $s-s_{0}$ is a Ribet section;
ii) or $s-s_{0}$ factors through a strict subgroup scheme of G / S.
(B) More precisely, $\log _{G}(s)$ is algebraic over $F_{p q}$ if and only if there exists a constant section $s_{0} \in G_{0}(\mathbb{C})$ such that $s-s_{0}$ is a Ribet section, or a torsion section, or factors through a strict subgroup scheme of G / S projecting onto E / S.

$$
\begin{aligned}
& L_{s} \\
& \uparrow \\
& F_{p q} \\
& F_{q} \\
& L_{s}=F_{p q}\left(\log _{G}(s)\right)=F_{p q}\left(\ell_{s}-g(u, v)\right) \\
& F_{p q}=F_{p} \cdot F_{q} \\
& F_{q}=F_{G}=F(v, \zeta(v)) \quad F_{p}=F(u, \zeta(u)) \\
& F=F_{E}=K\left(\omega_{1}, \omega_{2}, \eta_{1}, \eta_{2}\right) \\
& K=\mathbb{C}(S)
\end{aligned}
$$

$$
\rho_{G, s}(\gamma)=\left(\begin{array}{ccc}
1 & { }^{t} \xi_{q}(\gamma) & \tau_{s}(\gamma) \\
0 & \rho_{E}(\gamma) & \xi_{p}(\gamma) \\
0 & 0 & 1
\end{array}\right), \begin{aligned}
& \tau_{s}: \operatorname{Gal}_{\partial}\left(L_{s} / F_{p q}\right) \hookrightarrow \mathbb{C} \\
& { }^{t} \xi_{q}: G a l_{\partial}\left(F_{q} / F\right) \hookrightarrow \mathbb{C}^{2} \simeq \hat{\mathcal{V}} \\
& \xi_{p}: G a I_{\partial}\left(F_{p} / F\right) \hookrightarrow \mathbb{C}^{2} \simeq \mathcal{V} \\
& \rho_{E}: G a l_{\partial}(F / K) \hookrightarrow S L_{2}(\mathbb{C})
\end{aligned}
$$

Then, $\tau_{s}=0 \Leftrightarrow \exists s_{0} \in G_{0}(\mathbb{C}), s-s_{0}$ is Ribet or factors.
As in $[J-R]$, the proof of \Rightarrow uses representation theory. Conversely, the formulae for $\tilde{\delta}=\frac{\theta((\alpha+1) u)}{\theta(\alpha u) \theta(u)} \in \mathbb{C}\left(\wp(u), \wp^{\prime}(u)\right)$ and for $\log _{G}(\tilde{s})$ prove \Leftarrow both in the present differential context and in the Kummer theoretical one of [J-R].

5. Pink's conjecture on mixed Shimura varieties

5. Special subvarieties and Pink's conjecture

Ribet curves are special

André-Oort : let X be a Shimura variety, let $X_{s p}$ be its set of special points, and let W be an irreducible closed subvariety of X. Assume that $W \cap X_{s p}$ is Zariski dense in W. Then, W is a special subvariety (\sim a component of a Hecke transform of a proper Shimura subvariety of X).

Pink's conjecture in "amplitude 0" : $X \rightsquigarrow$ a mixed Shimura variety.
Example 1 (Y. André) : $X=E=$ universal elliptic curve over a modular curve Y;
Example 2: $X=\mathcal{P}=$ the Poincaré bi-extension of $E \times_{Y} \hat{E}$. Over a CM point $y_{0} \sim E_{0}$, the special subvariety $\mathcal{P}_{0}:=\mathcal{P}_{\mid y_{0}}$ can be viewed as the "universal" extension \mathcal{G}_{0} of $\left(E_{0}\right)_{\hat{E}_{0}}$ by \mathbb{G}_{m}, over its parameter space \hat{E}_{0} (i.e. $\left.S=\hat{E}_{0}, q=q_{i d}: \hat{E}_{0} \rightarrow\left(\hat{E}_{0}\right)_{\hat{E}_{0}}\right)$.

In this context, the counterexample to RMM turns into a
Pro-example : given $f \in \mathcal{O}$, let $W=s_{f}(q)\left(\hat{E}_{0}\right)$ be the image of the Ribet section in $\mathcal{G}_{0}=\mathcal{P}_{0}$. Then, W passes through a
Zariski-dense set of special points of the mixed Shimura variety \mathcal{P}_{0}

- and is indeed a special curve of \mathcal{P}_{0}.

In higher dimension, see [B-E].
Back to $g=1$, we have more generally:
Theorem : Let W be an irred. closed curve in \mathcal{P}, such that $W \cap \mathcal{P}_{s p}$ is infinite. Then, W is a special curve of \mathcal{P}.
Proof: André's thm for E / Y and $[B-M-P-Z]$, using $\mathcal{P}_{0, s p} \subset \mathcal{G}_{0, \text { tor }}$.

Pink's general conjecture

For X a mixed Shimura variety, set

$$
X^{[>d]}=\cup Y, \text { codim } Y>d, Y \text { special }
$$

Then : $W \subset X, \operatorname{dim} W=d$ and $W \cap X[>d]$ Zariski-dense in $W \Rightarrow W$ lies in a strict special subvariety of X ?

- some results for W a curve in $X=\mathcal{P}$ (because $\mathcal{P}_{0, s p} \subsetneq \mathcal{G}_{0, \text { tor }}$!);
- Pila-Tsimerman, Klingler-Ullmo-Yafaev: for a pure X, uniformized by $\pi: \mathfrak{X} \rightarrow X$, the weakly special subvarieties in W are the images of the maximal algebraic subvarieties in $\pi^{-1}(W)$.
- ditto for $\mathbb{C}^{3} \times \mathfrak{H} \rightarrow \mathcal{P}$ (in progress), cf. $\log _{G}\left(s_{\alpha}(p)\right.$), and the role of the constant part G_{0} in the Lemma.

Et pour finir :
 Joyeux anniversaire,

Frits !

