Special values of σ -functions.

D. Bertrand (IMJ)

Special numbers and special functions

Frits Beukers 60, Utrecht, July 10-12, 2013

0. References

[J-R] O. Jacquinot, K. Ribet : Deficient points on extensions of abelian varieties by \mathbb{G}_m ; J. Number Th., 25, 1987, 133-151.

[B] : *Special points and Poincaré biextensions* (with an *Appendix* by B. Edixhoven); ArXiv 1104.5178v1

[B-M-P-Z] D. B., D. Masser, A. Pillay, U. Zannier : *Relative Manin-Mumford for semi-abelian schemes*; ArXiv 1307.1008v1

[B-E] D.B, B. Edixhoven: *Pink's conjecture, Poincaré biextensions and generalised Jacobians*; in preparation.

・ロト ・ 同ト ・ ヨト ・ ヨト

1. Relative Manin-Mumford

D. Bertrand (IMJ) Special values of σ -functions.

イロト イポト イヨト イヨト

æ

Manin-Mumford

F. Beukers-D. Zagier (AA, 1997) : a, b algebraic, $ab \neq 0$. Consider three algebraic solutions $(x, y), xy \neq 0$, to (W) : ax + by = 1. Then, the sum of their logarithmic height is ≥ 0.09 . "So", at most 2 solutions with $(x, y) \in G_{tor} = (\mu_{\infty})^2$, where $G = \mathbb{G}_m^2$.

MM : (Raynaud-Hindry) G_0 semi-abelian variety over \mathbb{C} , W_0 closed irred. subvariety of dim. $d < \dim G_0$, with $W_0 \cap G_{0,tor}$ Zariski-dense in W_0 . Then, W_0 is a torsion translate of a strict alg. subgp H_0 . Equivalently : S/\mathbb{C} irred. alg. var., $G = G_0 \times S$ constant group scheme over S, $s : S \to G$ a section of G/S.

$$G_{tor} = \cup_{\lambda \in S(\mathbb{C})} (G_{\lambda})_{tor}.$$

Assume that $S_{tor}^{G,s} := \{\lambda \in S(\mathbb{C}), s(\lambda) \in G_{tor}\}$ is Z-dense in S and that dim(S) < dim(G/S). Then, s factors through a strict subgroup scheme H of G.

Relative Manin-Mumford

RMM : S/\mathbb{C} irred. alg. var., G/S semi-abelian scheme, not necessarily constant, s a section of G/S.

$$G_{tor} = \cup_{\lambda \in S(\mathbb{C})} (G_{\lambda})_{tor}.$$

Assume that $S_{tor}^{G,s} := \{\lambda \in S(\mathbb{C}), s(\lambda) \in G_{tor}\}$ is Z-dense in S and that dim(S) < dim(G/S). Does then s factor through a strict subgroup scheme H of G ?

Almost a consequence of Pink's general conjecture on mixed Shimura varieties, but not quite. In fact, restricting to a *curve* S/\mathbb{Q}^{alg} and to the crucial case: dim(G/S) = 2

- Masser-Zannier : yes if G/S is an abelian scheme.
- [B], [B-E] : no if $G \in Ext_S(E, \mathbb{G}_m)$, not isoconstant, where
- $E = E_0 \times S$ is a constant CM curve, and *s* is a **Ribet section**.
- [B-M-P-Z] : yes in all other cases.

Unlikely intersections

Bombieri-Masser-Zannier : infinitely many $(x, y) \in \mathbb{G}_m^2$, lying in (W) : x + y = 1 for which $\exists r, s \in \mathbb{Z}, x^r y^s = 1$ (likely intersection). But finitely many if we ask for two independent relations (unlikely intersection). More generally (Zilber, BMZ, Pink) :

for G/S, $W \subset G$, of dimension d < dim(G/S), set

$$G^{[>d]} = \cup_{\lambda \in S(\mathbb{C})} H_{\lambda} ,_{\{H_{\lambda} \subset G_{\lambda}, codim_{G_{\lambda}}H_{\lambda} > d\}}$$

Then : $W \cap G^{[>d]}$ Z-dense in $W \Rightarrow W$ lies in a strict subgroup scheme of G/S ? In particular:

RMM for a curve S: if $dim(G/S) \ge 2$, and $s: S \to G$ is a section of G/S which does not factor through any strict (and flat) subgroup scheme of G/S, does its image s(S) := W contain only finitely many points of $G_{tor} = G^{[>dim(G/S)-1]} \subseteq G^{[>1]}$?

But

2. What is a Ribet section ?

Relative version of the "deficient points" of [J-R].

(日) (同) (三) (

Poincaré biextension

Like M. Jourdain with prose, you may have already met Ribet sections when looking at Néron-Tate pairing $\langle p, q \rangle_L$ for $p, q \in E(\mathbb{Q}^{alg}), \alpha \in End(E) = \mathcal{O}$ totally imaginary and $p = \alpha q$. $\langle \alpha x, y \rangle_L = \langle x, \overline{\alpha} y \rangle_L = -\langle x, \alpha y \rangle_L$, so $\boxed{\langle \alpha q, q \rangle_L = 0}$.

This reflects a property of the Poincaré bundle \mathcal{P} on $E \times \hat{E}$. For $q' = \phi_L(q) \in \hat{E}$, $-2 < p, q >_L = \hat{h}_{\mathcal{P}}((p, q'))$. On the graph $B \simeq \hat{E}$ of $f = \alpha \circ \phi_L^{-1} : \hat{E} \to E$ (with $\hat{f} = -f \in End(\hat{E}, E)$), the pull-back $(f, id_{\hat{E}})^* \mathcal{P} \simeq \mathcal{P}_{|B}$ satisfies : $\hat{h}_{\mathcal{P}_{|B}}((f(q'), q')) \equiv 0$, so $\mathcal{P}_{|B} \equiv 0$ (in fact, order 1 or 2 in $Pic_0(B)$). So, $2\mathcal{P}_{|B}$ has a canonical section $s : B \to \mathcal{P}_{|B} \rightsquigarrow$ a point $s_f(q') \in \mathcal{P}$ above $(2f(q'), q') \in E \times \hat{E}$. Now, $q' \in \hat{E} \simeq Pic_0(E)$ defines $G := G_{q'} = \mathcal{P}^*_{|E \times q'} \in Ext(E, \mathbb{G}_m)$: a semi-abelian surface with a distinguished point $s_f(q')$ above the point $p = 2f(q') \in E : s_f(q')$ is the Ribet point of $\mathcal{G}_{q'}$.

More generally (A. Chambert-Loir, [B-E]) : S/\mathbb{Q}^{alg} a smooth irred. alg. var.; A/S an abelian scheme; $\mathcal{P} = \mathcal{P}^A$ the Poincaré biextension over $A \times \hat{A}$, with its rigifications above $e_S \times \hat{A}$ and above $A \times \hat{e}_S$, and its two families of group laws $+_1$, $+_2$. There are canonical isomorphisms of \mathbb{G}_m -torsors (over any base S'/S):

$$\begin{array}{l} \forall y \in \hat{A}, z \in \hat{\hat{A}} \simeq A, \mathcal{P}^{\hat{A}}(y, z) \simeq \mathcal{P}^{A}(z, y) \\ \forall f : B \rightarrow C, y \in B, x \in \hat{C}, \mathcal{P}^{C}(fy, x) \simeq \mathcal{P}^{B}(y, \hat{f}x), \text{ so} \\ \forall f : \hat{A} \rightarrow A, y \in \hat{A}, x \in \hat{A}, \tau_{f, x, y} : \mathcal{P}(fy, x) \xrightarrow{\sim} \mathcal{P}(\hat{f}x, y). \end{array}$$

Hence for $x = y = q \in \hat{A}$ (old q') and using the $+_{1}$ law :

$$\mathcal{P}((f-\hat{f})q,q)\simeq \mathbb{G}_{m/S},$$

yielding on $\mathcal{P}_{|A imes q} = \mathit{G}_q \in \mathit{Ext}(A, \mathbb{G}_m)$ the Ribet section

$$s_f(q)\in G_q(S)$$
 above $p=(f-\hat{f})(q)\in A(S).$

Ribet vs RMM

Theorem ([B-E]) : for $q \in \hat{A}(S)$, $f \in End_{S}(\hat{A}, A)$, let $s := s_{f}(q)$ be the Ribet section of $G = G_{q}/S \in Ext_{S}(A, \mathbb{G}_{m})$. Then: i) $s_{f}(q)$ is additive in f, and depends only on $f - \hat{f} \in End^{antisym}$; ii) $s_{f}(q)$ projects to $p := (f - \hat{f})(q) \in A(S)$; iii) if $q(\lambda) \in \hat{A}_{\lambda}[n]$, then $s(\lambda) = s_{f}(q(\lambda))$ is torsion, of order $|n^{2}$ in $G_{\lambda} := G_{q(\lambda)}$; so, $S_{tor}^{G,s} = S_{tor}^{\hat{A},q} \sim S_{tor}^{A,p}$. More precisely, iv) assume $q(\lambda) = q_{\lambda} \in \hat{A}_{\lambda}[n]$; then, $\boxed{n.s(\lambda) = e_{n}(f(q_{\lambda}), q_{\lambda}) \in \mu_{n}}$.

Now, for $f - \hat{f}$ an isogeny, suppose that q factors through no strict sbgp scheme and $S_{tor}^{\hat{A},q}$ is Z-dense in S (exists if dimS = dimA/S). Then, ditto for s. So, $s_f(q)$ contradicts RMM.

・ロト ・ 一日 ・ ・ 日 ・

Characterizing Ribet sections via MM (g = 1)

From now on, suppose that A = E is an elliptic curve. So $E = E_0 \times S$, where E_0/\mathbb{Q}^{alg} has CM by \mathcal{O} . Also, S must be a curve, and we assume wlog that $S = \hat{E}_0$, so " $\lambda = q$ ". Finally, we can suppose that $\hat{f} \neq f$, i.e. $h = f - \hat{f}$ is an isogeny.

Elementary proof of the theorem soon to come.

But first, an easy consequence of (iii). On $G = G_q \xrightarrow{\pi} E$, the Ribet section $s = s_f(q)$ lifts all torsion values of $p := \pi(s) = h(q)$ to torsion points of G, i.e.: $S_{tor}^{G,s} = S_{tor}^{E,p}$ (which is infinite). Let now $s' \in G_q(S)$ such that $\pi(s') = p$. Assume that $S_{tor}^{G,s'}$ is infinite. Then, $s' - s_f(q) = \delta \in \mathbb{G}_m(S)$ and $S_{tor}^{\mathbb{G}_m \times E_0, (\delta, p)}$ is infinite. By Hindry's thm, δ must torsion, so $s' = s_f(q)$ up to a root of unity.

・ロト ・ 同ト ・ ヨト ・ ヨト

Whittaker-Watson proof of the Theorem (in the shape : given G_q and f, there exists a section \tilde{s} enjoying Properties (i) -(iv)), via

3 . Special values of σ -functions

$$\sigma(z) = z \prod_{\omega \in \Omega, \omega \neq 0} (1 - \frac{z}{\omega}) e^{\frac{z}{\omega} + \frac{1}{2} \frac{z}{\omega^2}}$$
$$\zeta = \frac{\sigma'}{\sigma}, \zeta(z + \omega) = \zeta(z) + \eta(\omega)$$
$$\sigma(z + \omega) = \epsilon(\omega)\sigma(z)e^{\eta(\omega)(z + \frac{\omega}{2})}.$$
$$\varphi(z) = -\zeta'(z), \operatorname{div}(\varphi(z) - \varphi(v)) = (q) + (-q) - 2(0).$$

Uniformizing G_q

On E_0/\mathbb{Q}^{alg} , identified with \hat{E}_0 , fix a dfk $\underline{\omega} = \frac{dx}{v}$, with period lattice $\Omega = \mathbb{Z}\omega_1 \oplus \mathbb{Z}\omega_2$, and choose a determination $v = \log_E(q) = \int_0^q \underline{\omega}$. By Weil-Rosenlicht–Barsotti, $G_{a} \xrightarrow{\pi} E$ admits a rational section $\rho: E \dashrightarrow G_{\alpha}$, with $(\rho) = (-q) - (0)$ (identified with q, up to sign). The 2-cocycle which describes the group law on $\mathbb{G}_m \times E$ is a rat'l function on $E \times E$, expressed by $\frac{\sigma(z+z'+v)\sigma(z)\sigma(z')\sigma(v)}{\sigma(z+z')\sigma(z+v)\sigma(z'+v)}$. So, the exponential morphism exp_{G_a} on G_a^{an} is represented by $LieG_q \ni \begin{pmatrix} t \\ z \end{pmatrix} \mapsto \begin{pmatrix} f_v(z) e^t \\ \varphi(z) \end{pmatrix} \in G_q$ where $f_v(z) = \frac{\sigma(v+z)}{\sigma(v)\sigma(z)} e^{-\zeta(v)z} \Rightarrow \frac{df_v}{f_v} = (\zeta(v+z) - \zeta(z) - \zeta(v))dz$ $=\frac{1}{2}rac{\wp'(z)-\wp'(v)}{\wp(z)-\wp(v)}dz=exp_E^*(\xi_q)$, for the standard logarithmic form ξ_q on *E* with residue divisor -1.(0) + 1.(-q).

$$G_q^{an}\simeq \mathbb{C}^2/\Pi_G$$
, where $\Pi_G=\mathbb{Z}\varpi_0\oplus\mathbb{Z}\varpi_1\oplus\mathbb{Z}\varpi_2$ with

$$\varpi_0 = \begin{pmatrix} 2\pi i \\ 0 \end{pmatrix}, \varpi_1 = \begin{pmatrix} \kappa_v(\omega_1) \\ \omega_1 \end{pmatrix}, \varpi_2 = \begin{pmatrix} \kappa_v(\omega_2) \\ \omega_2 \end{pmatrix},$$

where $\kappa_v(\omega_i) = \zeta(v)\omega_i - \eta_i v$, (i = 1, 2) are the basic periods of ξ_q . Under this description, a section $s \in G/S$ above $p \in E(S)$, and its logarithm $log_G(s)$ above $log_E(p) = u$, are given by

$$s = \begin{pmatrix} \delta_s \\ p = \pi(s) \end{pmatrix}, \ \log_G(s) = \begin{pmatrix} -g(u, v) + \zeta(v)u + \ell_s \\ u \end{pmatrix}$$

where $\delta_s := s - \rho(p) \in \mathbb{C}(S)^*$ depends only on s (and on the choice of the section ρ), $\ell_s = \log_{\mathbb{G}_m}(\delta_s)$, and

$$g_{\lambda}(u,v) = log(rac{\sigma_{\lambda}(u+v)}{\sigma_{\lambda}(v)\sigma_{\lambda}(u)}).$$

is a "Green function" for the divisor $\Delta - E \times 0 \rightarrow 0 \times E$ on $E \times E_{2}$.

CM relations

Assume now that E_0 has CM by \mathcal{O} . Then, $H^1_{dR}(E_0/\mathbb{Q}^{alg})$ splits into two eigenspaces for \mathcal{O} , generated by $\frac{dx}{y}$ and by $(x - s_2)\frac{dx}{y}$, where $s_2 = \lim_{\varepsilon \to 0} \sum_{0 \neq \omega \in \Omega} \frac{1}{\omega^2} \frac{1}{|\omega|^\varepsilon} \in \mathbb{Q}^{alg}$. In particular, $\tilde{\eta}(\omega) := \eta(\omega) - s_2\omega, \omega \in \Omega$, satisfies

$$\forall \gamma \in \mathcal{O}, \tilde{\eta}(\gamma \omega) = \overline{\gamma} \, \tilde{\eta}(\omega).$$

Set
$$\theta(z) = \sigma(z)e^{-\frac{1}{2}s_2z^2}$$
, $\theta(z+\omega) = \epsilon(\omega)\theta(z)e^{\tilde{\eta}(\omega)(z+\frac{\omega}{2})}$, so $\tilde{\zeta}(z)$
= $\frac{\theta'}{\theta} = \zeta(z) - s_2z$). Then, for any $\gamma \in \mathcal{O}$, with $N(\gamma) = \gamma\overline{\gamma}$:
 $\left(\frac{\theta(\gamma z)}{\theta(z)^{N(\gamma)}}\right)^2 = \gamma^2 \prod_{e \in E[\gamma], e \neq 0} (\wp(z) - \wp(e)).$

NB : the RHS is a square as soon as $E[\gamma] \cap E[2] = \{0\}$ or E[2].

The Ribet section, analytically

Reverting the roles of p and q, assume that $q = \alpha p$, where $\alpha = \beta - \overline{\beta}$ for some $\beta \in \mathcal{O} \setminus \mathbb{Z}$. Then, $(2, \alpha)$ and $(2, \alpha + 1)$ are either (2) or (1). Furthermore, $N(\alpha + 1) - N(\alpha) - 1 = \alpha + \overline{\alpha} = 0$. So, choosing as we may $v = \alpha u$:

$$\tilde{\delta}(p) := \frac{\sigma(u+v)}{\sigma(v)\sigma(u)} e^{-s_2uv} = \frac{\theta((\alpha+1)u)}{\theta(\alpha u)\theta(u)}$$

lies is $\mathbb{C}(\wp(u), \wp'(u))$, hence in $\mathbb{C}(S)^*$, and defines a section

$$ilde{s}_eta(p) = (ilde{\delta}(p), p) \in G_q(S).$$

Proposition : for $G = G_q$, the section $\tilde{s} = \tilde{s}_{\beta}(p) \in G(S)$ satisfies ii) $\pi(\tilde{s}) = p$ where $q = (\beta - \overline{\beta})(p)$; iv) if $p(\lambda) \in E[n]$, then $n.\tilde{s}(\lambda) = e_n(\beta p_{\lambda}, p_{\lambda})$. So, $S_{tor}^{G,\tilde{s}} = S_{tor}^{E,p}$.

Proof of (iv)

[NB: set p' = Np, $N = \alpha \overline{\alpha}$. Then, $s' := -Ns \in G_{\alpha}(S)$ projects to $p' = (\beta - \overline{\beta})q$ and still satisfies $S_{tor}^{G,s'} = S_{tor}^{E,p}$ infinite. So, by the MM charact'n of Ribet sections, $s' = s_{\beta}(q)$ up to a root of unity.] Proof : $\log_{C}^{(1)}(\tilde{s}) = -g(u, v) + \zeta(v)u + \log(\tilde{\delta}) = \zeta(v)u - s_2uv$, so for $p \in E[n]$, $u = \frac{1}{2}\omega$, $v = \frac{1}{2}\alpha\omega$ (and $\alpha = \beta - \overline{\beta}$), $\log_{C}^{(1)}(\tilde{s}) - \frac{1}{n}\kappa_{v}(\omega) = \frac{1}{n^{2}}\eta(\omega)\alpha\omega - \frac{1}{n^{2}}s_{2}\alpha\omega^{2} = \frac{1}{n^{2}}\alpha\tilde{\eta}(\omega)\omega.$ Legendre $\Rightarrow 2\pi i = \tilde{\eta}_2 \omega_1 - \tilde{\eta}_1 \omega_2 = (\overline{\tau} - \tau) \tilde{\eta}_1 \omega_1 \Rightarrow \alpha \tilde{\eta}(\omega) \omega \in 2\pi i \mathbb{Z},$ so $\exists \varpi \in \Pi_G$ such that $\log_G(\tilde{s}) - \frac{1}{n} \varpi \in \frac{1}{n^2} \mathbb{Z} \varpi_0$, and $\tilde{s} \in G_a[n^2]$. More precisely (at least up to a sign), $e_n(\beta p, p) = exp(n(\eta(\beta \frac{\omega}{p}) \frac{\omega}{p} - \eta(\frac{\omega}{p}) \beta \frac{\omega}{p})) = exp(\frac{1}{p}(\overline{\beta} - \beta) \overline{\eta}(\omega) \omega)$, so

$$p \in E[n] \Rightarrow n.\tilde{s}_{\beta}(p) = e_n(\beta p, p) \in \mu_n.$$

・ロト ・ 同ト ・ ヨト ・ ヨト - -

4. Back to relative Manin-Mumford

No other obstruction.

イロト イポト イヨト イヨト

э

Theorem ([B-M-P-Z]) Let E/S be an elliptic scheme over a curve S/\mathbb{Q}^{alg} , and let G/S be an extension of E/S by $\mathbb{G}_{m/S}$. Let further $s: S \to G$ be a section of G/S, with image W = s(S).

(A) Assume that $W \cap G_{tor}(\simeq S_{tor}^{G,s})$ is infinite. Then,

i) either s is a Ribet section;

ii) or s factors through a strict subgroup scheme of G/S.

(B) More precisely, $W \cap G_{tor}$ is infinite if and only if s is a Ribet section, or a torsion section, or a non isoconstant section of a strict subgroup scheme of G/S.

The proof uses Zannier's strategy, in the version developped by Masser-Zannier for the case of abelian surfaces : lower bounds for Galois orbits, Pila-Wilkie upper bounds, reducing the problem to algebraic independence of functional logarithms. This brings us to another of Frits's territories.

イロト イポト イヨト イヨト

Differential Galois theory

Lemma : With S/\mathbb{C} , let G/S be an extension by \mathbb{G}_m of an elliptic scheme E/S, parametrized by a section q of \hat{E}/S , and let G_0 be the constant part of G. Let further s be a section of G/S, with projection $p = \pi \circ s$ to E/S, and let F_{pq} be the field of generalized periods of $\{E, p, q\}$.

(A) Assume that $log_G(s)$ is algebraic over F_{pq} . Then, there exists a constant section $s_0 \in G_0(\mathbb{C})$ such that

i) either $s - s_0$ is a Ribet section;

ii) or $s - s_0$ factors through a strict subgroup scheme of G/S.

(B) More precisely, $log_G(s)$ is algebraic over F_{pq} if and only if there exists a constant section $s_0 \in G_0(\mathbb{C})$ such that $s - s_0$ is a Ribet section, or a torsion section, or factors through a strict subgroup scheme of G/S projecting onto E/S.

イロト イポト イヨト イヨト

э

$$\rho_{G,s}(\gamma) = \begin{pmatrix} 1 & {}^{t}\xi_{q}(\gamma) & \tau_{s}(\gamma) \\ 0 & \rho_{E}(\gamma) & \xi_{p}(\gamma) \\ 0 & 0 & 1 \end{pmatrix}, \qquad \begin{array}{c} \tau_{s} : \operatorname{Gal}_{\partial}(L_{s}/F_{pq}) \hookrightarrow \mathbb{C} \\ {}^{t}\xi_{q} : \operatorname{Gal}_{\partial}(F_{q}/F) \hookrightarrow \mathbb{C}^{2} \simeq \hat{\mathcal{V}} \\ \xi_{p} : \operatorname{Gal}_{\partial}(F_{p}/F) \hookrightarrow \mathbb{C}^{2} \simeq \mathcal{V} \\ \rho_{E} : \operatorname{Gal}_{\partial}(F/K) \hookrightarrow SL_{2}(\mathbb{C}) \end{array}$$

Then, $\tau_s = 0 \Leftrightarrow \exists s_0 \in G_0(\mathbb{C}), s - s_0$ is Ribet or factors.

As in [J-R], the proof of \Rightarrow uses representation theory. Conversely, the formulae for $\tilde{\delta} = \frac{\theta((\alpha+1)u)}{\theta(\alpha u)\theta(u)} \in \mathbb{C}(\wp(u), \wp'(u))$ and for $\log_G(\tilde{s})$ prove \Leftarrow both in the present differential context and in the Kummer theoretical one of [J-R].

・ロト ・ 同ト ・ ヨト ・

5. Pink's conjecture on mixed Shimura varieties

D. Bertrand (IMJ) Special values of σ -functions.

イロト イポト イヨト イヨト

3

Ribet curves are special

André-Oort : let X be a Shimura variety, let X_{sp} be its set of special points, and let W be an irreducible closed subvariety of X. Assume that $W \cap X_{sp}$ is Zariski dense in W. Then, W is a special subvariety (\sim a component of a Hecke transform of a proper Shimura subvariety of X).

Pink's conjecture in "amplitude $0" : X \rightsquigarrow$ a mixed Shimura variety.

Example 1 (Y. André) : X = E = universal elliptic curve over a modular curve Y;

Example 2 : $X = \mathcal{P}$ = the Poincaré bi-extension of $E \times_Y \hat{E}$. Over a CM point $y_0 \sim E_0$, the special subvariety $\mathcal{P}_0 := \mathcal{P}_{|y_0}$ can be viewed as the "universal" extension \mathcal{G}_0 of $(E_0)_{\hat{E}_0}$ by \mathbb{G}_m , over its parameter space \hat{E}_0 (i.e. $S = \hat{E}_0, q = q_{id} : \hat{E}_0 \to (\hat{E}_0)_{\hat{E}_0}$).

In this context, the counterexample to RMM turns into a

Pro-example : given $f \in O$, let $W = s_f(q)(\hat{E}_0)$ be the image of the Ribet section in $\mathcal{G}_0 = \mathcal{P}_0$. Then, W passes through a Zariski-dense set of special points of the mixed Shimura variety \mathcal{P}_0 - and is indeed a special curve of \mathcal{P}_0 .

In higher dimension, see [B-E].

Back to g = 1, we have more generally :

Theorem : Let W be an irred. closed curve in \mathcal{P} , such that $W \cap \mathcal{P}_{sp}$ is infinite. Then, W is a special curve of \mathcal{P} .

Proof : André's thm for E/Y and [B-M-P-Z], using $\mathcal{P}_{0,sp} \subset \mathcal{G}_{0,tor}$.

4 日 2 4 周 2 4 月 2 4 月 2 4

Pink's general conjecture

For X a mixed Shimura variety, set

 $X^{[>d]} = \cup Y,_{codimY>d,Y}$ special \cdot

Then : $W \subset X$, dimW = d and $W \cap X^{[>d]}$ Zariski-dense in $W \Rightarrow W$ lies in a strict special subvariety of X ?

some results for W a curve in X = P (because P_{0,sp} ⊊ G_{0,tor} !);
Pila-Tsimerman, Klingler-Ullmo-Yafaev : for a pure X, uniformized by π : X → X, the weakly special subvarieties in W are the images of the maximal algebraic subvarieties in π⁻¹(W).
ditto for C³ × H → P (in progress), cf. log_G(s_α(p)), and the role of the constant part G₀ in the Lemma.

Et pour finir :

Joyeux anniversaire,

Frits !

イロト イポト イヨト イヨト

э

D. Bertrand (IMJ) Special values of σ -functions.