Galois descent in Galois theories

Daniel Bertrand
(Inst. Math. Jussieu)

I . The case of Kummer theory (and applications to Diophantine Geometry)

II . The differential case
(and applications to Schanuel problems)

NDMTF, Durham, July 2009

I . Kummer theory on abelian varieties

- $K=$ number field, $\bar{K}=$ algebraic closure.
- $A=$ an abelian variety over $K, \operatorname{dim} A:=g$. Set $\operatorname{End}(A / K)=\operatorname{End}(A / \bar{K}):=\mathcal{O}$.
- $y \in A(K)$. Assume that y generates A, i.e. $\mathbb{Z} . y$ is Zariski closed in $A \Leftrightarrow A n n_{\mathcal{O}}(y)=0$.

Following the elliptic work of Bashmakov and Tate-Coates (~ 1970), we have :

Theorem K : there exists $c=c(A, K, y)>0$ such that for all $n>0,\left[K\left(\frac{1}{n} y\right): K\right] \geq c n^{2 g}$.

Refs.: K. Ribet : Duke math. J. 46, 1979, 745-761;
D.B. : Proc. Durham Conference 1986, "New advances in transcendence theory", ed. A. Baker, CUP 1988, 37-55.

- $A_{t o r}=\cup_{n} A[n], K_{\infty}=K\left(A_{t o r}\right)$
- $L_{\infty}=\cup_{n} K_{\infty}\left(\frac{1}{n} y\right), \quad L_{(\ell)}=\cup_{m} K_{\infty}\left(\frac{1}{\ell^{m}} y\right)$.
- $T_{\infty}(A):=$ proj.lim$n ~ A[n]=\Pi_{\ell \in \mathcal{P}} T_{\ell}(A)$

We will actually prove that $\operatorname{Gal}\left(L_{\infty} / K_{\infty}\right)$ is isomorphic to an open subgroup of $T_{\infty}(A)$, or equivalently (Nakayama) :
i) for all primes $\ell, \operatorname{Gal}\left(L_{(\ell)} / K_{\infty}\right)$ is an open subgroup of $T_{\ell}(A) \simeq \mathbb{Z}_{\ell}^{2 g}$;
ii) for almost all $\ell, \operatorname{Gal}\left(K_{\infty}\left(\frac{1}{\ell} y\right) / K_{\infty}\right) \simeq A[\ell]$.

Proof (in the mod ℓ case)

1. Galois theoretic step .

(Of necessity, base extension to $K_{\infty} \rightsquigarrow A$ becomes " K_{∞}-large" for the morphism $[\ell]_{A}$.)
$\operatorname{Im}\left(\xi_{y}\right) \simeq N$ is a J-submodule of $A[\ell]$. Assume $N \neq A[\ell]$. Then $\exists \alpha \in \mathcal{O}, \alpha \notin \ell \mathcal{O}$ s.t. $\alpha . y$ is divisible by ℓ in $A\left(K_{\infty}\right)$.

2. Galois descent

There exists $\ell_{0}(A, K)$ such that $\forall \ell>\ell_{0}$, if a point $y^{\prime} \in A(K)$ is divisible by ℓ in $A\left(K_{\infty}\right)$, then, y^{\prime} is already divisible by ℓ in $A(K)$, i.e.

$$
A(K) / \ell . A(K) \hookrightarrow A\left(K_{\infty}\right) / \ell . A\left(K_{\infty}\right)
$$

3. (Diophantine) geometric step

There exists $\ell_{1}(A, K, y)$ such that $\alpha . y \in \ell . A(K)$ with $\ell>\ell_{1}$ implies $\alpha \in \ell . \mathcal{O}$.

Proof of 1.

- $A[\ell]$ is a semi-simple J-module (Faltings), so there exists $\alpha_{\ell} \in \operatorname{End}_{J}(A[\ell])$ killing N.
- $\operatorname{End}_{J}(A[\ell]) \simeq \operatorname{End}(A) \otimes \mathbf{F}_{\ell}$ (Faltings), so α_{ℓ} yields $\alpha \in \mathcal{O}, \alpha \notin \ell \mathcal{O}$ killing N.
- $\xi_{\alpha . y}=\alpha \xi_{y}$, so, $\frac{1}{\ell} \alpha . y$ is fixed by N.

Proof of 2.

$$
\begin{array}{ccccc}
? & \rightarrow & A(K) / \ell \cdot A(K) & \rightarrow & A\left(K_{\infty}\right) / \ell \cdot A\left(K_{\infty}\right) \\
\downarrow & & \downarrow \\
H^{1}(J, A[\ell]) & \rightarrow & H^{1}\left(\Gamma_{K}, A[\ell]\right) & \rightarrow & H^{1}\left(\Gamma_{K_{\infty}}, A[\ell]\right)^{J}
\end{array}
$$

Serre's result on homotheties and Sah's lemma imply $H^{1}(J, A[\ell])=0$ for large ℓ.

Proof of 3.

Mordell-Weil (or a trick of Cassels's), both based on heights.
[Similar arguments in the ℓ-adic case.]

Some diophantine applications

C. Khare, D. Prasad : Reduction of homomorphisms mod p and algebraicity, JNT 105, 2004, 322-332.
A / K simple, $y, y^{\prime} \in A(K)$ s.t. for almost all places v, the order of y mod v divides the order of $y^{\prime} \bmod v$. Then, $\exists \alpha \in \mathcal{O}, y^{\prime}=\alpha . y$. (This sharpens a result of M. Larsen.)
U. Zannier : On the Hilbert Irreducibility Theorem, Pisa preprint, 2008.
Let $\pi: Y \rightarrow A$ be a dominant K-morphism of finite degree, with Y irreducible and $A=E^{n}$. Let $y \in A(K)$ generate A. Suppose that for any isogeny $\phi: A \rightarrow A$, the pull-back $\phi^{*}(Y)$ is irreducible. Then there is an arithmetic progression \mathcal{V} in \mathbb{Z} such that each $\nu \in \mathcal{V}$, the fiber $\pi^{-1}(\nu . y)$ is K-irreducible.

Also, work of M. Gavrilovich (K-Theory, 38, 2008, 135-152) on $\operatorname{Ext}\left(E(\bar{K}), \mathbb{Z}^{2}\right)$; of C. Salgado (PhD. Paris 7,2009) on ranks of elliptic surfaces, ...

II.a . Logarithms on abelian schemes

- $K=\mathbb{C}(S)$ or $\mathbb{C}(S)^{\text {alg }, ~} S / \mathbb{C}=$ smooth affine curve, $\partial=$ a derivation on K with $K^{\partial}=\mathbb{C}$, $\widehat{K}=$ diff. closure, $\mathcal{U}=$ univ. domain.
- A / K, coming from an abelian scheme $\mathcal{A} \rightarrow$ S. $A_{0}=$ its K / \mathbb{C}-trace. Its universal extension \tilde{A} has dimension $2 g$:

$$
0 \rightarrow W_{A} \rightarrow \tilde{A} \rightarrow^{\pi} A \rightarrow 0
$$

Exponential sequence :

$$
0 \rightarrow T_{B} \tilde{\mathcal{A}} \rightarrow L \tilde{\mathcal{A}}^{a n} \rightarrow \rightarrow^{e x p} \tilde{\mathcal{A}}^{a n} \rightarrow 0
$$

- $y \in \widetilde{A}(K)$, generating \widetilde{A}, i.e. : $\forall H \subsetneq \widetilde{A}, y \notin$ $H+\tilde{A}_{0}(\mathbb{C})$. Chose $\ln (y) \in \exp ^{-1}(y)$. Then :

Theorem L (André, 1992)

$$
\operatorname{tr} \cdot d g \cdot(K(\ell n(y)) / K)=2 g .
$$

\tilde{A} has a structure of algebraic D-group, with

$$
\partial \ell n_{\tilde{A}}: \tilde{A} \rightarrow L \tilde{A}
$$

Gauss-Manin connection:

$$
\partial_{L \tilde{A}}=\partial \ell n_{\tilde{A}} \circ \exp : L \tilde{A} \rightarrow L \tilde{A}
$$

So $\ln (y) \rightsquigarrow x \in L \tilde{A}(\widehat{K})$ solution of the inhomogeneous LDE : $\partial_{L \tilde{A}}(x)=\partial \ell n_{\tilde{A}} y$.

- $K_{L \tilde{A}}=K\left(T_{B}(\tilde{A})\right)=$ Picard-Vessiot extension for $\partial_{L \tilde{A}}(-)=0$, with solution space $(L \widetilde{A})^{\partial}=T_{B}(\widetilde{A}) \otimes \mathbb{C} \simeq \mathbb{C}^{2 g}$.

We will actually prove that

$$
\operatorname{Gal}_{\partial}\left(K_{L \tilde{A}}(\ln (y)) / K_{L \widetilde{A}}\right) \simeq(L \widetilde{A})^{\partial} .
$$

$\xi_{y}(\sigma)=\sigma(\ell n(y))-\ell n(y), \quad \xi_{y}\left(\tau \sigma \tau^{-1}\right)=\tau\left(\xi_{y}(\sigma)\right)$.

Proof (in a "generic" case)

By Deligne, $L \tilde{A}$ is a semi-simple D-module. For simplicity, suppose that it is irreducible.

1. Galois theoretic step

(Of necessity, base extension to $K_{L \widetilde{A}} \rightsquigarrow L \widetilde{A}$ becomes " $K_{L \tilde{A}}$-large" for the morphism $[e x p]_{\tilde{A}}$.)
$\operatorname{Im}\left(\xi_{y}\right) \simeq N$ is a J-submodule of $(L \widetilde{A})^{\partial}$. Assume $N \neq(L \widetilde{A})^{\partial}$. Then $N=0, x \in L \widetilde{A}\left(K_{L \widetilde{A}}\right)$ and

$$
\partial \ell n_{\tilde{A}} y=\partial_{L \widetilde{A}}(x) \in \partial_{L \tilde{A}}\left(L \widetilde{A}\left(K_{L \tilde{A}}\right)\right) .
$$

2. Galois descent

If a point $z \in L \widetilde{A}(K)$ lies in $\partial_{L \widetilde{A}}\left(L \widetilde{A}\left(K_{L \widetilde{A}}\right)\right)$, then, z already lies in $\partial_{L \tilde{A}}(L \tilde{A}(K))$, i.e.
$\operatorname{Coker}\left(\partial_{L \tilde{A}}, L \tilde{A}(K)\right) \hookrightarrow \operatorname{Coker}\left(\partial_{L \tilde{A}}, L \widetilde{A}\left(K_{L \tilde{A}}\right)\right)$
Indeed, J is reductive, so $H^{1}\left(J,(L \widetilde{A})^{d}\right)=0$.

3. Geometric step

Manin's theorem : if $\partial \ell n_{\tilde{A}} y=\partial_{L \tilde{A}}(x)$ for some $x \in L \widetilde{A}(K)$, then $y \in W_{A}+\tilde{A}_{0}(\mathbb{C})+\tilde{A}_{\text {tor }}$.

A diophantine application

Theorem L plays a (minor, but not empty) role in
D. Masser, U. Zannier : Torsion anomalous points and families of elliptic curves; CRAS Paris 346, 2008, 491-494,
i.e the following special case of the ZilberPink conjecture. Consider the sections y, y^{\prime} with abscissae 2, 3 of the Legendre elliptic scheme $E / S, S=\lambda$-line. There are finitely many λ 's such that both $y(\lambda)$ and $y^{\prime}(\lambda)$ are torsion points on E_{λ}. In other words, the curve $C=\left(y, y^{\prime}\right)$ on the abelian scheme A / S, $A=E \times E$, has finite intersection with $A^{[>1]}$, where $A^{[>1]}=$ the union of all 2-codim'l algebraic subgroups of all the fibers of A / S.

Uses a result of J. Pila (Quart.J.M 55, 2004, 207-223) on the rational points of a subanalytic surface away from the union of its nonpunctual semi-algebraic subsets. The algebraic independence of $\ell n(y), \ell n\left(y^{\prime}\right)$ over $K_{L \tilde{A}}$ (plus some knowledge of the size of J as well) shows that there is nothing to withdraw.

II b . Exponentials on abelian schemes

As in II.a,

$$
\begin{gathered}
K=\mathbb{C}(S), \partial, A / K, A_{0} / \mathbb{C}, \tilde{A} . \\
0 \rightarrow T_{B} \tilde{\mathcal{A}} \rightarrow L \tilde{\mathcal{A}}^{a n} \rightarrow \exp \widetilde{\mathcal{A}}^{a n} \rightarrow 0
\end{gathered}
$$

- $x \in L \widetilde{A}(K)$, generating $L \widetilde{A}$, i.e. : $\forall H \subsetneq$ $\widetilde{A}, x \notin L H+L \tilde{A}_{0}(\mathbb{C})$. Then :

Theorem E (Be-Pillay, JAMS, 201?)

$$
\operatorname{tr} \cdot d g \cdot(K(\exp (x) / K)=2 g
$$

As in II.a, we have

$$
\begin{gathered}
\partial \ell n_{\tilde{A}}: \widetilde{A} \rightarrow L \widetilde{A} \\
\partial_{L \widetilde{A}}=\partial \ell n_{\widetilde{A}} \circ \exp : L \widetilde{A} \rightarrow L \widetilde{A} .
\end{gathered}
$$

So $\exp (x) \rightsquigarrow y \in \widetilde{A}(\widehat{K})$ solution of the inhomogeneous NLDE : $\partial \ell n_{\tilde{A}}(y)=\partial_{L \widetilde{A}^{x}}$.

Let $K_{\tilde{A}}$ be the differential extension of \bar{K} generated by all points in

$$
\widetilde{A}^{\partial}=\left\{z \in \widetilde{A}(\widehat{K}), \partial \ell n_{\tilde{A}}(z)=0 .\right\}
$$

Using

- Pillay's Galois theory
- + a Galois descent ,
we will actually prove that

$$
\operatorname{Gal}_{\partial}\left(K_{\tilde{A}}(\exp (x)) / K_{\tilde{A}}\right) \simeq \widetilde{A}^{\partial}
$$

$$
\begin{aligned}
& \hat{K} \\
& K_{\tilde{A}}(\exp (x)) \quad \xi_{x} \\
& \} N \hookrightarrow \quad \tilde{A}^{\partial} \\
& \left.\begin{array}{lll}
K_{\tilde{A}} \\
\frac{1}{K}
\end{array} \quad\right\} \tilde{J} \quad \stackrel{\rho}{\hookrightarrow} \operatorname{Aut}\left(\widetilde{A}^{\partial}\right) \\
& \xi_{x}(\sigma)=\sigma(\exp (x))-\exp (x) .
\end{aligned}
$$

In generic cases (e.g. when the KodairaSpencer rank of A / S is maximal, e.g. when $L \widetilde{A}$ is irreducible),

$$
K_{\tilde{A}}=\bar{K}:
$$

the D-group \widetilde{A} is \bar{K}-large, and no descent is required! We then merely need :

1. Galois theoretic step

$\operatorname{Im}\left(\xi_{x}\right) \simeq N=H^{\partial}$ for some algebraic D subgroup H of \tilde{A}. Assume $H \neq \widetilde{A}$. Then there is a non trivial D-quotient $\pi: \widetilde{A} \rightarrow \bar{A}$ sending x to $\bar{x} \in L \bar{A}(K)$, with

$$
\partial_{L \bar{A}}(\bar{x})=\partial \ell n_{\bar{A}}(\bar{y}) \text { for some } \bar{y} \in \bar{A}(K) .
$$

3. Geometric step

If $\bar{A} \simeq \widetilde{B}$ for some abelian variety quotient B of A, just apply Manin's theorem:
$\bar{x} \in L W_{B}+L \widetilde{B}_{0}(\mathbb{C})$, so x cannot generate $L \widetilde{A}$.

The general case requires Chai's sharpening of Manin's theorem.

That $\bar{A} \simeq \tilde{B}$ happens automatically when W_{A} contains no non trivial D-subgroup. When $A_{0}=0$, this is equivalent to \tilde{A} being \bar{K}-large. In general,

2. Galois descent in Pillay's theory

Write K for \bar{K}, and let U be the maximal D-subgroup of \widetilde{A} (equivalently D-submodule of $L \widetilde{A}$) contained in W_{A}.

$$
0 \rightarrow U \rightarrow \tilde{A} \rightarrow \bar{A} \rightarrow 0 .
$$

- Hrushovski-Sokolovic, Marker-Pillay $\Rightarrow \bar{A}$ is K-large : $\bar{A}^{\partial}(\widehat{K})=\bar{A}^{\partial}(K)$.
- Manin-Chai $\Rightarrow \bar{A}^{\partial}(K)=\bar{A}_{\text {tor }}+A_{0}(\mathbf{C})$.
- $0 \rightarrow U^{\partial}(\widehat{K}) \rightarrow \tilde{A}^{\partial}(\widehat{K}) \rightarrow \bar{A}^{\partial}(\widehat{K}) \rightarrow 0$.

Therefore

$$
\begin{aligned}
& K_{\tilde{A}}=K_{U} \text { is a P-V extension of } K \\
& \text { and } \tilde{J}=\operatorname{Gal}_{\partial}\left(K_{\tilde{A}} / K\right):=J_{U} \text { is a }
\end{aligned}
$$

factor of the reductive group $J=\operatorname{Gal}_{\partial}\left(K_{L \tilde{A}} / K\right)$. Actually (Deligne), J, hence J_{U}, is semi-simple.

By Step 1 over $K_{\tilde{A}}$, and rigidity of D-subgroups of \tilde{A}, we have :

$$
\partial_{L \bar{A}}(\bar{x})=\partial \ell n_{\bar{A}}(\bar{y}) \text { for some } \bar{y} \in \bar{A}\left(K_{U}\right) .
$$

and it remains to show that
$L \bar{A}(K) / \partial \ell n_{\bar{A}}(\bar{A}(K)) \hookrightarrow L \bar{A}\left(K_{U}\right) / \partial \ell n_{\bar{A}}\left(\bar{A}\left(K_{U}\right)\right)$, i.e. that we may take $\bar{y} \in \bar{A}(K)$.

The cocycle $\widehat{\xi}_{\bar{y}}: J_{U} \rightarrow \bar{A}^{\partial}: \sigma \mapsto \sigma \bar{y}-\bar{y}$ is a group homomorphism. Since $J_{U}=\left[J_{U}, J_{U}\right]$, while \bar{A}^{∂} is abelian, $\xi_{\bar{y}}$ vanishes, so that indeed \bar{y} is defined over K.

Conclusion

- No diophantine application (yet) of Theorem E.
- But the method works in other contexts, e.g., considering the differential equation

$$
\partial \ln (y)=\lambda . \partial \ln (x)
$$

on \mathbb{G}_{m}, with $\lambda \in \mathbb{C}, \lambda \notin \mathbb{Q}$:
if $x_{1}, \ldots, x_{n} \in \mathbb{G}_{m}(K)$ are multiplicatively independent modulo $\mathbb{G}_{m}(\mathbb{C})$, then, $x_{1}^{\lambda}, \ldots, x_{n}^{\lambda}$ are algebraically independent over $K=\mathbb{C}(z)$.

For more general (Schanuel-type) results on x^{λ}, see:

- M. Bayes, J. Kirby, A. Wilkie, (2008) arXiv: 0810.4457.
- P. Kowalski, Ann. PAL, 156, 2008, 96-109.

