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I . Kummer theory on abelian varieties

• K = number field, K = algebraic closure.

• A = an abelian variety over K, dimA := g.

Set End(A/K) = End(A/K) := O.

• y ∈ A(K). Assume that y generates A, i.e.

Z.y is Zariski closed in A ⇔ AnnO(y) = 0.

Following the elliptic work of Bashmakov and

Tate-Coates (∼ 1970), we have :

Theorem K : there exists c = c(A, K, y) > 0

such that for all n > 0, [K(1
ny) : K] ≥ cn2g.

Refs.: K. Ribet : Duke math. J. 46, 1979,

745-761;

D.B. : Proc. Durham Conference 1986, “New

advances in transcendence theory”, ed. A.

Baker, CUP 1988, 37-55.
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• Ator = ∪nA[n], K∞ = K(Ator)

• L∞ = ∪nK∞(1
ny), L(`) = ∪mK∞( 1

`my).

• T∞(A) := proj.limn A[n] = Π`∈PT`(A)

We will actually prove that Gal(L∞/K∞) is

isomorphic to an open subgroup of T∞(A),

or equivalently (Nakayama) :

i) for all primes `, Gal(L(`)/K∞) is an open

subgroup of T`(A) ' Z2g
` ;

ii) for almost all `, Gal(K∞(1
`y)/K∞) ' A[`].

K
|

K∞(1
ny) ξy

| }N ↪→ A[n] ' (Z/nZ)2g

K∞ ρ
| }J ↪→ GL(T∞(A))

K

ξy(σ) = σ(1
ny)− 1

ny, ξy(τστ−1) = τ(ξy(σ)).
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Proof (in the mod ` case)

1. Galois theoretic step .

(Of necessity, base extension to K∞  A

becomes “K∞-large” for the morphism [`]A.)

Im(ξy) ' N is a J-submodule of A[`]. As-

sume N 6= A[`]. Then ∃α ∈ O, α /∈ `O s.t.

α.y is divisible by ` in A(K∞).

2. Galois descent

There exists `0(A, K) such that ∀` > `0 , if

a point y′ ∈ A(K) is divisible by ` in A(K∞),

then, y′ is already divisible by ` in A(K), i.e.

A(K)/`.A(K) ↪→ A(K∞)/`.A(K∞)

3. (Diophantine) geometric step

There exists `1(A, K, y) such that α.y ∈ `.A(K)

with ` > `1 implies α ∈ `.O.
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Proof of 1.

- A[`] is a semi-simple J-module (Faltings),

so there exists α` ∈ EndJ(A[`]) killing N .

- EndJ(A[`]) ' End(A)⊗ F` (Faltings), so α`

yields α ∈ O, α /∈ `O killing N .

- ξα.y = αξy, so, 1
`α.y is fixed by N .

Proof of 2.

? → A(K)/`.A(K) → A(K∞)/`.A(K∞)
↓ ↓ ↓

H1(J, A[`]) → H1(ΓK, A[`]) → H1(ΓK∞, A[`])J

Serre’s result on homotheties and Sah’s lemma

imply H1(J, A[`]) = 0 for large `.

Proof of 3.

Mordell-Weil (or a trick of Cassels’s), both

based on heights.

[Similar arguments in the `-adic case.]
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Some diophantine applications

C. Khare, D. Prasad : Reduction of homo-

morphisms mod p and algebraicity, JNT 105,

2004, 322-332.

A/K simple, y, y′ ∈ A(K) s.t. for almost all

places v, the order of y mod v divides the

order of y′ mod v. Then, ∃α ∈ O, y′ = α.y.

(This sharpens a result of M. Larsen.)

U. Zannier : On the Hilbert Irreducibility

Theorem, Pisa preprint, 2008.

Let π : Y → A be a dominant K-morphism of

finite degree, with Y irreducible and A = En.

Let y ∈ A(K) generate A. Suppose that for

any isogeny φ : A → A, the pull-back φ∗(Y )

is irreducible. Then there is an arithmetic

progression V in Z such that each ν ∈ V, the

fiber π−1(ν.y) is K-irreducible.

Also, work of M. Gavrilovich (K-Theory, 38,

2008, 135-152) on Ext(E(K), Z2); of C. Sal-

gado (PhD. Paris 7, 2009) on ranks of elliptic

surfaces, ...
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II.a . Logarithms on abelian schemes

• K = C(S) or C(S)alg, S/C = smooth affine

curve, ∂ = a derivation on K with K∂ = C,

K̂ = diff. closure, U = univ. domain.

• A/K, coming from an abelian scheme A →
S. A0 = its K/C-trace. Its universal exten-

sion Ã has dimension 2g :

0 → WA → Ã →π A → 0

Exponential sequence :

0 → TBÃ → LÃan →exp Ãan → 0

• y ∈ Ã(K), generating Ã, i.e. : ∀H ( Ã, y /∈
H + Ã0(C). Chose `n(y) ∈ exp−1(y). Then :

Theorem L (André, 1992)

tr.dg.(K(`n(y))/K) = 2g.
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Ã has a structure of algebraic D-group, with
∂`nÃ : Ã → LÃ

Gauss-Manin connection :
∂LÃ = ∂`nÃ ◦ exp : LÃ → LÃ

So `n(y)  x ∈ LÃ(K̂) solution of the inho-
mogeneous LDE : ∂LÃ(x) = ∂`nÃy.

• KLÃ = K(TB(Ã)) = Picard-Vessiot exten-
sion for ∂LÃ(−) = 0, with solution space
(LÃ)∂ = TB(Ã)⊗ C ' C2g.

We will actually prove that
Gal∂(KLÃ(`n(y))/KLÃ) ' (LÃ)∂.

K̂
|

KLÃ(`n(y)) ξy

| }N ↪→ (LÃ)∂

KLÃ ρ

| }J ↪→ GL((LÃ)∂)
K

ξy(σ) = σ(`n(y))− `n(y), ξy(τστ−1) = τ(ξy(σ)).
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Proof (in a “generic” case)

By Deligne, LÃ is a semi-simple D-module.
For simplicity, suppose that it is irreducible.

1. Galois theoretic step .
(Of necessity, base extension to KLÃ  LÃ
becomes “KLÃ-large” for the morphism [exp]Ã.)

Im(ξy) ' N is a J-submodule of (LÃ)∂. As-
sume N 6= (LÃ)∂. Then N = 0, x ∈ LÃ(KLÃ)
and

∂`nÃy = ∂LÃ(x) ∈ ∂LÃ

(
LÃ(KLÃ)

)
.

2. Galois descent

If a point z ∈ LÃ(K) lies in ∂LÃ

(
LÃ(KLÃ)

)
,

then, z already lies in ∂LÃ(LÃ(K)), i.e.

Coker(∂LÃ, LÃ(K)) ↪→ Coker(∂LÃ, LÃ(KLÃ))

Indeed, J is reductive, so H1(J, (LÃ)∂) = 0.

3. Geometric step

Manin’s theorem : if ∂`nÃy = ∂LÃ(x) for
some x ∈ LÃ(K), then y ∈ WA+Ã0(C)+Ãtor.
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A diophantine application

Theorem L plays a (minor, but not empty)
role in

D. Masser, U. Zannier : Torsion anomalous
points and families of elliptic curves; CRAS
Paris 346, 2008, 491-494,

i.e the following special case of the Zilber-
Pink conjecture. Consider the sections y, y′

with abscissae 2, 3 of the Legendre elliptic
scheme E/S, S = λ−line. There are finitely
many λ’s such that both y(λ) and y′(λ) are
torsion points on Eλ. In other words, the
curve C = (y, y′) on the abelian scheme A/S,
A = E×E, has finite intersection with A[>1],
where A[>1] = the union of all 2-codim’l al-
gebraic subgroups of all the fibers of A/S.

Uses a result of J. Pila (Quart.J.M 55, 2004,
207-223) on the rational points of a subana-
lytic surface away from the union of its non-
punctual semi-algebraic subsets. The alge-
braic independence of `n(y), `n(y′) over KLÃ
(plus some knowledge of the size of J as well)
shows that there is nothing to withdraw.
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II b . Exponentials on abelian schemes

As in II.a,

K = C(S), ∂, A/K, A0/C, Ã.

0 → TBÃ → LÃan →exp Ãan → 0

• x ∈ LÃ(K), generating LÃ, i.e. : ∀H (
Ã, x /∈ LH + LÃ0(C). Then :

Theorem E (Be-Pillay, JAMS, 201?)

tr.dg.(K(exp(x)/K) = 2g.

As in II.a, we have

∂`nÃ : Ã → LÃ

∂LÃ = ∂`nÃ ◦ exp : LÃ → LÃ.

So exp(x)  y ∈ Ã(K̂) solution of the inho-

mogeneous NLDE : ∂`nÃ(y) = ∂LÃx.

Let KÃ be the differential extension of K gen-

erated by all points in

Ã∂ = {z ∈ Ã(K̂), ∂`nÃ(z) = 0.}
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Using
. • Pillay’s Galois theory
. • + a Galois descent ,
we will actually prove that

Gal∂(KÃ(exp(x))/KÃ) ' Ã∂.

K̂
|

KÃ(exp(x)) ξx

| }N ↪→ Ã∂

KÃ ρ

| }J̃ ↪→ Aut(Ã∂)
K

ξx(σ) = σ(exp(x))− exp(x).

In generic cases (e.g. when the Kodaira-
Spencer rank of A/S is maximal, e.g. when
LÃ is irreducible),

KÃ = K :

the D-group Ã is K-large, and no descent is
required ! We then merely need :
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1. Galois theoretic step

Im(ξx) ' N = H∂ for some algebraic D-

subgroup H of Ã. Assume H 6= Ã. Then

there is a non trivial D-quotient π : Ã → A

sending x to x ∈ LA(K), with

∂LA(x) = ∂`nA(y) for some y ∈ A(K).

3. Geometric step

If A ' B̃ for some abelian variety quotient B

of A, just apply Manin’s theorem:

x ∈ LWB+LB̃0(C), so x cannot generate LÃ.

The general case requires Chai’s sharpening

of Manin’s theorem.

That A ' B̃ happens automatically when WA

contains no non trivial D-subgroup. When

A0 = 0, this is equivalent to Ã being K-large.

In general,
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2. Galois descent in Pillay’s theory

Write K for K, and let U be the maximal

D-subgroup of Ã (equivalently D-submodule

of LÃ) contained in WA.

0 → U → Ã → A → 0.

• Hrushovski-Sokolovic, Marker-Pillay ⇒ A is

K-large : A
∂(K̂) = A

∂(K).

• Manin-Chai ⇒ A
∂(K) = Ator + A0(C).

• 0 → U∂(K̂) → Ã∂(K̂) → A
∂(K̂) → 0.

Therefore

KÃ = KU is a P-V extension of K

and J̃ = Gal∂(KÃ/K) := JU is a

factor of the reductive group J = Gal∂(KLÃ/K).

Actually (Deligne), J, hence JU , is semi-simple.

By Step 1 over KÃ, and rigidity of D-subgroups

of Ã, we have :

∂LA(x) = ∂`nA(y) for some y ∈ A(KU).

and it remains to show that

LA(K)/∂`nA(A(K)) ↪→ LA(KU)/∂`nA(A(KU)),

i.e. that we may take y ∈ A(K).
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The cocycle ξ̂y : JU → A
∂ : σ 7→ σy − y is a

group homomorphism. Since JU = [JU , JU ],
while A

∂ is abelian, ξy vanishes, so that in-
deed y is defined over K.

Conclusion

• No diophantine application (yet) of Theo-
rem E.

• But the method works in other contexts,
e.g., considering the differential equation

∂`n(y) = λ.∂`n(x)

on Gm, with λ ∈ C, λ /∈ Q :

if x1, ..., xn ∈ Gm(K) are multiplicatively inde-
pendent modulo Gm(C), then, xλ

1, ..., xλ
n are

algebraically independent over K = C(z).

For more general (Schanuel-type) results on
xλ, see:

- M. Bayes, J. Kirby, A. Wilkie, (2008) arXiv:
0810.4457.

- P. Kowalski, Ann. PAL, 156, 2008, 96-109.
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