Galois descent in Galois theories

Daniel Bertrand (Inst. Math. Jussieu)

I. The case of Kummer theory (and applications to Diophantine Geometry)

II. The differential case

(and applications to Schanuel problems)

NDMTF, Durham, July 2009

I. Kummer theory on abelian varieties

- K = number field, $\overline{K} =$ algebraic closure.
- A = an abelian variety over K, dimA := g. Set $End(A/K) = End(A/\overline{K}) := O$.

• $y \in A(K)$. Assume that y generates A, i.e. $\mathbb{Z}.y$ is Zariski closed in $A \Leftrightarrow Ann_{\mathcal{O}}(y) = 0$.

Following the elliptic work of Bashmakov and Tate-Coates (\sim 1970), we have :

Theorem K : there exists c = c(A, K, y) > 0such that for all n > 0, $[K(\frac{1}{n}y) : K] \ge cn^{2g}$.

Refs.: K. Ribet : Duke math. J. 46, 1979, 745-761; D.B. : Proc. Durham Conference 1986, "New advances in transcendence theory", ed. A. Baker, CUP 1988, 37-55.

•
$$A_{tor} = \bigcup_n A[n], \ K_{\infty} = K(A_{tor})$$

•
$$L_{\infty} = \bigcup_n K_{\infty}(\frac{1}{n}y), \quad L_{(\ell)} = \bigcup_m K_{\infty}(\frac{1}{\ell^m}y).$$

•
$$T_{\infty}(A) := proj.lim_n A[n] = \prod_{\ell \in \mathcal{P}} T_{\ell}(A)$$

We will actually prove that $Gal(L_{\infty}/K_{\infty})$ is isomorphic to an open subgroup of $T_{\infty}(A)$, or equivalently (Nakayama) :

i) for all primes ℓ , $Gal(L_{(\ell)}/K_{\infty})$ is an open subgroup of $T_{\ell}(A) \simeq \mathbb{Z}_{\ell}^{2g}$;

ii) for almost all ℓ , $Gal(K_{\infty}(\frac{1}{\ell}y)/K_{\infty}) \simeq A[\ell]$.

$$K$$

$$|$$

$$K_{\infty}(\frac{1}{n}y) \qquad \xi_{y}$$

$$| \qquad \}N \qquad \to \qquad A[n] \simeq (\mathbb{Z}/n\mathbb{Z})^{2g}$$

$$K_{\infty} \qquad \rho$$

$$| \qquad \}J \qquad \to \qquad GL(T_{\infty}(A))$$

$$K$$

 $\xi_y(\sigma) = \sigma(\frac{1}{n}y) - \frac{1}{n}y, \quad \xi_y(\tau\sigma\tau^{-1}) = \tau(\xi_y(\sigma)).$

Proof (in the mod ℓ case)

1. Galois theoretic step .

(Of necessity, base extension to $K_{\infty} \rightsquigarrow A$ becomes " K_{∞} -large" for the morphism $[\ell]_A$.)

 $Im(\xi_y) \simeq N$ is a *J*-submodule of $A[\ell]$. Assume $N \neq A[\ell]$. Then $\exists \alpha \in \mathcal{O}, \alpha \notin \ell \mathcal{O}$ s.t. $\alpha.y$ is divisible by ℓ in $A(K_{\infty})$.

2. Galois descent

There exists $\ell_0(A, K)$ such that $\forall \ell > \ell_0$, if a point $y' \in A(K)$ is divisible by ℓ in $A(K_\infty)$, then, y' is already divisible by ℓ in A(K), i.e. $A(K)/\ell \cdot A(K) \hookrightarrow A(K_\infty)/\ell \cdot A(K_\infty)$

3. (Diophantine) geometric step

There exists $\ell_1(A, K, y)$ such that $\alpha. y \in \ell. A(K)$ with $\ell > \ell_1$ implies $\alpha \in \ell. \mathcal{O}$.

Proof of 1.

- $A[\ell]$ is a semi-simple *J*-module (Faltings), so there exists $\alpha_{\ell} \in End_J(A[\ell])$ killing *N*. - $End_J(A[\ell]) \simeq End(A) \otimes \mathbf{F}_{\ell}$ (Faltings), so α_{ℓ} yields $\alpha \in \mathcal{O}, \alpha \notin \ell \mathcal{O}$ killing *N*. - $\xi_{\alpha,y} = \alpha \xi_y$, so, $\frac{1}{\ell} \alpha . y$ is fixed by *N*.

Proof of 2.

Proof of 3.

Mordell-Weil (or a trick of Cassels's), both based on heights.

[Similar arguments in the *l*-adic case.]

Some diophantine applications

C. Khare, D. Prasad : Reduction of homomorphisms mod p and algebraicity, JNT 105, 2004, 322-332.

A/K simple, $y, y' \in A(K)$ s.t. for almost all places v, the order of $y \mod v$ divides the order of $y' \mod v$. Then, $\exists \alpha \in \mathcal{O}, y' = \alpha.y$. (This sharpens a result of M. Larsen.)

U. Zannier : On the Hilbert Irreducibility Theorem, Pisa preprint, 2008. Let $\pi : Y \to A$ be a dominant *K*-morphism of finite degree, with *Y* irreducible and $A = E^n$. Let $y \in A(K)$ generate *A*. Suppose that for any isogeny $\phi : A \to A$, the pull-back $\phi^*(Y)$ is irreducible. Then there is an arithmetic progression \mathcal{V} in \mathbb{Z} such that each $\nu \in \mathcal{V}$, the fiber $\pi^{-1}(\nu.y)$ is *K*-irreducible.

Also, work of M. Gavrilovich (K-Theory, 38, 2008, 135-152) on $Ext(E(\overline{K}), \mathbb{Z}^2)$; of C. Salgado (PhD. Paris 7, 2009) on ranks of elliptic surfaces, ...

II.a . Logarithms on abelian schemes

• $K = \mathbb{C}(S)$ or $\mathbb{C}(S)^{alg}$, $S/\mathbb{C} =$ smooth affine curve, $\partial =$ a derivation on K with $K^{\partial} = \mathbb{C}$, $\widehat{K} =$ diff. closure, $\mathcal{U} =$ univ. domain.

• A/K, coming from an abelian scheme $\mathcal{A} \rightarrow S$. $A_0 =$ its K/\mathbb{C} -trace. Its universal extension \tilde{A} has dimension 2g:

 $0 \to W_A \to \tilde{A} \to^{\pi} A \to 0$

Exponential sequence :

 $0 \to T_B \tilde{\mathcal{A}} \to L \tilde{\mathcal{A}}^{an} \to e^{xp} \tilde{\mathcal{A}}^{an} \to 0$

• $y \in \tilde{A}(K)$, generating \tilde{A} , i.e. : $\forall H \subsetneq \tilde{A}, y \notin H + \tilde{A}_0(\mathbb{C})$. Chose $\ell n(y) \in exp^{-1}(y)$. Then :

Theorem L (André, 1992) $tr.dg.(K(\ell n(y))/K) = 2g.$ \tilde{A} has a structure of algebraic $D\text{-}{\rm group},$ with $\partial\ell n_{\tilde{A}}:\tilde{A}\to L\tilde{A}$

Gauss-Manin connection :

 $\begin{array}{l} \partial_{L\widetilde{A}} = \partial \ell n_{\widetilde{A}} \circ exp : L\widetilde{A} \rightarrow L\widetilde{A} \\ \text{So } \ell n(y) \rightsquigarrow x \in L\widetilde{A}(\widehat{K}) \text{ solution of the inhomogeneous LDE} : \partial_{L\widetilde{A}}(x) = \partial \ell n_{\widetilde{A}} y. \end{array}$

• $K_{L\tilde{A}} = K(T_B(\tilde{A})) =$ Picard-Vessiot extension for $\partial_{L\tilde{A}}(-) = 0$, with solution space $(L\tilde{A})^{\partial} = T_B(\tilde{A}) \otimes \mathbb{C} \simeq \mathbb{C}^{2g}$.

We will actually prove that $Gal_{\partial}(K_{L\tilde{A}}(\ell n(y))/K_{L\tilde{A}}) \simeq (L\tilde{A})^{\partial}.$

$$\begin{aligned}
\hat{K} & | \\
K_{L\tilde{A}}(\ell n(y)) & \xi_{y} \\
& | \\
K_{L\tilde{A}} & \rho \\
& | \\
& K \\
\end{bmatrix} N & \hookrightarrow & (L\tilde{A})^{\partial} \\
& K \\
\xi_{y}(\sigma) = \sigma(\ell n(y)) - \ell n(y), \quad \xi_{y}(\tau \sigma \tau^{-1}) = \tau(\xi_{y}(\sigma)).
\end{aligned}$$

Proof (in a "generic" case)

By Deligne, $L\tilde{A}$ is a semi-simple *D*-module. For simplicity, suppose that it is irreducible.

1. Galois theoretic step .

(Of necessity, base extension to $K_{L\tilde{A}} \rightsquigarrow L\tilde{A}$ becomes " $K_{L\tilde{A}}$ -large" for the morphism $[exp]_{\tilde{A}}$.)

 $Im(\xi_y) \simeq N$ is a *J*-submodule of $(L\tilde{A})^{\partial}$. Assume $N \neq (L\tilde{A})^{\partial}$. Then $N = 0, x \in L\tilde{A}(K_{L\tilde{A}})$ and

$$\partial \ell n_{\tilde{A}} y = \partial_{L\tilde{A}}(x) \in \partial_{L\tilde{A}}(L\tilde{A}(K_{L\tilde{A}})).$$

2. Galois descent

If a point $z \in L\tilde{A}(K)$ lies in $\partial_{L\tilde{A}}(L\tilde{A}(K_{L\tilde{A}}))$, then, z already lies in $\partial_{L\tilde{A}}(L\tilde{A}(K))$, i.e.

$$Coker(\partial_{L\tilde{A}}, L\tilde{A}(K)) \hookrightarrow Coker(\partial_{L\tilde{A}}, L\tilde{A}(K_{L\tilde{A}}))$$

Indeed, J is reductive, so $H^1(J, (L\tilde{A})^{\partial}) = 0$.

3. Geometric step

Manin's theorem : if $\partial \ell n_{\tilde{A}} y = \partial_{L\tilde{A}}(x)$ for some $x \in L\tilde{A}(K)$, then $y \in W_A + \tilde{A}_0(\mathbb{C}) + \tilde{A}_{tor}$.

A diophantine application

Theorem L plays a (minor, but not empty) role in

D. Masser, U. Zannier : Torsion anomalous points and families of elliptic curves; CRAS Paris 346, 2008, 491-494,

i.e the following special case of the Zilber-Pink conjecture. Consider the sections y, y' with abscissae 2, 3 of the Legendre elliptic scheme $E/S, S = \lambda$ -line. There are finitely many λ 's such that both $y(\lambda)$ and $y'(\lambda)$ are torsion points on E_{λ} . In other words, the curve C = (y, y') on the abelian scheme A/S, $A = E \times E$, has finite intersection with $A^{[>1]}$, where $A^{[>1]}$ = the union of all 2-codim'l algebraic subgroups of all the fibers of A/S.

Uses a result of J. Pila (Quart.J.M 55, 2004, 207-223) on the rational points of a subanalytic surface away from the union of its non-punctual semi-algebraic subsets. The algebraic independence of $\ell n(y), \ell n(y')$ over $K_{L\tilde{A}}$ (plus some knowledge of the size of J as well) shows that there is nothing to withdraw.

II b. Exponentials on abelian schemes

As in II.a,

$$K = \mathbb{C}(S), \ \partial, \ A/K, \ A_0/\mathbb{C}, \ \tilde{A}.$$
$$0 \to T_B \tilde{\mathcal{A}} \to L \tilde{\mathcal{A}}^{an} \to e^{exp} \ \tilde{\mathcal{A}}^{an} \to 0$$

• $x \in L\tilde{A}(K)$, generating $L\tilde{A}$, i.e. : $\forall H \subsetneq \tilde{A}, x \notin LH + L\tilde{A}_0(\mathbb{C})$. Then :

Theorem E (Be-Pillay, JAMS, 201?) tr.dg.(K(exp(x)/K) = 2g.

As in II.a, we have

$$\begin{array}{c} \partial \ell n_{\tilde{A}} : \tilde{A} \to L \tilde{A} \\ \partial_{L \tilde{A}} = \partial \ell n_{\tilde{A}} \circ exp : L \tilde{A} \to L \tilde{A}. \end{array}$$

So $exp(x) \rightsquigarrow y \in \tilde{A}(\hat{K})$ solution of the inhomogeneous NLDE : $\partial \ell n_{\tilde{A}}(y) = \partial_{L\tilde{A}}x$.

Let $K_{\tilde{A}}$ be the differential extension of \overline{K} generated by all points in

$$\tilde{A}^{\partial} = \{ z \in \tilde{A}(\hat{K}), \partial \ell n_{\tilde{A}}(z) = 0. \}$$

Using . • Pillay's Galois theory . • + a Galois descent , we will actually prove that $Gal_{\partial}(K_{\tilde{A}}(exp(x))/K_{\tilde{A}}) \simeq \tilde{A}^{\partial}.$

$$\begin{array}{ccc} \widehat{K} & & \\ & \mid \\ K_{\widetilde{A}}(exp(x)) & \xi_{X} & \\ & \mid \\ & \mid \\ & \mid \\ & K_{\widetilde{A}} & \rho & \\ & \downarrow \\ & K & \\ \end{array} \right\} N \xrightarrow{} \widetilde{A}^{\partial} \\ M \xrightarrow{} \int I \xrightarrow{} Aut(\widetilde{A}^{\partial})$$

$$\xi_x(\sigma) = \sigma(exp(x)) - exp(x).$$

In generic cases (e.g. when the Kodaira-Spencer rank of A/S is maximal, e.g. when $L\tilde{A}$ is irreducible),

$$K_{\tilde{A}} = \overline{K}$$
 :

the *D*-group \tilde{A} is \overline{K} -large, and no descent is required ! We then merely need :

1. Galois theoretic step

 $Im(\xi_x) \simeq N = H^{\partial}$ for some algebraic *D*subgroup *H* of \tilde{A} . Assume $H \neq \tilde{A}$. Then there is a non trivial *D*-quotient $\pi : \tilde{A} \to \overline{A}$ sending *x* to $\overline{x} \in L\overline{A}(K)$, with

 $\partial_{L\overline{A}}(\overline{x}) = \partial \ell n_{\overline{A}}(\overline{y})$ for some $\overline{y} \in \overline{A}(K)$.

3. Geometric step

If $\overline{A} \simeq \tilde{B}$ for some abelian variety quotient Bof A, just apply Manin's theorem: $\overline{x} \in LW_B + L\tilde{B}_0(\mathbb{C})$, so x cannot generate $L\tilde{A}$.

The general case requires Chai's sharpening of Manin's theorem.

That $\overline{A} \simeq \tilde{B}$ happens automatically when W_A contains no non trivial *D*-subgroup. When $A_0 = 0$, this is equivalent to \tilde{A} being \overline{K} -large. In general,

2. Galois descent in Pillay's theory

Write K for \overline{K} , and let U be the maximal D-subgroup of \tilde{A} (equivalently D-submodule of $L\tilde{A}$) contained in W_A .

$$0 \to U \to \tilde{A} \to \overline{A} \to 0.$$

- Hrushovski-Sokolovic, Marker-Pillay $\Rightarrow \overline{A}$ is *K*-large : $\overline{A}^{\partial}(\widehat{K}) = \overline{A}^{\partial}(K)$.
- Manin-Chai $\Rightarrow \overline{A}^{\partial}(K) = \overline{A}_{tor} + A_0(C).$
- $0 \to U^{\partial}(\widehat{K}) \to \widetilde{A}^{\partial}(\widehat{K}) \to \overline{A}^{\partial}(\widehat{K}) \to 0.$ Therefore

 $K_{\tilde{A}} = K_U$ is a P-V extension of Kand $\tilde{J} = Gal_{\partial}(K_{\tilde{A}}/K) := J_U$ is a factor of the reductive group $J = Gal_{\partial}(K_{L\tilde{A}}/K)$. Actually (Deligne), J, hence J_U , is semi-simple.

By Step 1 over $K_{\tilde{A}}$, and rigidity of *D*-subgroups of \tilde{A} , we have :

 $\partial_{L\overline{A}}(\overline{x}) = \partial \ell n_{\overline{A}}(\overline{y})$ for some $\overline{y} \in \overline{A}(K_U)$. and it remains to show that $L\overline{A}(K)/\partial \ell n_{\overline{A}}(\overline{A}(K)) \hookrightarrow L\overline{A}(K_U)/\partial \ell n_{\overline{A}}(\overline{A}(K_U)),$ i.e. that we may take $\overline{y} \in \overline{A}(K)$. The cocycle $\hat{\xi}_{\overline{y}} : J_U \to \overline{A}^{\partial} : \sigma \mapsto \sigma \overline{y} - \overline{y}$ is a group homomorphism. Since $J_U = [J_U, J_U]$, while \overline{A}^{∂} is abelian, $\xi_{\overline{y}}$ vanishes, so that indeed \overline{y} is defined over K.

Conclusion

• No diophantine application (yet) of Theorem E.

• But the method works in other contexts, e.g., considering the differential equation

 $\partial \ell n(y) = \lambda . \partial \ell n(x)$

on \mathbb{G}_m , with $\lambda \in \mathbb{C}, \lambda \notin \mathbb{Q}$:

if $x_1, ..., x_n \in \mathbb{G}_m(K)$ are multiplicatively independent modulo $\mathbb{G}_m(\mathbb{C})$, then, $x_1^{\lambda}, ..., x_n^{\lambda}$ are algebraically independent over $K = \mathbb{C}(z)$.

For more general (Schanuel-type) results on $x^\lambda,$ see:

- M. Bayes, J. Kirby, A. Wilkie, (2008) arXiv: 0810.4457.

- P. Kowalski, Ann. PAL, 156, 2008, 96-109.