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Colloque de Théorie des Nombres, Maison franco-japonaise et
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Abstract. In the first four sections of this paper, we describe Yves André’s

beautiful new proof [2] , [3] of the theorem of Siegel-Shidlovsky on values of

E-fonctions. Our last two sections are devoted to the generalized relation of

Fuchs on exponents (cf. [4], [5]), which plays the role of a multiplicity estimate

in André’s method.

Résumé. Récemment, Yves André a obtenu une démonstration du théorème

de Siegel et Shidlovsky, comme sous-produit de sa théorie de Gevrey arith-

métique. On décrit cette preuve, d’une facture toute nouvelle en transcen-

dance, ainsi que la généralisation au cas irrégulier de la relation de Fuchs, qui

joue dans sa méthode le rôle du lemme de Shidlovsky.

1 Introduction.

Let Q be an algebraic closure of Q. By an E-function, we shall mean in the

present note a power series

F = Σm≥0
am

m!
zm ∈ Q[[z]]

satisfying the following conditions (which, as far as (ii) and (iii) are concerned,

are slightly stricter than Siegel’s, cf. [3]):

i) F is a solution of a differential equation with coefficients in Q(z) (in par-

ticular, the an’s generate a number field); we shall denote by DF ∈ Q(z)[d/dz]

the monic operator of minimal order such that DF (F ) = 0, and by nF the

order of DF .
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ii) for each archimedean absolute value |.| on Q, the sequence {|am|; m ≥ 0}
is bounded from above by a geometric progression (in particular, F defines an

entire function F (z) for each complex embedding of Q);

iii) there exists a sequence {dm; m ≥ 0} of positive integers, bounded from

above by a geometric progression, such that dmar is an algebraic integer for

all 0 ≤ r ≤ m.

As is well-known (cf. [11]), we then have

Theorem 0 (Siegel-Shidlovsky). Let F = t(F1, . . . , Fn) be a vector of

E-functions, and let A be an n× n matrix with coefficients in Q(z) such that
d
dz

F = AF . Fix a complex embedding of Q, and a point α 6= 0 ∈ Q away from

the poles of A. Then,

tr.deg.(Q(F1(α), . . . , Fn(α))/Q) = tr.deg.(Q(z)(F1, . . . , Fn)/Q(z)).

The differential assumption on F makes Condition (i) above redundant.

Note also that the set of poles of A may be strictly smaller than the union of

the sets of singularities of the differential operators DFi
, i = 1, . . . , n. But the

requirement that α is not a pole of A is crucial: the conclusion of Theorem 0

ceases to hold if F1, . . . , Fn is replaced by (z − α)F1, . . . , (z − α)Fn.

The new proof devised by Y. André of Theorem 0 relies on three ingredients.

The most important one, which looks deceptively simple, reads as follows.

Theorem 1 (André). Let F be an E-function, and let DF ∈ Q(z)[d/dz]

be the (monic) differential operator of minimal order such that DF (F ) = 0.

Then, the differential equation DF (y) = 0 admits a basis of analytic solutions

at any point α ∈ P1(C), α 6= 0,∞.

(Such a point α may well be a singularity of the differential operator DF and

Theorem 1 says in this case that it must be an apparent singularity.) Denoting

by n = nF the order of D = DF , and by ordα the order function on the local

ring Q[[z − α]], we may then consider the n successive maxima {eα
n−1, . . . , e

α
0}

of ordα on the C-vector space of solutions of Dy = 0 which are analytic at α,

and, inspired by Weierstrass points on curves, define the defect of D at α by

the formula

δα(D) = Σi=0,...,n−1(e
α
i − i).
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(By Cauchy’s theorem, δα(D) = 0 if α is an ordinary point of D; it is positive

if α is an apparent singularity). With these notations, Theorem 1 implies :

Corollary 1 (André). If an E-function F belongs to Q[[z]] and if α ∈
P1(Q), α 6= 0,∞, then

δα(DF ) ≥ nF . ordα(F ).

The rationality assumptions on α and on F in this corollary are crucial for its

proof. As explained at the end of this section, its conclusion encompasses a

extrapolation process of an entirely new nature in transcendence theory.

A standard feature in transcendence proofs, the second ingredient is a mul-

tiplicity estimate. A convenient way to describe it here consists in setting, for

any differential operator D ∈ C(z)[d/dz], of order n, and any α ∈ P1(C) :

δα(D) = (Σi=0,...,n−1(e
α
i − i))− 1

2
irrα(End(D)),

where {eα
0 , . . . , eα

n−1} are the exponents of D at α, and irrα(End(D)) is Mal-

grange’s irregularity of End(C(z)[d/dz]/C(z)[d/dz]D) at α. These notions

are explicited in Section 5, but for the moment, it suffices to know that the

δα(D)’s reduce to the defects defined above when α is an ordinary point or an

apparent singularity of D, and that they satisfy the following generalization of

Fuchs’ global relation on exponents :

Theorem 2 (cf. [4], [5] and §6 below). For any D ∈ C(z)[d/dz], the

(finite) sum of all the non-zero defects of D satisfies:

Σ
α∈P1(C)

δα(D) = −n(n− 1).

Since ordinary points and apparent singularities provide non negative con-

tributions to this sum, we derive from Theorems 1 and 2 :

Corollary 2 (André). For any E-function F and any α ∈ P1(Q), α 6=
0,∞,

δα(DF ) ≤ − δ0(DF ) − δ∞(DF )− nF (nF − 1).

The third ingredient of André’s proof is the transcendence method itsef.

Under the assumption that Theorem 1 does not hold, an auxiliary E-function

3



F ∈ Q[[z]] can be built up with a high order T of vanishing at the point α = 1.

A interesting feature here is that this construction does not appeal to Siegel’s

lemma: just like Mahler’s method (cf. [13]), it relies solely on linear algebra.

But an even more remarkable feature is that the full construction occurs at

the point α, and requires extrapolations neither at 0 (or other points) nor

on higher derivatives at α. Rather, the extrapolation is done on the other

solutions of the differential equation DF satisfied by the auxiliary function.

Indeed, Corollary 1 implies that δα(DF ) ≥ nF T . But Corollary 2 gives an

upper bound of the type δα(DF ) < nF T for T sufficiently large, whence the

searched for contradiction.

2 An illustration of the method

As a warm-up, let us show how Theorem 1 immediately implies the following

consequence of Theorem 0 . The proof provides a simple illustration of André’s

extrapolation process.

Corollary 0 (Lindemann-Weierstrass). Let β1, . . . , βn be complex algebraic

numbers, linearly independent over Q. Then, eβ1 , . . . , eβn are algebraically

independent over Q.

Proof : as is well known, it suffices to derive a contradiction from the assump-

tion that

γ1e
α1 + . . . + γne

αn = 0,

where γ1, . . . , γn are non-zero complex algebraic integers, and α1, . . . , αn are

distinct complex algebraic integers.

As an auxiliary function, choose (with Lindemann !)

F (z) = Πσ(γσ
1 eασ

1 z + . . . + γσ
neασ

nz),

where σ runs through all the complex embeddings of the field generated by the

αi, γj’s. Then, F = Σm≥0
am

m!
zm with coefficients am ∈ Z, and since F is a sum

of exponential functions, it defines an E-function; furthermore, the minimal

monic differential operator DF annihilating F has constant coefficients (and

positive order, because F 6≡ 0). Now, I claim that

Φ(z) =
F (z)

1− z
= Σm≥0

bm

m!
zm
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also defines an E-function. Indeed, F (1) = 0 by assumption, so that Φ is

an entire function of exponential growth; since the coefficients bm are rational

numbers, this does imply that for each archimedean absolute value |.| on Q,

the sequence {|bm|; : m ≥ 0} grows at most geometrically. Furthemore, the

bm = Σr=0,...,m
m!
r!

ar all belong to Z, and Condition (iii) is satisfied. Finally,

consider the monic differential operator

DΦ :=
1

z − 1
oDF o(z − 1) = DF (

d

dz
+

1

z − 1
) ∈ Q(z)[d/dz]

(where the third term means that d/dz is replaced by d/dz+ 1
z−1

in the expres-

sion of DF as a polynomial in d/dz). The C-linear map ξ : y 7→ (z−1)y gives a

bijection between the solution spaces of the differential equations DΦy = 0 and

DF y = 0, so that DΦ is indeed the minimal differential operator annihilating

Φ.

Theorem 1 now implies to all the solutions of DΦy = 0 are analytic at 1.

In view of the bijection ξ, we infer that all the solutions of DF y = vanish at 1.

Since DF has constant coefficients, this contradicts Cauchy’s theorem (which

here plays the role of Corollary 2 ) 1.

The latter argument on ξ is the proof of the derivation

Theorem 1 ⇒ Corollary 1 : under the hypotheses of Corollary 1 , let T be the

order of F at α, and let Φ(z) = F (z)/(α − z)T . Because of the Q-rationality

assumptions on F and α, one checks as above that Φ defines an E-function,

and the map ξ : y 7→ (z − α)T y shows that all the solutions of DF near α

are analytic functions, of order ≥ T . Thus α is an apparent singularity, with

minimal exponent e0 ≥ T . Now, the exponents {e0, . . . , enF−1} of DF at α

are distinct, since no logarithmic solution occur. Hence, ei ≥ T + i for all

i = 0, . . . , nF − 1, and δα(DF ) ≥ nF T .

3 From G-functions to E-functions.

Let L be the formal Laplace transform on the ring Q[[z]], sending F =

Σm≥0bmzm to LF = Σm≥0bm
m!

zm+1 (when F defines an entire functions of ex-

1 In [3], André gives yet another proof of Lindemann-Weierstrass, as a direct consequence
of Chudnovsky’s theorem on G-functions (see Section 3 below), and contrasts it with the
proof of Bézivin and Robba [6], which relied on the Borel-Polya-Dwork-Bertrandias ratio-
nality criterion.
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ponential growth, LF is the Taylor expansion at 0 of
∫∞
0 F (u)e−zudu). A

G-function (again in a stricter sense than Siegel’s, now because of Condi-

tion (i)) may then be defined as a power series f(z) = Σm≥0amzm such that

f(z) = 1
z
LF (1

z
) for some E-function F , i.e. such that :

i) f is a solution of a differential equation with coefficients in Q(z) (the

relation between DF and the annihilator Df of f in Q(z)[d/dz] is described

below);

ii) for each archimedean absolute value |.| on Q, the sequence {|am|; m ≥ 0}
is bounded from above by a geometric progression ;

iii) there exists a sequence {dm; m ≥ 0} of positive integers, bounded from

above by a geometric progression, such that dmar is an algebraic integer for

all 0 ≤ r ≤ m (see also [12]).

A fundamental theorem of Chudnovsky [9] asserts that the operator Df is

then an G-operator, i.e. that the resolvent

R(z, t) = Σm≥0
Rm(t)

m!
(z − t)m

of the associated system satisfies Galočkin’s property : there exists a non-zero

polynomial q(t) and a sequence {Dm; m ≥ 0} of positive integers, bounded

from above by a geometric progression, such that for all r = 0, . . . ,m, the

entries of the matrices Dmq(t)m Rr(t)
r!

are polynomials with algebraic integers

as coefficients, all of whose archimedean values grow at most geometrically with

m. The first inequality in Theorem IV.5.2 of [1] then implies that Df satisfies

the condition introduced by Bombieri in [7], X, on generic radii of convergence,

hence is a fuchsian operator with quasiunipotent local monodromy at each of

its singularities, in view of a classical result of Katz. The following consequence

will suffice for the proof of Theorem 1 .

Proposition 1 (cf. [2], §3). Let f be an G-function, and let Df ∈
Q(z)[d/dz] be the (monic) differential operator of minimal order such that

Df (f) = 0. Then, the differential equation Df (y) = 0 admits a regular singu-

larity at 0.

This result truly pertains to number theory. We now describe André’s

purely formal derivation

Proposition 1 ⇒ Theorem 1 : let F be an E-function, and let ∂ = d/dz. Then

L(zF ) = −∂(LF ) , L(∂(F )) = zLF − F (0) , and more generality, for any
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element ∆, of order δ (in ∂) in the ring D = Q[z, ∂] of differential operators

with polynomial coefficients,

L(∆(F )) = F(∆) (LF ) + pF (z),

where pF ∈ Q[z] is a polynomial of degree at most δ − 1 , and where F :

z 7→ − ∂ , ∂ 7→ z denotes the Fourier transform on the ring D, with inverse

F−1 : z 7→ ∂ , ∂ 7→ −z. Now,

L(zδ∆(F ) = (−∂)δL(∆(F )) = (−∂)δF(∆) (LF ) ,

so that F−1(∇)(F ) = 0, for any ∇ ∈ D annihilating LF .

Set f(z) = 1
z
(LF )(1

z
), and let ∇ be any non-zero Q[z]-multiple, lying in

the ring D, of the annihilator D 1
z
f( 1

z
) of 1

z
f(1

z
). Then, ∇(LF ) = 0. On the

other hand, ∇ is equivalent to the pull-back under the inversion z 7→ 1
z

of the

annihilator Df of f . Since f is a G-function, we thus deduce from Proposition

that ∇ admits a regular singularity at ∞. In particular, writing δ (resp. ν) for

the degree in z (resp. the order in ∂) of ∇ = Σi=O,...,νCi(z) ∂i, the standard

condition of Fuchs at ∞ reads :

deg(Ci)− i ≤ deg(Cν)− ν.

Therefore, the only polynomial Ci of degree δ is Cν , and F−1(∇) is a differential

operator (of order δ in ∂), whose highest coefficient is a monomial in z (of

degree ν). Consequently, F−1(∇) has no singularity outside {0 , ∞}.
Finally, the annihilator DF of F is a right divisor of F−1(∇) in the ring

Q(z)[∂]. Since all solutions of DF (y) = 0 are solutions of F−1(∇)(y) = 0,

this implies that DF has at worst apparent singularities outside {0 , ∞}, as

claimed by Theorem 1.

4 Siegel-Shidlovsky

We can now turn to the promised proof ([3], §2) of Theorem 0 , which, thanks

to standard reductions (cf [11], Lemma 5.3, and Siegel’s trick), is equivalent to

the following assertion : assume that the E-functions F1, . . . , Fn are linearly

independent over Q(z), and let K be a number field containing their Taylor

coefficients at 0 and the coefficients of the rational functions entries of the
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matrix A; then the dimension ν of the K-vector space generated by their

values (relatively to the given complex embeding of Q) at α = 1 satisfies

ν ≥ n/κ,

where κ = [K : Q].

By definition, ν is the dimension of the smallest K-subspace W of Kn

such that W (C) 3 F (1). View Kn as the space of initial condition of the

differential system dY /dz = AY at its ordinary point α = 1, and let Y 1, ..., Y ν

be a basis of its solutions in (K[[z − 1]])n whose values at α = 1 generate W .

In particular, F belongs to the C-vector space these generate in (C[[z− 1]])n.

Let now T be a sufficiently large parameter. By linear algebra, there exist

a non zero linear form P̃ = (P1, . . . , Pn) ∈ ((K[z])n)∗ , whose entries are

polynomials of degrees at most T ν
n

such that

∀ j = 1, . . . , ν : ord1P̃ .Y j ≥ T.

This implies that P̃ .F = Σi=1,...,nPiFi has order at least T at z = 1. As

auxiliary function, we now choose

F = ΠσP̃
σ.F

σ
,

where σ runs through all complex embedings of K. Then, F is an E-function,

which belongs to Q[[z]], and which still vanish to an order ≥ T at 1, so that

the annihilator DF of F in Q(z)d/dz satisfies

δ1(DF ) ≥ nF T ,

in view of Corollary 1.

Following a method introduced by Chudnovsky [8] for Fuchsian operators

(see [4] in case of irregular singularities), we now bound from below the defects

of DF at 0 and at ∞. By differential Galois theory, a basis of solutions of

DF (y) = 0 is given by functions of the form ΠσP̃
σ.Y σ, where each Y σ runs

through a subset of the space the solutions of the differential system dY /dz =

AσY . Therefore, nF is bounded in terms of n and κ, and there exists positive

integers c0(A, κ), c∞(A, κ), depending only on A and κ, such that

δ0(DF ) ≥ − c0(A, κ) , δ∞(DF ) ≥ −nF [K : Q]supi=1,...,ndeg(Pi) − c∞(A, κ).
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Corollary 2 now implies :

δ1(DF ) ≤ nF
κν

n
T + c0 + c∞.

Hence

1 ≤ κν

n
+

cO + c∞
nF T

,

and the proof of our assertion follows on taking T sufficiently large with respect

to A and K.

[To justify the sketch of proof at the end of §1 , recall that the effect of Siegel’s

trick (cf. [11], pp. 217 and 231) is to replace n (resp. ν) by the values at

sufficiently large integers of the Hilbert function of Pn−1 (resp. of a proper

subvariety of Pn−1), so that κν
n

can be made smaller than 1.]

This concludes our report on André’s proof. Note that Siegel-Shidlovsky

is only one of the corollaries of his arithmetic Gevrey theory. For other ap-

plications (q-analogues, Euler-type series, ...) and for the theory itself, please

consult the original papers [2], [3].

5 Exponents.

In this section and the last one, we give the proof of Theorem 2. This cor-

responds to a joint work with G. Laumon, which was summarized (under a

slightly different viewpoint) in [5], and which sharpens a previous joint work

with F. Beukers [4].

Since exponents are a local notion, we first define them over the ring

F [d/dz] of differential operators with coefficients in the fraction field F =

C((z)) of the local ring A = C[[z]] of formal power series with coefficients in

an algebraically closed field C of characteristic zero. We denote by v = ord0

the extension to the algebraic closure F of the standard valuation on F , and

we set θ = zd/dz. Any element D of F [d/dz], of order n, admits a non zero

left A-multiple D̃ ∈ A[d/dz] such that

D̃ = bnθ
n + bn−1θ

n−1 + . . . + b0, infi=0,...,nv(bi) = 0,

and up to a constant multiple, the indicial polynomial P = PD of D is given

by

PD(X) = bn(0)Xn + . . . + b0(0).
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We say that D admits a regular singularity (or : is Fuchsian) at 0 if its de-

gree is n, i.e. if v(bn) = 0. The exponents of D at 0 are then the n roots

e0(D), . . . , en−1(D) of the indicial equation P (X) = 0. In case 0 is ordinary,

P (X) = X(X − 1) . . . (X − (n − 1)), while as explained above, ei(D) ≥ i for

all i = 0 . . . , n − 1, if 0 is an apparent singularity; in both of these cases, the

exponents provide all the values assumed by v on the set of solutions of Dy = 0

in A[[z]].

The general definition of exponenents is based on a splitting of D which

often requires an extension of scalars to F , i.e. to C((t)) with tN = z for some

integer N (one can in fact take N = ppcm(1, . . . , n)), and the introduction of

‘Puiseux polynomials in 1
z

with no constant term’, i.e. elements of 1
t
C[1

t
] ⊂ F .

Since z d
dz

= 1
N

t d
dt

, the degree of the indicial equation PD is invariant under

such extensions, and the definition of exponents in the fuchsian case can be

extended to the full ring F [θ] in a uniform way. For any D = D(θ) ∈ F [θ] and

any ω ∈ F , set

Dω := D(θ + ω) = e−
∫

ω dz
z oDoe

∫
ω dz

z ∈ F [θ].

The classical theorem of Poincaré-Hukuhara-Turritin-Levelt then asserts :

Proposition 2 (cf. [14]). for any monic D ∈ F [θ], there exists a unique

set {ω1, . . . , ωs} of distinct Puiseux polynomials in 1
z

with no constant terms

and a unique set {D1, . . . , Ds} of monic fuchsian operators in F [θ] such that

D is the least common left multiple of {D−ω1
1 , . . . , D−ωs

s } in the ring F [θ].

Note in particular that Σj=1,...,sord(Dj) = ord(D). If nj = ord(Dj), j =

1, . . . , s, we now define the exponents of D at 0 as the collection

{ei(Dj); i = 0, . . . , nj − 1; j = 1, . . . , s}

of all the exponents of all the Dj’s. By the unicity of the maximal right fuchsian

factor of an operator ([14], 2.4.2), these may also be described as the roots of

the indicial polynomials of the operators Dωj ; j = 1, . . . , s. Thus, D always

has n = ord(D) exponents. We also write

irr0(EndD) := − Σ1≤j 6=k≤snjnkv(ωj − ωk) = −2 Σ1≤k<j≤snjnkv(ωj − ωk).

For our needs, the latter expression, which vanishes if D is fuchsian (or, more

generally, if and only if the decomposition above involves a single ωj) can be

taken as the definition of the irregularity of End(F [d/dz]/F [d/dz]D) at 0..
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The following effective version of the Hensel-Sibuya lemma (cf. [14]) is the

key to the proof of Theorem 2.

Lemma 1. Let Θ1, Θ2 be fuchsian operators of order n1, n2. For any not

zero ω ∈ 1
z
C[1

z
], the exponents of D = Θ2Θ

−ω
1 consist of the n1 + n2 numbers :

{ei(Θ1), i = 0, . . . , n1 − 1 ; ei(Θ2)− n1v(ω) , i = 0, . . . , n2 − 1}.

Proof : for such D, one has s = 2 with ω1 = ω, ω2 = 0. Using the second

description of exponents given above, we get :

PDω(X) = PΘ1(X) , PD(X) = PΘ2(X + n1v(ω)),

and the lemma follows.

[For instance, the exponents of D = θ(θ − ω) are {0,−v(ω)} : here, D1 = θ

since Dω = (θ + ω)θ, hence e0(D1) = 0, and D2 = θ − b for some b ∈ A with

b(0) = −v(ω) (indeed, Dy = 0 admits a solution in F with order v(ω) at 0),

hence e0(D2) = −v(ω).]

6 The global relation.

To complete the derivation : Proposition 2 + Lemma 1 ⇒ Theorem 2, some

more local analysis is needed. Let D = θn + bn−1θ
n−1 + . . . + b0 ∈ C((z))[θ].

Performing an eventual ramified covering, we deduce from Proposition 2 a (non

canonical) decomposition

D = D′−ωs

s oD′−ωs−1

s−1 o . . . oD′−ω1

1 ∈ C((z
1
N ))[θ],

where each

D′
j = θnj + bj,nj−1θ

nj−1 + . . . + bj,0 , (j = 1, . . . , s)

is C((z
1
N ))-equivalent to Dj, hence fuchsian at 0. Looking at the trace of its

indicial equation, we get Σi=0,...,nj−1ei(D
′
j) = −Resz=0bj,nj−1

dz
z
, and we derive

from the relation bn−1 = Σj=1,...,s(bj,nj−1 − njωj):

Σj=1,...,sΣi=0,...,nj−1ei(D
′
j) = −Resz=0bn−1

dz

z
.

On the other hand, iterating Lemmma 1, we get :

∀j = 1, . . . , s,∀i = 0, . . . , nj − 1 : ei(D
′
j) = ei(Dj) + Σ1≤k≤j−1nkv(ωj − ωk),
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hence on adding up and recalling the definition of irr0(End(D)):

(Σj=1,...,sΣi=0,...,nj−1ei(D))− 1

2
irr0(End(D)) = −Resz=0bn−1

dz

z
.

Let now D = (d/dx)n + an−1(d/dx)n−1 + . . . + a0 ∈ C(x)[d/dx]. Localizing

at a point α ∈ P1(C), α 6= ∞ with local parameter z = x − α, we write :

znD = θn + bn−1θ
n−1 + . . . + b0 ∈ C((z))[θ], with bn−1 = zan−1 − n(n−1)

2
, and

the local formula above yields :

δα(D) = −Resαan−1dx.

Localizing at α = ∞ with local parameter z = 1
x
, we write (−1)nxnD =

θn + bn−1θ
n−1 + . . . + b0, with −bn−1 = xan−1 − n(n−1)

2
, and the local defect

becomes

δ∞(D) = −Res∞an−1dx− n(n− 1).

The residue formula completes the proof of Theorem 2.
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