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Abstract

We present a general multiplicity estimate for
linear forms in solutions of various type of
functional equations, which covers and ex-
tends the zero estimates used in recent work
on the Siegel-Shidlovsky theorem and its q-
analogues. We also present a dual version of
this estimate, as well as a new interpretation
of Siegel’s theorem itself in terms of periods
of Deligne’s irregular Hodge theory.

Plan

1. A bit of history on Siegel-Shidlovsky

2. Yet another multiplicity estimate ...
What for ?

3. Generalized Shidlovsky lemmas

3. Vanishing lemmas

4. Deligne’s periods
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XXth century

n > 0, [K : Q] = κ, K ⊂ C ; K 3 γ → 1

d

dz

E1...
En

 = A(z)

E1...
En

 (∗)

where A(z) ∈ gln
(
K(z) ∩K[[z − 1]]

)
.

E = (E1, ..., En), KE-functions, generating a
C(z)-vector space of dimension n(E).

E(1) = (E1(1), ..., En(1)), “generating" a K-
vector space W1 of dimension r := r1(E).

Theorem (Siegel-Shidlovsky) : r1(E) ≥ n(E)
κ .

Nesterenko-Shidlovsky (1996) : if K → Q,
then rγ(E) = n(E) for a.a. γ’s ∈ Q.
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XXI th century

Y. André (2000) : new proof of S-Sh. The
fundamental lemma is : let f be a QE-function,
and let L ∈ C(z)[d/dz] of minimal order such
that L(f) = 0. If f(1) = 0, then, all so-
lutions of L vanish at z = 1. Then, as in
the Gel’fond-Dèbes method from the theory
of G-functions, construct an auxiliary KE-
function with high multiplicity at z = 1, ra-
ther than at 0. Take the product of its conju-
gates to get a QE-function (⇒ 1

κ).

D.B. (2004) : new proof of S-Sh., based on
Laurent interpolation determinants. Requires
a new type of multiplicity (or vanishing) lemma,
more on this later. No auxiliary function, and
the roles of 0 and 1 are parallel. Cf. A. Sert
(1999) in the Lindemann-Weierstrass case.

F. Beukers (2006) : r1(E) = n(E) ! ! !
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In other words, S-Sh. is valid over Q. The
proof is based on André’s lemma and on diffe-
rential Galois theory. The output is that An-
dré’s lemma is valid for KE-functions, hence
no loss of 1

κ in the final estimate.

Meanwhile, in the q-difference world :y1...
yn

 (qz) = A(z)

y1...
yn

 (z) (∗q)

where A(z) ∈ GLn

(
K(z)

)
.

Y := (y1, ..., yn) analytic at 0 with n(Y ) = n,
0 6= s = (p1, ...pn) ∈ (C[z])n, deg(s) ≤ L,
s.Y = p1y1 + ... + pnyn, sk.Y (z) = (s.Y )(qkz),
generating a C(z) v.-s. of dimension ν. Then :

M. Amou, T. Mataha-Alo, K. Väänäänen (2003,
2006) : ord0(s.Y ) ≤ νL + c.

Applications in the style of Siegel-Shidlovsky :
see Keijo’s talk on Wednesday.

D.B. (2006) : new type of multiplicity esti-
mates, involving 0 and qN-orbits. No applica-
tion yet.
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What for ?

Recall W1 = smallest K-v-s. through E(1) =

(E1(1), ..., En(1)), of dimension r := r1(E), as-
sume n(E) = n, and let Z1, ...,Zr be a basis
of solutions of (∗) whose values at 1 lie in
W1. Fix parameters L, T0, T1 ∈ N, and consi-
der the linear map (with ∂ = d/dz) :

φ : (C[z]≤L)n → CT0 ⊕CrT1

dim = n(L + 1) dim = T0 + rT1

s = (p1, ..., pn) 7→ (∂t(s.E)(0)t<T0
; ∂t(s.Zρ)(1)t<T1

)

represented by the (T0+rT1)×n(L+1) matrix
Φ =

Φ0 =
(
∂t(si.E)(0)

)
0≤t≤T0−1;1≤i≤L+1

...

Φρ =
(
∂t(si.Zρ

)
(1)

)
0≤t≤T1−1;1≤i≤L+1

... (ρ=1,...,r)

 .

where si, i ≤ (L +1)n is a basis of (C[z]≤L)n.

If we knew that
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“n(L + 1) < T0 + rT1 ⇒ φ injective",
or “n(L + 1) > T0 + rT1 ⇒ φ surjective",

then the proof would consist of two words :
just look !

Φ0 =
(
∂t(1

`!z
`Eι)(0)

)
0≤t≤T0−1;1≤ι≤n,0≤`≤L

....

Φρ =
(
∂t(1

`!z
`Zρ,ι)(1)

)
0≤t≤T1−1;1≤ι≤n,0≤`≤L

... (ρ=1,...,r)

 .

(and extract a n(L +1)- (or T0 + rT1-)minor
determinant ∆ ∈ K∗, whose height forces
T0T1 ≤ rκLT1 + +r(κ + 1)T2

1 + +O(L2/LogL),
hence n ≤ rκ, if T0 = (n− ε)L, T1 small.)

For Lindemann-Weiertsrass, one can also use :
Φ0 =

(
∂t(1

`!(z − 1)`Eι)(0)
)

0≤t≤T0−1;1≤ι≤n,0≤`≤L

....

Φρ =
(
∂t(1

`!(z − 1)`Zρ,ι)(1)
)

0≤t≤T1−1;1≤ι≤n,0≤`≤L

... (ρ=1,...,r)



(and conclude that T0T1 ≤ κT0L + O(L2/LogL),
hence n ≤ rκ, if T1 = (n

r − ε)L, T0 small.)
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Generalized Shidlovsky lemmas

Write (M = C(z)n,∇) for (∗), with set of
singularities S. Let R ⊂ C be a finite set,
and for all α ∈ R, let Ŵα be a C-susbspace
of M̂α = (K[[z − α]])n formed by solutions
of ∇. A linear form s in M∗(L) = (C[z]≤L)n

vanishes to an order ≥ T along Ŵα if for all
Z ∈ Ŵα, s.Z vanishes to an order ≥ T .

Differential multiplicity lemma : ∃c(∇), com-
putable in terms of M,∇ and card(R), such
that : let {Tα, α ∈ R;L} ∈ N, and 0 6= s ∈
M∗(L) vanishing to an order ≥ Tα along Ŵα,
for all α ∈ R. Then, there exists a subspace
M′ in Ker(s) ⊂M stable under ∇, such that∑
α∈R

dim(Ŵα/Ŵα∩M̂′
α).Tα ≤ rk(M/M′).L+c(∇).

[And we may in fact take for M′ the maximal
∇-stable subspace of Ker(s).]

8



R = {0,1}, dim(Ŵ0) = 1, r = dim(Ŵ1). Say
that Ŵ1 is non degenerate if for all M′ 6=M
stable under ∇, we have :

r′

n′
:=

dim(Ŵ1/Ŵ1 ∩ M̂′
1)

rk(M/M′)
≥

dim(Ŵ1)

rk(M)
:=

r

n

(NB : n(E) = n ⇔ Ŵ0 non-degenerate.)

Corollary : let T0, T1, L ∈ N, let s ∈ M∗(L)

vanishing to an order ≥ Tα along Ŵα, α =

0,1. Assume the Ŵα’s are non-degenerate,
and that T0+rT1 > nL+nc(∇). Then, s = 0.
In other words, φ is injective.

(NB : could replace the non-degeneracy of
Ŵ1 by L > T1.) Forgetting α = 1, this im-
plies Shidlovsky’s original lemma that if the
order of s.E at α = 0 is almost nL, then, the
linear forms s = s1,∇∗s = s2, ..., sn are linearly
independent.

9



In the q-difference world

Let |q| < 1. For α ∈ C∗, the positive (resp.
negative) orbit of α is {qnα, n ≥ 0} (resp.
n ≤ 0).

f(z) in the Nielsen class (of quasiunipotent
type) means : a polynomial in a fractional
power of z and in Logz, whose coefficients are
meromorphic functions near 0. Given α ∈ C∗

and some determination of Logz such that f

is defined on the positive orbit of α, set :

ordq
α(f) = sup{t ∈ N, f(α) = ... = f(qt−1α) = 0}.

When f 6= 0, this is a finite number := the
order of f at α relatively to the q-difference
operator δq : f → δqf , where δqf(z) = f(qz)−f(z)

qz−z .

If α = 0 and f is analytic at 0, ord
q
0(f) :=

ord0(f) is the order of f at 0 in the usual
sense, i.e. relatively to δq.(0) := d

dz |0 ; indeed,
d
dzf(0) is the limit of δq(f)(α) when α tends
to 0.
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Write M = (C(z))n,Ψ), ΨY (z) = A(z)−1Y (qz)

for (∗q), and assume that Ψ is regular singular
at 0, with quasi-unipotent local monodromy.
No assuption at∞ (e.g. regular and confluent
q-hypergeometric equations). Then, the Niel-
sen type solutions of Ψ form a C-vector space
MΨ of dimension n.

For α 6= 0, α /∈ Sing(A), let Wα be a C-
subspace of MΨ and let s = (p1, ..., pn) ∈
(C[z])n be a linear form on M . For any Y =

(y1, ..., yn)t ∈ Wα, the Nielsen type function

s.Y (z) = p1(z)y1(z) + ... + pn(z)yn(z)

is defined on the positive orbit of α, and we
may speak of its q-order ord

q
α(s.Y ) at α. We

then set :

ord
q
Wα

(s) = min(ordq
α(s.Y );Y ∈ Wα).

This expression still makes sense if α = 0, as
long as the C-subspace W0 consists of solu-
tions all of whose coordinates are analytic at
0 : then, ord

q
W0

(s) is the order of s along W0

in the previous (differential) sense.
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Let R = {α1, ..., αr} be a finite set of com-
plex nbs, possibly including 0 but not meeting
the negative q-orbit of Sing(A), and whose
classes modulo qZ are distinct. For all α ∈ R,
let Wα ⊂ MΨ be a C-subspace of solutions
of Ψ (analytic at 0 if α = 0).

q-difference multiplicity lemma : ∃c(Ψ), de-
pending only on (M,Ψ) and card(R), such
that : let {Tα, α ∈ R;L} ∈ N, and 0 6= s ∈
M∗(L) vanishing to an order ≥ Tα along Wα,
for all α ∈ R. Then, the maximal subspace
M ′ ⊂ Ker(s) ⊂ M stable under Ψ satisfies :∑
α∈R

dim(Wα/Wα∩M ′).Tα ≤ rk(M/M ′).L+c(Ψ).

Same corollaries as earlier, e.g. :

(Väänäänen’s “Shidlovsky lemma") : the di-
mension ν of the C(z)-subspace of M∗(L).
generated by s = s1,Ψ∗s = s2, ..., sn satisfies :
ord0(s.Y ) ≤ νL + c.

⇒ non-vanishing of the n-order determi-
nant ⇒ independence results.
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Also : assume R = {0,1}, dimW0 = 1, dimW1

= r, ord
q
W0

(s) ≥ T0, ord
q
W1

(s) ≥ T1, L > T1,
and T0 + rT1 > nL + c(Ψ). Then s = 0.

⇒ non vanishing of the n(L+1)-order de-
terminant ⇒ ?

Proof of the multiplicity lemmas

As in Shidklovsky, the crucial point is that the
C(z)-subspaces of M (resp. M) stable un-
der ∇ (resp. Ψ) are definable by linear forms
with degrees bounded by a constant γ de-
pending only on ∇ (resp. Ψ). However, while
Fuchs’s relation (or methods from symbo-
lic algebra) provides effective estimates for
γ(∇) in terms of the coefficients of the ma-
trix A(z), the present status of γ(Ψ) seems
ineffective. The problem reduces to finding
a priori upper bounds for the degree of the
rational solutions of a linear q-difference ope-
rator Ly = y(qµz)+aµ−1y(qµ−1z)+...+a0y(z)
with coefficients in C(z), regular singular at
0.
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Vanishing lemmas

These are “interpolation lemmas", which im-
ply the surjectivity of φ, and can therefore
be viewed as vanishing criteria for the H1

of certain sheaves (hence their name). They
should be easier to prove than the multiplicity
lemmas, but for the moment, the deduction
goes the reverse way, following a method of
D. Masser and S. Fischler. Here is an example
in the differential case.

On top of the previous assumption that the
line Ŵ0 and the subspace Ŵ1 are non-degene-
rate, we suppose that E(0) 6= 0, and that 1
is not a singularity of ∇

Differential vanishing lemma : ∃ĉ(∇) com-
putable in terms of (M,∇) such that : let
{a0,t,0 ≤ t ≤ T0 − 1, aρ,t,1 ≤ ρ ≤ r,0 ≤ t ≤
T1−1} be a (T0+rT1)-uple of complex num-
bers. Let further T0, T1, L ∈ N satisfy nL ≥
T0 + rT1 + ĉ(∇). Then, there exists a linear
form s ∈ M∗(L) such that ∂t(s.E)(0) = a0,t
for all t ≤ T0−1 and ∂t(s.Zρ)(1) = aρ,t for all
ρ = 1, ..., r, t ≤ T1 − 1.
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Deligne’s periods

Irregular singularities provide theorems : Siegel-
Shidlovsky’s !

Regular singularities provide conjectures : Gro-
thendieck’s on periods.

Deligne’s “irregular periods" : in the case of
e−z2

, set

H1
dR = {e−z2

Q[z]dz}/d({(e−z2
Q[z]}) ' Qe−z2

dz

HB
1 = Z.γ, γ = the real line R.

Period :
∫ +∞
−∞ e−z2

dz =
√

π (not a period in
the motivic sense).

Irregular periods in a family : consider ez+λ/z,
λ ∈ K (a “Legendre" parameter)

H1
dR = {P (z, z−1)ez+λ/zdz

z / exact forms }
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' Kω ⊕Kη, ω = ez+λ/zdz
z , η = ez+λ/zdz

HB
1 = Zγ1 ⊕ Zγ2, γ1 = {|z| = 1}, γ2 = R− (if

λ ∈ R+).

H1
dR is a C(λ)-vector space with a connexion,

whose dual admits γ1 and γ2 as horizontal
vectors (see also Bloch-Esnault). Therefore,
the family of periods

ω1(λ) =
∫
γ1

ω =
∫
|z|=1

ez+λ/zdz

z

= 2iπΣn≥0
λn

(n!)2
= 2iπJ0(λ)

is a solution of a 2nd order differential equa-
tion (Bessel !) , whose derivative J1(λ) is es-
sentially given by η1(λ) =

∫
γ1

η. The second
period

ω2(λ) =
∫
γ2

ω =
∫ 0

−∞
ez+λ/zdz

z

(essentially Y0(λ)) has a logarithmic singula-
rity at λ = 0.
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Now, Siegel’s theorem on the algebraic inde-
pendence of J0(λ) and J ′0(λ) implies : for any
λ ∈ Q, λ 6= 0, the periods ω1(λ) and ω2(λ) are
linearly independent over Q. In particular, the
slope τ(λ) = ω1(λ)

ω2(λ) never vanishes.

Questions :

i) what can be said of the “quasi-periods"
ηi(λ), which involve E- and G-functions ? (NB :
there is a Legendre relation, since the wrons-
kian of the Bessel equation is rational).

ii) what is the analogue of Grothendie-
ck’s conjecture for these irregular periods ?

Many other irregular periods can be studied,
using Shidlovsky’s theorem on hypergeome-
tric equations. In a sense, we have a theorem
waiting for a ... conjecture !
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