DEFORMATIONS OF THE TAYLOR FORMULA

EMMANUEL FERRAND

ABSTRACT. Given a sequence = {z,, n € N} with integer values, or more generally

with values in a ring of polynomials with integer coefficients, one can form the generalized

binomial coefficients associated to z, (") = [, **==L. In this note we introduce
T = ]

several sequences which enjoy the following remarkable feature : The fractions (Z)x are
in fact polynomials with integer coefficients.

1. INTRODUCTION

By a deformation of the integers we mean a sequence x = {x,, n € N} of polynomials
in one or more variables and with integral coefficients, having the property that there
exists some value ¢y of the variables such that Vn € N, z,,(¢o) = n. The quantum integers

Ty = Zlnz_ol ¢' are a typical example of a deformation of the integers. Another example is
sin(nb)

given by the version of the Chebyshev polynomials defined by z,,(cos(0)) = OR

In this note we consider some deformations of the factorial function and of the binomial
coefficients which are induced by such deformations of the integers. This situation can be
interpreted as a deformation of the Taylor formula, as explained below. Given a polynomial
P of degree n with complex coefficients, the Taylor expansion at some point X gives

dP 1?2 &?P 1™ d"P
P(X+1)—P(X)—i-l-d—X(X)—i—g-W(X) E-an(X).

In other words, if one denotes by 7 : C[X] — C[X] the "translation by one” operator,
defined by 7(P)(X) = P(X + 1), then 7 = exp(;%). A matrix version of this fact can
be stated as follows. Denote by P and D the semi-infinite matrices whose coefficients
are, respectively, P; j = (;) and D; j =i if i = j + 1 and 0 otherwise, (i,j) € N2. Then
P =exp(D).

1000 0000
1100 100 0
p_|1210 pD—|0200
1331 0030

This suggests the following way to deform the Taylor formula. Replace the sequence N
of the integers which appears as the non-zero coefficients of D by the terms of a sequence
x = {x,, n € N} with values in some polynomial ring. Denote by D, the corresponding
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matrix. Given some integer n, define n!; to be the polynomial n!, = [[;", 2;. Define
expy to be the formal series exp,(t) = > 72, % Observe that the matrix exp,(Dy) is
well defined since, coefficients-wise, the summation is finite. Its coefficients exp,(Dy); ;
will be denoted by the symbols (;)x and will be called the generalized binomial coefficients

associated with the sequence x. Note that

: J
¢ . Li—i+1
<j>m H T

=1

if 4 > j, and 0 otherwise.

This definition has appeared already in several contexts, see for example [KW] for an
introduction to the relevant literature. Note that the fractions (;)m have no a priori reason
to be polynomials with integer coefficients. In fact, such a phenomenon appears only for
very specific sequences x.

In this note we are interested in deformations of the integers x which enjoy this property.
The first part of the paper (section 2) is a variation on the classical theme of quantum inte-
gers and g-binomials. It deals with sequences that satisfy a second order linear recurrence
relation. In the second part, (section 3), we deform the integers and the g — binomials
in a less standard way, using a sequence that satisfies a first order non-linear recurrence
relation. In the third part (section 4), we introduce a sequence related to the Fermat
numbers (which is not a deformation of the integers), and we show that the corresponding
generalized binomial coefficients are polynomials with integer coefficients.

Let us mention that Knuth and Wilf [KW] showed that if a sequence x with integral
values is a ged-morphism (that is Zgeq(n,m) = gcd(Tn, Tm)), then the associated binomial
coefficients are integers.

2. Q-BINOMIALS

The properties of the so-called “quantum integers”

n—1
1—q"
_ I _
[”]q—;q = 1—g¢

and the associated “g-binomials” have been investigated long before the introduction of
quantum mechanics (see [CK]). We rephrase below an approach developed by Carmichael
[Car| (and probably already implicit in earlier works). It deals with a slightly more general,
2 variables version of the quantum integers.

Consider the sequence = with values in Za, b] defined by the following linear recurrence
relation of order 2 :

z0=0, x1=1, 211 =a Ty +b-xH_1.

This sequence specializes to the quantum integers when a = ¢+ 1 and b = —¢ (and to
the usual integers for a =2 and b= —1).
2



Remark. z, is given by the following explicit formula :
(11
_ 2 : - 2l—-n—13n—I
= <n — l> @ b

=1
as one can check by induction. [J
Proposition (rephrased from [Car]).
e © :N — Zla,b] is a gcd-morphism :
ng(xna CEm) = Lgcd(n,m)-

e The associated binomial coefficients (;;)x are polynomials in a and b with integral
coeflicients.

O

The first lines of the corresponding deformation of Pascal’s triangle are as follows :

1 0 0 0 0 0
1 1 0 0 0 0
1 a 1 0 0 0
1 a’+b a’+b 1 0 0
1 a® + 2ba (a? + 2b)(a® + b) a® + 2ba 1 0
1 a*+3ba® +0> (a* + 3ba® +b?)(a® +2b) (a* + 3ba® + b%)(a® +2b) a* + 3ba® + 4% 1

Many classical sequences of integers or polynomials arise as solutions of second order
recurrence relations with the appropriate initial conditions. The corresponding deforma-
tions of the Pascal triangle have often been considered separately in the literature. They
receive a unified treatment through Carmichael’s approach.

Example 1. For a = b =1, the sequence x specializes to the Fibonacci sequence, and
the triangle looks as follows :

10 0 0 0O
110 0 0O
111 0 00
12 2 1 00
13 6 3 10
1 5 15 15 5 1
Example 2. For a = 3 and b = —2, the sequence x specializes to the Mersenne
numbers x, = 2" — 1. The triangle then looks like
1 0 0 0 0 0
1 1 0 0 0 0
1 3 1 0 0 0
1 7 7 1 0 0
1 15 35 15 1 0
1 31 155 155 31 1
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Example 3. For a = 2s and b = —1, the sequence z,, = U,_1(s), where U, is the
n—th Chebyshev polynomial of the second kind. This implies that, for any (n,m) € Z2,
the polynomial [}, U,_; is always divisible by [[,", U; in Z][s].

3. ITERATIONS OF A POLYNOMIAL

Fix some parameter d € N. Consider the polynomial

d
p(Xa agp, - - - aad) = Zak‘Xk
k=0

and the sequence x with values in Z[ao, ..., aq] defined by the following recurrence rela-
tion :

xg =0, x, = p(Tp-1,a0,...,0q).

Note that this sequence is a deformation of the integers which encompasses the quantum
integers (i.e., the case d = 1,a9 = 1,a; = ¢, for which z,, = [n],).

Proposition.
e z :N—Zag,...,aq4] is a ged-morphism : Zgeq(n,m) = ged(Tn, Trm)-
e The associated binomial coefficients (::L)w are polynomials of the variables ag, . .., aq,

with integral coefficients.

Proof. Denote by ¢, the function x — p(z,ag,...,a,) and by ¢°" its n—th iterate, so
that 2, = ¢2"(0). For any k < n, z, = ¢F(2,_1). Writing ¢°*(z) = ¢2¥(0)+z-Q(x) gives
T = ¢2F(0) + 2 1 - Q(xn_g). In other words, for any k& < n, there exists a polynomial
R, in Zlay, . ..,ay] such that

Tn =Tk + Tk Rn,k-

This implies that, for any (k,l) € Z2, xy,; is divisible by x;, and by z;. Furthermore this
imply the following recurrence relation, from which the polynomiality of (::L)w follows by
induction :

n Tp—1" """ Tn_k+l n—1 n—1
= . = R M .
il ) R )
Denote by d the ged of n and k. We already know that x4 is a divisor of ged(zy,, zk).
Write d = a-n+ -k, with o > 0 and 8 < 0, so that o, = T4+, Ran,gr- Any common

divisor of x,, and z}, is also a common divisor of z,, and g, and hence a divisor of zg4.
This proves that x4 = ged(zy, xx). O

Even in the case d = 2, (;) is a rather complicated polynomial. For example (g) is

. T . . . z
of degree 11 in a; and of degree 21 in ag and asy. If one specializes to the case ag = a1 =1
and as = ¢ — 1, the corresponding one-parameter deformation of Pascal’s triangle (which
is recovered at g = 1) looks like
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1 0 0
1 1 0
1 1+¢q 1
1 1+q2+q3 1+q2+q3
I 1+ —a"+2¢° —+1) 1+ +¢)(¢®—¢" +2¢° —¢* +1)
Remark. Consider now a polynomial p(X, ai,...,aq) = Zz:1 ap X" whose constant
term vanishes, and the sequence = with values in Z[ay, ..., aq] defined by the following

recurrence relation :

xo = ag, Tn =p(Tp_1,0a1,...,aq).

The corresponding (;LI)m are also polynomials in the variables ay,...,a; with integral
coefficients, for all (n,m) € Z2. This is due to the fact that, if n > m, x,, is a multiple of
Ty, which implies that ( ) is a multiple of ("71)96.

n
m/)x m—1
On the other hand, this sequence x is not a deformation of the integers, since Vn > m,
T, divides z,,.

4. FERMAT POLYNOMIALS

The sequence of polynomials considered in this section is not a deformation of the
integers, but is related to the Fermat numbers. It is defined explicitly by the formula

n—1 n—1
Ty = Z(( I ) mod 2)- X'
=0
If n > 0, x,, is the unique element of Z[X] with coefficients in {0, 1} which is congruent
to (14+X)" ! modulo 2. The first few terms are 79 =0, 1 = 1, 20 = 1+ X, 23 = 1+ X2,
ry=14+X+ X2+ X3

By a theorem of Lucas, (see, for example [GKP], ex. 61 p. 248), the parity of (:1) is
determined by the binary decomposition of n and m as follows : Write n =, 2! and
m=>3 iy m2!, with ¢,m € {0,1},Vl € N. Then

() =IL(;) w2

Since (;ll ) =1+4m-(e¢—1), this can be rephrased in a compact way as follows. With an
integer p, associate the set K, of the exponents that appear in the binary decomposition
of p, sothat n =3 p 2l and m = > ek, 2!, Then (ZL) is odd if and only if K,, C K.

For example, if n — 1 = 2% is a power of 2, ("?1) is even for any 1 < [ < 2F — 1.
Hence xgk,y = 1+ sz, and ok 1 specializes to the k—th Fermat number 1 + 22" at

X =2 Ifn = 2% is a power of 2, (";1) is odd for any 0 < I < 2¥ — 1. Hence

S S N AR icular, for all k € N 24 (X1
Tok = Y g = -1 - In particular, for a €EN,wgry gy =24 (X — 1D)agr.
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Proposition.

® Tpp1 = [Lex, (1+ XQI), and z,, divides x, in Z[X] if and only if (:;11) is odd.

e The associated binomial coefficients (Z)w are polynomials in X, with integral
coeflicients.

Proof. Observe that, for any (I,m) € N2,
A+X)" =1+ X)Y1+X)"=1+X2)1+X)" mod 2.

This imply that

(1+ X)) = TT 1+ X%)  mod 2.
leKy,

On the other hand [];cp (1+ X?') is an element of Z[X] whose coefficients are in {0,1}.
But z,,41 is by definition the unique element of Z[X| whose coefficients are in {0,1} and
which is congruent to (1 + X)" modulo 2. Hence xp41 = [[jep, (1 + XQI). From this
factorization it follows that x,, divides z, in Z[X] if and only if K,,—; C K,_1. By
Lucas’s theorem, this last condition is equivalent to the oddity of (:;11)

To prove that (Z)w is a polynomial, we will study the exponent «;(n, m) of each factor
(14 X?') in the decomposition (m), = Tien+ X2)eu(mm)  Denote by ¢ : N — {0,1}
the function such that ¢(p) = 1 iff | € K, so that p = >, .y (p)2'. It follows that
ay(n,m)=>7" qn—p+1-1)—e(p—1).

The function ¢ is periodic, of period 2!*!. Hence, when estimating o;(n,m), one can
assume that m is smaller than 2+, Observe that ¢(p) = 0 for p € {0,...,2' — 1}, and
that ¢(p) =1 for p € {2/,...,241 —1}. The sum > peir,..rm—1} €(p) over a "window”

of width m is bounded from below by maz(0,m — 2'). This minimal value is attained at
7= 0. This proves that >3 ", e(n—p) > >°" e(p—1), and hence that ay(n,m) > 0. O

Example. The first few lines of the corresponding triangle are as follows :

1 0 0 0 0 0
1 1 0 0 0 0
1 1+ X 1 0 0 0
1 1+ X2 1+ X2 1 0 0
I 1+ X+X2+X3 (1+ X?)2 I+ X+ X%+ X3 1 0
1 1+ X4 1+X)1+XY) 1+X)HO+XY 1+Xx4 1

We have seen that the specialization of x at X = 2 gives a sequence that interpolates in
a natural way between the Fermat numbers. The specialization 1,2,2,4,2,... at X =1
is also meaningful: z,(1) = 2/K7-1l where |K,_;| denotes the number of non-vanshing
terms in the binary expansion of n — 1.
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