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Abstract. Given a sequence x = {xn, n ∈ N} with integer values, or more generally
with values in a ring of polynomials with integer coefficients, one can form the generalized

binomial coefficients associated to x,
`

n

m

´

x
=

Q

m

l=1

xn−l+1

xl

. In this note we introduce

several sequences which enjoy the following remarkable feature : The fractions
`

n

m

´

x
are

in fact polynomials with integer coefficients.

1. Introduction

By a deformation of the integers we mean a sequence x = {xn, n ∈ N} of polynomials
in one or more variables and with integral coefficients, having the property that there
exists some value q0 of the variables such that ∀n ∈ N, xn(q0) = n. The quantum integers

xn =
∑n−1

l=0 ql are a typical example of a deformation of the integers. Another example is

given by the version of the Chebyshev polynomials defined by xn(cos(θ)) = sin(nθ)
sin(θ) .

In this note we consider some deformations of the factorial function and of the binomial
coefficients which are induced by such deformations of the integers. This situation can be
interpreted as a deformation of the Taylor formula, as explained below. Given a polynomial
P of degree n with complex coefficients, the Taylor expansion at some point X gives

P (X + 1) = P (X) + 1 ·
dP

dX
(X) +

12

2!
·

d2P

dX2
(X) + ... +

1n

n!
·

dnP

dXn
(X).

In other words, if one denotes by τ : C[X] → C[X] the ”translation by one” operator,
defined by τ(P )(X) = P (X + 1), then τ = exp( d

dX
). A matrix version of this fact can

be stated as follows. Denote by P and D the semi-infinite matrices whose coefficients
are, respectively, Pi,j =

(

i
j

)

and Di,j = i if i = j + 1 and 0 otherwise, (i, j) ∈ N
2 . Then

P = exp(D).

P =















1 0 0 0 . . .

1 1 0 0 . . .

1 2 1 0 . . .

1 3 3 1 . . .
...

...
...

...
. . .















D =















0 0 0 0 . . .

1 0 0 0 . . .

0 2 0 0 . . .

0 0 3 0 . . .
...

...
...

...
. . .















This suggests the following way to deform the Taylor formula. Replace the sequence N

of the integers which appears as the non-zero coefficients of D by the terms of a sequence
x = {xn, n ∈ N} with values in some polynomial ring. Denote by Dx the corresponding
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matrix. Given some integer n, define n!x to be the polynomial n!x =
∏n

l=1 xl . Define

expx to be the formal series expx(t) =
∑∞

k=0
tk

k!x
. Observe that the matrix expx(Dx) is

well defined since, coefficients-wise, the summation is finite. Its coefficients expx(Dx)i,j
will be denoted by the symbols

(

i
j

)

x
and will be called the generalized binomial coefficients

associated with the sequence x. Note that

(

i

j

)

x

=

j
∏

l=1

xi−l+1

xl

if i ≥ j , and 0 otherwise.

This definition has appeared already in several contexts, see for example [KW] for an

introduction to the relevant literature. Note that the fractions
(

i
j

)

x
have no a priori reason

to be polynomials with integer coefficients. In fact, such a phenomenon appears only for
very specific sequences x.

In this note we are interested in deformations of the integers x which enjoy this property.
The first part of the paper (section 2) is a variation on the classical theme of quantum inte-

gers and q-binomials. It deals with sequences that satisfy a second order linear recurrence
relation. In the second part, (section 3), we deform the integers and the q − binomials

in a less standard way, using a sequence that satisfies a first order non-linear recurrence
relation. In the third part (section 4), we introduce a sequence related to the Fermat
numbers (which is not a deformation of the integers), and we show that the corresponding
generalized binomial coefficients are polynomials with integer coefficients.

Let us mention that Knuth and Wilf [KW] showed that if a sequence x with integral
values is a gcd-morphism (that is xgcd(n,m) = gcd(xn, xm)), then the associated binomial
coefficients are integers.

2. q-binomials

The properties of the so-called “quantum integers”

[n]q =
n−1
∑

l=0

ql =
1 − qn

1 − q

and the associated “q-binomials” have been investigated long before the introduction of
quantum mechanics (see [CK]). We rephrase below an approach developed by Carmichael
[Car] (and probably already implicit in earlier works). It deals with a slightly more general,
2 variables version of the quantum integers.

Consider the sequence x with values in Z[a, b] defined by the following linear recurrence
relation of order 2 :

x0 = 0, x1 = 1, xn+1 = a · xn + b · xn−1.

This sequence specializes to the quantum integers when a = q + 1 and b = −q (and to
the usual integers for a = 2 and b = −1).
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Remark. xn is given by the following explicit formula :

xn =
n

∑

l=1

(

l − 1

n − l

)

a2l−n−1bn−l

as one can check by induction. �

Proposition (rephrased from [Car]).

• x : N → Z[a, b] is a gcd-morphism :

gcd(xn, xm) = xgcd(n,m).

• The associated binomial coefficients
(

n
m

)

x
are polynomials in a and b with integral

coefficients.

�

The first lines of the corresponding deformation of Pascal’s triangle are as follows :
















1 0 0 0 0 0
1 1 0 0 0 0
1 a 1 0 0 0
1 a2 + b a2 + b 1 0 0
1 a3 + 2ba (a2 + 2b)(a2 + b) a3 + 2ba 1 0
1 a4 + 3ba2 + b2 (a4 + 3ba2 + b2)(a2 + 2b) (a4 + 3ba2 + b2)(a2 + 2b) a4 + 3ba2 + b2 1

















Many classical sequences of integers or polynomials arise as solutions of second order
recurrence relations with the appropriate initial conditions. The corresponding deforma-
tions of the Pascal triangle have often been considered separately in the literature. They
receive a unified treatment through Carmichael’s approach.

Example 1. For a = b = 1, the sequence x specializes to the Fibonacci sequence, and
the triangle looks as follows :























1 0 0 0 0 0 . . .

1 1 0 0 0 0 . . .

1 1 1 0 0 0 . . .

1 2 2 1 0 0 . . .

1 3 6 3 1 0 . . .

1 5 15 15 5 1 . . .
...

...
...

...
...

...
. . .























.

Example 2. For a = 3 and b = −2, the sequence x specializes to the Mersenne

numbers xn = 2n − 1. The triangle then looks like






















1 0 0 0 0 0 . . .

1 1 0 0 0 0 . . .

1 3 1 0 0 0 . . .

1 7 7 1 0 0 . . .

1 15 35 15 1 0 . . .

1 31 155 155 31 1 . . .
...

...
...

...
...

...
. . .























.
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Example 3. For a = 2s and b = −1, the sequence xn = Un−1(s), where Un is the
n−th Chebyshev polynomial of the second kind. This implies that, for any (n,m) ∈ Z

2 ,
the polynomial

∏m
l=0 Un−l is always divisible by

∏m
l=0 Ul in Z[s].

3. Iterations of a polynomial

Fix some parameter d ∈ N. Consider the polynomial

p(X,a0, . . . , ad) =

d
∑

k=0

akX
k

and the sequence x with values in Z[a0, . . . , ad] defined by the following recurrence rela-
tion :

x0 = 0, xn = p(xn−1, a0, . . . , ad).

Note that this sequence is a deformation of the integers which encompasses the quantum
integers (i.e., the case d = 1, a0 = 1, a1 = q, for which xn = [n]q).

Proposition.

• x : N → Z[a0, . . . , ad] is a gcd-morphism : xgcd(n,m) = gcd(xn, xm).

• The associated binomial coefficients
(

n
m

)

x
are polynomials of the variables a0, . . . , ad ,

with integral coefficients.

Proof. Denote by φa the function x → p(x, a0, . . . , an) and by φ◦n
a its n−th iterate, so

that xn = φ◦n
a (0). For any k ≤ n, xn = φ◦k

a (xn−k). Writing φ◦k
a (x) = φ◦k

a (0)+x·Q(x) gives
xn = φ◦k

a (0) + xn−k · Q(xn−k). In other words, for any k ≤ n, there exists a polynomial
Rn,k in Z[a0, . . . , an] such that

xn = xk + xn−k · Rn,k.

This implies that, for any (k, l) ∈ Z
2 , xkl is divisible by xk and by xl . Furthermore this

imply the following recurrence relation, from which the polynomiality of
(

n
m

)

x
follows by

induction :

(

n

k

)

x

= xn ·
xn−1 · · · · · xn−k+1

1 · x2 · · · · · xk

=

(

n − 1

k − 1

)

x

+ Rn,k ·

(

n − 1

k

)

x

.

Denote by d the gcd of n and k. We already know that xd is a divisor of gcd(xn, xk).
Write d = α ·n+β ·k, with α ≥ 0 and β ≤ 0, so that xαn = xd+xβk ·Rαn,βk . Any common
divisor of xn and xk is also a common divisor of xαn and xβk , and hence a divisor of xd .
This proves that xd = gcd(xn, xk). �

Even in the case d = 2,
(

n
m

)

x
is a rather complicated polynomial. For example

(5
3

)

x
is

of degree 11 in a1 and of degree 21 in a0 and a2 . If one specializes to the case a0 = a1 = 1
and a2 = q − 1, the corresponding one-parameter deformation of Pascal’s triangle (which
is recovered at q = 1) looks like
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

















1 0 0 . . .

1 1 0 . . .

1 1 + q 1 . . .

1 1 + q2 + q3 1 + q2 + q3 . . .

1 (1 + q)(q6 − q4 + 2q3 − q2 + 1) (1 + q2 + q3)(q6 − q4 + 2q3 − q2 + 1) . . .
...

...
...

. . .



















.

Remark. Consider now a polynomial p(X,a1, . . . , ad) =
∑d

k=1 akX
k whose constant

term vanishes, and the sequence x with values in Z[a0, . . . , ad] defined by the following
recurrence relation :

x0 = a0, xn = p(xn−1, a1, . . . , ad).

The corresponding
(

n
m

)

x
are also polynomials in the variables a0, . . . , a1 with integral

coefficients, for all (n,m) ∈ Z
2 . This is due to the fact that, if n ≥ m, xn is a multiple of

xm , which implies that
(

n
m

)

x
is a multiple of

(

n−1
m−1

)

x
.

On the other hand, this sequence x is not a deformation of the integers, since ∀n ≥ m,
xm divides xn .

4. Fermat polynomials

The sequence of polynomials considered in this section is not a deformation of the
integers, but is related to the Fermat numbers. It is defined explicitly by the formula

xn =

n−1
∑

l=0

(

(

n − 1

l

)

mod 2) · X l.

If n > 0, xn is the unique element of Z[X] with coefficients in {0, 1} which is congruent
to (1+X)n−1 modulo 2. The first few terms are x0 = 0, x1 = 1, x2 = 1+X , x3 = 1+X2 ,
x4 = 1 + X + X2 + X3 .

By a theorem of Lucas, (see, for example [GKP], ex. 61 p. 248), the parity of
(

n
m

)

is

determined by the binary decomposition of n and m as follows : Write n =
∑

l∈N
εl2

l and

m =
∑

l∈N
ηl2

l , with εl, ηl ∈ {0, 1},∀l ∈ N. Then

(

n

m

)

=
∏

l∈N

(

εl

ηl

)

mod 2.

Since
(

εl

ηl

)

= 1+ηl · (εl−1), this can be rephrased in a compact way as follows. With an

integer p, associate the set Kp of the exponents that appear in the binary decomposition

of p, so that n =
∑

l∈Kn
2l and m =

∑

l∈Km
2l . Then

(

n
m

)

is odd if and only if Km ⊂ Kn .

For example, if n − 1 = 2k is a power of 2,
(

n−1
l

)

is even for any 1 ≤ l ≤ 2k − 1.

Hence x2k+1 = 1 + X2k

, and x2k+1 specializes to the k−th Fermat number 1 + 22k

at

X = 2. If n = 2k is a power of 2,
(

n−1
l

)

is odd for any 0 ≤ l ≤ 2k − 1. Hence

x2k =
∑2k−1

0 X l = X2
k

−1
X−1 . In particular, for all k ∈ N, x2k+1 = 2 + (X − 1)x2k .
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Proposition.

• xn+1 =
∏

l∈Kn
(1 + X2l

), and xm divides xn in Z[X] if and only if
(

n−1
m−1

)

is odd.

• The associated binomial coefficients
(

n
m

)

x
are polynomials in X , with integral

coefficients.

Proof. Observe that, for any (l,m) ∈ N
2 ,

(1 + X)2
l+m = (1 + X)2

l

(1 + X)m ≡ (1 + X2l

)(1 + X)m mod 2.

This imply that

(1 + X)(
P

l∈Kn
2l) ≡

∏

l∈Kn

(1 + X2l

) mod 2.

On the other hand
∏

l∈Kn
(1 + X2l

) is an element of Z[X] whose coefficients are in {0, 1}.
But xn+1 is by definition the unique element of Z[X] whose coefficients are in {0, 1} and

which is congruent to (1 + X)n modulo 2. Hence xn+1 =
∏

l∈Kn
(1 + X2l

). From this
factorization it follows that xm divides xn in Z[X] if and only if Km−1 ⊂ Kn−1 . By

Lucas’s theorem, this last condition is equivalent to the oddity of
(

n−1
m−1

)

.

To prove that
(

n
m

)

x
is a polynomial, we will study the exponent αl(n,m) of each factor

(1 + X2l

) in the decomposition
(

n
m

)

x
=

∏

l∈N
(1 + X2l

)αl(n,m) . Denote by εl : N → {0, 1}

the function such that εl(p) = 1 iff l ∈ Kp , so that p =
∑

l∈N
εl(p)2l . It follows that

αl(n,m) =
∑m

p=1 εl(n − p + 1 − 1) − εl(p − 1).

The function εl is periodic, of period 2l+1 . Hence, when estimating αl(n,m), one can
assume that m is smaller than 2l+1 . Observe that εl(p) = 0 for p ∈ {0, . . . , 2l − 1}, and
that εl(p) = 1 for p ∈ {2l, . . . , 2l+1 − 1}. The sum

∑

p∈{r,...,r+m−1} εl(p) over a ”window”

of width m is bounded from below by max(0,m − 2l). This minimal value is attained at
r = 0. This proves that

∑m
p=1 εl(n− p) ≥

∑m
p=1 εl(p− 1), and hence that αl(n,m) ≥ 0. �

Example. The first few lines of the corresponding triangle are as follows :























1 0 0 0 0 0 . . .

1 1 0 0 0 0 . . .

1 1 + X 1 0 0 0 . . .

1 1 + X2 1 + X2 1 0 0 . . .

1 1 + X + X2 + X3 (1 + X2)2 1 + X + X2 + X3 1 0 . . .

1 1 + X4 (1 + X2)(1 + X4) (1 + X2)(1 + X4) 1 + X4 1 . . .
...

...
...

...
...

...
. . .























.

We have seen that the specialization of x at X = 2 gives a sequence that interpolates in
a natural way between the Fermat numbers. The specialization 1, 2, 2, 4, 2, . . . at X = 1
is also meaningful: xn(1) = 2|Kn−1| , where |Kn−1| denotes the number of non-vanshing
terms in the binary expansion of n − 1.
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