MORSE THEORY FOR SWEEPS.

EMMANUEL FERRAND, PETR E. PUSHKA’R

ABSTRACT. Morse inequalities can be rephrased as a lower bound on the number of
tangencies between a compact immersed submanifold of the Euclidean space and the
hyperplanes defined by the levels of a height function. In this paper, we investigate what
happens when one deforms such a one-parameter family of hyperplanes among one-
parameter families of hypersurfaces (not necessarily the levels of a function). We exhibit
a condition on the deformation which ensures that an analogue of the Morse estimate for
the number of tangencies between the deformed hyperplanes and the compact immersed
submanifold remains valid. This condition can be viewed as a "non-linking” condition
between two Legendrian submanifolds in the spherization of the cotangent bundle of the
Euclidean space, endowed with its natural contact structure.

1. INTRODUCTION

This paper is organized as follows. In this first section, we motivate our definitions and
state the main theorem. We discuss its relationship with contact topology. The second
section is devoted to the proof.

1.1. An example. Consider a smooth affine curve bounding a convex domain in the real
projective plane (see fig. 1). Consider the family of lines that goes through a given point.
If the point is at infinity, then these lines are the levels of a function defined on the affine
plane, and Morse theory gives a lower bound for the number of tangencies between the
smooth curve and the lines belonging to this family. On the other hand, if the point is
moved inside the convex domain, there is no tangencies between the curve and the lines.
This example shows that when one deforms a one-parameter family of hypersurfaces,
tangencies of a given compact submanifold with these hypersurfaces may disappear.

1.2. Morse estimates rephrased. Consider a smooth compact manifold M of dimen-
sion m, and a smooth function f : M — R. By the Whitney embedding theorem, one can
assume that M is a submanifold of R", for some n € N. Furthermore one can assume that
the function f is the restriction to M of one of the coordinates, say z,,. A point ¢ € M
is critical for f iff the "horizontal” hyperplane {z € R"|z,, = f(¢)} passing through
this point is tangent to M. In other words, c¢ is a critical value of f iff the hyperplane
{z € R"|z,, = c} is not transversal to M.

For this specific family of ”horizontal” hypersurfaces, Morse theory gives an estimate of
the number of non-transversal hypersurfaces. From this point of view, it is natural to ask
whether there exists Morse-like estimates for the number of ”critical” hypersurfaces for
more general one-parameter families of hypersurfaces. In this paper, we give a condition
on a family of hypersurfaces which ensures that such a Morse-like estimate exists. This
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FIGURE 1. A basic example.

condition has a natural interpretation in terms of contact topology. It is in fact a "non-
linking” condition between two Legendrian submanifolds which are naturally associated
to this situation in the spherization of the cotangent bundle of the Euclidean space R",
endowed with its natural contact structure (see 1.4 and 1.5).

1.3. Sweeps. It this paper, M denotes a smooth, compact, m-dimensional manifold im-
mersed in the Euclidean space R™. The circle R/27Z is denoted by by S*. For technical
reasons, the following definition involves a family of functions. Only the hypersurfaces
defined by their 0-levels are relevant.

1.3.1. Definition. A sweep is a smooth function : h : R” x S — R, viewed as a one-
parameter family of smooth functions h(-,#) : R® — R, parametrized by ¢ € S'. For
each t € S*, 0 must be a reqular value of h(-,t). A sweep is called standard if in addition
h(g,0) > 0 and h(g,7) <0 for all ¢ € M.

1.3.2. Example. Assume that M is contained in a Euclidean ball which does not contain
the origin. Then the family of functions h(xy,...,xy,,t) = cost(t) - 1 + sin(t) - zo defines
a sweep, which, in addition, is standard provided that 1 > 0 on M. This is the situation
of fig. 1. A deformation of this sweep is shown in fig. 2.

1.3.3. Definition. The enveloppe of a sweep h is the subset Ej of R™ defined by the
following equations

E,={zeR" 3t e S1 such that h(x,t) =0 and %(m,t) =0}.

This is nothing but the classical definition found in textbooks (see for example [DC]) for
the enveloppe of a family of submanifolds defined by implicit equations. Ej, is in general a
singular subset of R™ (and is not necessarily compact). However, one can prove that, for
a generic sweep h, it is a singular hypersurface with a well defined tangent space almost
everywhere.

1.3.4. Definition. A subspace H C T,(R") is called tangent to Ej at some point z if

there exist ¢ € S* such that h(x,t) = 0, 22(x,t) = 0 (so that = € Ej), and if, in addition,

> Ot
the one-form %(m,t)dw vanishes on H.



FIGURE 2. The enveloppe of a deformation of the example 1.3.2.

1.3.5. Examples. If x belongs to the smooth stratum of of Fj,, a subspace H tangent to
E} at x coincides with the usual tangent space. If h is the sweep defined above in 1.3.2,
then the envelope Ej, is reduced to the codimension 2 subspace {z € R"|zy = x5 = 0}.
Any hyperplane H which contains F is tangent to F in the sense of the above definition.

1.3.6. Theorem A. Consider a smooth one parameter family h*, s € [0, 1] of sweeps, such
that h° is standard, and such that, for any s € [0,1], the corresponding envelope Ejs is
not tangent to M. Then the total number (counted with multiplicities) of angles ¢t € S*
such that M is tangent to the hypersurface H} = {z € R"|h!(z,t) = 0} is not smaller
than twice the sum of the Betti numbers of M (with respect to any field of coefficients).

This theorem is proved in section 2. The classical Morse estimate for functions is re-
covered as follows. As noticed in 1.2, estimating the number of critical points of some
function f is the same as estimating the number of tangencies between M and the ”hor-
izontal” hyperplanes {x € R"|z,, = c},c € R. Denote by c_ (resp. c;) the minimum
(resp. the maximum) of the function z, on M. On can embed the family of hyperplanes
{r € R"|z),, =c},c € [c- —1,cq + 1] into a sweep h as follows :

o h(m,t)=ap—(c. —1+Z(c; +2—c_) for t €0, F]
e h(z,t+m)=—h(z,t), and
e h(q,t) <0 forall g € M and all t € [F,n].

For such an h, the critical levels of x5, are in one-to-two correspondence with the

tangencies counted in theorem A.

1.4. Reformulation in terms of contact topology. Although the definitions above
(envelope, tangency, ...) allow to prove theorem A without introducing the vocabulary of
contact topology (see section 2), they suggest a relationship to the latter. The relevant
contact manifold is ST*R"™, the manifold of cooriented contact elements of R™, endowed
with its natural contact structure. As a manifold, it is the spherization of the cotangent
bundle. Denote by 7 the natural projection 7 : ST*R™ — R™. See for example [AG] for
the basic definitions of contact topology.
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The spherization of the conormal bundle of M is a Legendrian submanifold Lj; of
STR™. There is also a natural Legendrian lift £, of the envelope of a sweep h :

En = {(z,[p]) € ST*R™, 3t € S' such that h(z,t) =0, %(Cﬂ,t) =0,[p] = [%(az,t)dm]}

In the above formula, [p] denotes the class of a non-zero covector p modulo multiplica-
tion by positive real numbers. One can prove that &, is an embedded smooth Legendrian
submanifold provided that A is ”generic”, but this fact is not needed below.

A tangency point between M and the envelope E} of a sweep h as defined above is
nothing but the projection in R™ of an intersection between &, and Lj;. Furthermore,
the non-transversality of M and some hypersurface H can be expressed as Ly; N Ly # (.
Hence theorem A can be rephrased as follows:

Theorem A’. Consider a smooth one parameter family h°, s € [0,1] of sweeps, such
that h° is standard, and such that, for any s € [0,1], &s N Ly = (. Denote by H;
the hypersurface H; = {x € R"|h*(z,t) = 0}. Then the total number (counted with
multiplicities) of angles ¢t € S* such that Ly N Ly # () is not smaller than twice the sum
of the Betti numbers of M. [J

The hypothesis of the theorem is a ”"non-linking” condition between some Legendrian
submanifolds (or varieties), its conclusion is the necessity of some ”Legendrian intersec-
tions”.

1.5. Another interpretation in terms of Legendrian linking. From these ingredi-
ents, one can cook up another interpretation of the ”non-linking” condition in theorem A.
Consider the three dimensional manifold J!(S',R) = R x T*R, endowed with its natural
contact one-form du — 7dt, where (7,t) are canonical coordinates of T7*S' and u is the R
coordinate.

To a sweep h, one can associate the following subset of J!(S!,R) :

Oh oh
I = {(u,7,t) € JY(S',R)|Fq € M such that a—(q,t) =0,u = h(g,t), 7 = E(q,t)}
q
For a generic h, one can prove that I, is a smooth, Legendrian link (but this fact is
not needed here). Denote by [y the one-jet expansion of the constant 0 function (I =
{(u,7,t) € JL(SY,R)|u = 7 = 0}). The following proposition gives an interpretation of
the hypothesis of theorem A in terms of these Legendrian links.

1.5.1. Proposition. For any sweep h, the envelope E}, is not tangent to M iff [Ny = 0.

Proof. An intersection of I;, and [g is a point (u, 7,t) € J'(S',R) such that there exists
q € M such that 0 = v = h(g,t) and 0 = 7 = %(q,t). This means precisely that ¢
belongs to M N Ep,. O

1.5.2.  Consider a one-parameter family of sweeps h®, s € [0,1] which satisfy the hy-
pothesis of theorem A. The corresponding one-parameter family of Legendrian objects
I}, s € [0,1] does not realize a Legendrian isotopy or even a Legendrian homotopy, but
Legendrian cobordism between l;0 and [;1 . On the other hand, for each s € [0, 1], l;s is
given by a generating family. See [AG]| for an introduction to Legendrian cobordism, and
[EG] for a detailed survey of generating families in symplectic aand contact topology.
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FiGURE 3. The front of [, for some typical standard sweep h.

In this picture, the conclusion of theorem A is that, the number of intersections (counted
with multiplicities) of front of I3, i.e., its projection to the 0-jets space R x S by forgetting
7, with the zero-section {(u,t) € R x S'|u = 0} of the 0—jets space cannot be smaller
than twice the sum of the Betti numbers of M.

The front of a typical standard sweep is shown in fig 3. When A is standard, one can
guess why the front of I, must intersect {(u,t) € R x S'|u = 0} by the following informal
argument : One can associate to each homology class of M a continuous path in the front,
by a minimax argument. Since h(-,0) > 0 and h(-,7) < 0, these continuous paths must
intersect the axis u =0 in |0, 7[.

2. PROOF OF THEOREM A.

2.0.3. Denote by H,(M) the homology groups of M with coefficients in some field, and
by dim H,(M) the sum of the corresponding Betti numbers. Consider a one-parameter
family of sweeps h®, s € [0, 1] satisfying the hypothesis of theorem A. We use the notation
H; to denote the hypersurface {x € R"|h*(z,t) = 0}. Consider the following subset I'* of
M x St

I = {(q,t) € M x S* h%(q,t) = 0}.

Theorem A is implied by the following 4 lemmas.
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2.0.4. Lemma. Under the hypothesis of theorem A, for all s € [0,1], I'* is a smooth
hypersurface, diffeomorphic to I'V.

Proof. Pick some (q,t) € I'*, and denote by ¢ = (q1,...,¢n) some coordinate system
for M near g. Assume that both %—’Zs and % vanish at (¢,t). On one hand, aaff; =0

means that the smooth hypersurface H; is tangent to M at ¢. On the other hand % =0
means that ¢ belongs to the envelope E®. Altogether, this means that F* is tangent to M
at x, which is forbidden by our hypothesis. Hence the differential of h® is non-singular near
any (q,t) € I'*. This imply that for any s € [0,1], I'* is a smooth, compact hypersurface
in M xSt O

2.0.5. Lemma. The tangencies between H; and M we are looking for are in one-to-one
correspondence with the critical values of the natural projection ¢ : 'S — S,

Proof. We are looking for the t’s such that there exists ¢ € M such that H; is tangent
to M at q. Still denote by ¢ = (q1,...,Gn) some coordinate system on M near q. The
tangent space to I'* at (g,t) is defined by %—’fls(q,t)dq + %(q,t)dt = 0. On one hand, a
tangency of ‘H; and M at ¢ means that %—’fj(q, t) = 0. Hence the equation of the tangent

space of I'* at (q,t) reduces to %(q, t)dt = 0. On the other hand, since ¢ does not belong
to the envelope E*, %(q,t) # 0. This means that dtjrs =0 at (¢,t). O

2.1. Lemma. The closed one-form dt is exact on I'S.

Proof. Since T'* is isotopic to I'’ in M x S, it is enough to check it at s = 0. On can
view t as a function from I'Y to S'. Since the sweep h° is standard, the pre-image of 0 by
this function ¢ is empty. Hence the restriction of ¢ to I'’ can be seen as a function with
values in ]0,27[. O

2.2. Lemma. dim H,(T'°) > dim H,(M).

Proof. T is made of two components. One of them, which will be denoted by T, is
contained in ¢+~1(]0,7[). The other is contained in t~!(]x,2x[). Denote by (M x]0,7[)=°
the subset h=1([0, c0[) N (M x]0, 7[), so that I' = (M x]0, 7[)=°. Consider the long exact
sequence of the pair ((M x]0,7[)=%,T):

- — H, 1 (Mx]0,7))2% ) — H (') — H,((Mx]0,7[)=°) — H,((Mx]0,x[)=% ) — ...

The map H,.((Mx]0,7[)=°) — H.((Mx]0,7[)=",T) is zero, hence H.(T') injects in
H.((Mx]0,7[)=°). On the other hand dim H,((M x]0,7[)=%) > dim H,.(M), since the
composition of the two injections M x {0} — (Mx]0,7[)2% — Mx]0,7| induces an
isomorphism in homology. [l

The conclusion of theorem A is obtained by applying the classical Morse inequalities
to a primitive of dt|p1. O
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