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1. introduction

In a recent paper Pascal Matrices [ES] published in the American Mathematical Monthly,
A. Edelman and G. Strang discuss several interpretations of the LU decomposition of
the symmetric Pascal matrix. In the last part of their paper, devoted to the functional
interpretation of Pascal matrices, they suggest ”to look for matrices of Pascal type in
a group representation”. In this note we follow their idea. We will consider the group
presented by two generators, say a and b, and the relation aba = bab. This group is known
in topology as the three strand braid group.

2. Two linear transformations of the space of polynomials

Denote by Φ the endomorphism of the space C
n[X] of polynomials of degree n with

complex coefficients, which maps a polynomial p(X) to the polynomial p(X + 1). Denote
by Ψ the endomorphism of C

n[X] which maps a polynomial p(X) to (1 − X)np( X
1−X

),
which of course is also a polynomial.

Theorem. Φ and Ψ verify a braid-like relation : ΦΨΦ = ΨΦΨ.

Proof : It is a short computation.

Ψ ◦ Φ(p)(X) = (1 − X)np(
X

1 − X
+ 1)) = (1 − X)np(

1

1 − X
))

and

Φ ◦ Ψ ◦ Φ(p)(X) = (−X)np(
1

1 − (X + 1)
)) = (−X)np(

−1

X
).

On the other hand :

Φ ◦ Ψ(p)(X) = (−X)np(
X + 1

−X
)

and

Ψ ◦ Φ ◦ Ψ(p)(X) = (1 − X)n(−
X

1 − X
)np(

X
1−X

+ 1

−
X

1−X

) = (−X)np(
−1

X
).

�

Date: July 2005.

1



3. The Pascal triangle

In fact this theorem is not new. Its matrix version, described below, was discovered by
Humphries in [Hu]. For any integer n, denote by P the (n + 1) × (n + 1) matrix whose

entries are Pi,j =
(

j−1

i−1

)

, by D the diagonal matrix whose entries are Di,j := (−1)i−1 if
i = j and 0 otherwise, and by A the matrix whose entries are Ai,j := 1 if i = n − j + 1
and 0 otherwise.

For n = 3 P =









1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1









, D =









1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1









and A =









0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0









.

P is the matrix of Φ in the canonical basis of C
n[X]. Since Φ−1 sends a polynomial p(X)

to the polynomial p(X − 1), P−1 is the matrix whose entries are P−1

i,j = (−1)i+j
(

j−1

i−1

)

. In
other words,

P−1 = DPD = DPD−1.

Denote by Q the matrix of Ψ in the canonical basis. Since A is the matrix of the map
which sends a polynomial p(X) to the polynomial Xnp(1/X), one has that

Q = AP−1A.

For n = 3, Q =









1 0 0 0
−3 1 0 0
3 −2 1 0
−1 1 −1 1









.

Q is also a version of Pascal’s triangle. It is obtained from P by a ”central symmetry”,
and a ”checkerboard” change of sign. By the preceding functional interpretation, we know
that P and Q are involved in a braid-like relation :

PQP = QPQ

These matrices were described in [Hu], where the above identity is proved coefficient-wise
by checking the corresponding combinatorial identities.

4. Sierpinski matrices

In this section, we restrict ourselves to the case when n + 1 = 2k , for some integer k.
Denote by B(k) the 2k

× 2k matrix with integer coefficients whose entries are B(k)i,j = 1

if
(

j−1

i−1

)

is odd and 0 otherwise. Denote by U ⊗ V the Kronecker product (also called

tensor product) of two square matrices U and V of size u and v, respectively. It is the
square matrix of size uv defined block-wise by

P =







U1,1V . . . U1,nV
...

. . .
...

Un,1V . . . Un,nV






.

One can check that (U ⊗ V )(U ′
⊗ V ′) = UU ′

⊗ V V ′ , where U and U ′ (resp. V and V ′)
are square matrices of size u (resp. v). Denote by U⊗k the Kronecker product of k copies
of U .
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The following lemma describes the classical self-similarity property of Pascal’s triangle
reduced modulo 2. It looks like a Sierpinski gasket, and this suggest the name Sierpinski

matrix of order k for B(k).

Lemma 2. B(k) = B(1)⊗k

Proof : Consider the (2k−1+l)-th column of B(k). Its coefficients are those of the reduction

modulo 2 of (1 + X)2
k−1+l−1 .

Claim. (1 + X)2
k−1+l−1 is equal to (1 + X)l−1 + X2k−1

(1 + X)l−1 modulo 2.

This claim implies that

B(k) =

(

B(k − 1) B(k − 1)
0 B(k − 1)

)

= B(1) ⊗ B(k − 1)

and lemma 2 follows.

To prove the claim, observe that

(1 + X)2
k−1+l−1

− (1 + X)l−1
−X2k−1

(1 + X)l−1 = (1 + X)l−1((1 + X)2
k−1

− (1 + X2k−1

))

and that ((1 + X)2
k−1

− (1 + X2k−1

)) has only even coefficients (this last statement can
be proved by induction on k). �

Denote by C(k) the matrix AB(k)−1A, where A is the anti-diagonal matrix of size n+1 =
2k defined in the preceding section. Note that B(k)−1 = (B(1)−1)⊗k is easy to compute.
For k = 2 these matrices are :

B(2) =









1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1









C(2) =









1 0 0 0
−1 1 0 0
−1 0 1 0
1 −1 −1 1









Lemma 2’. C(k) = C(1)⊗k
�

Theorem. The matrices B(k) and C(k) verify a braid-like relation :

B(k)C(k)B(k) = C(k)B(k)C(k)

Proof. The theorem is true for k = 1, by a direct calculation. By lemma 2, lemma 2’ and
the properties of the Kronecker product, it is true for any k. �

This argument shows that any relation verified by B(1) and C(1) in the group SL2(Z)
of integer matrices with determinant one will also hold for B(k) and C(k). The Pascal
triangle modulo 2 B(k) and its cousin C(k) just arise in the k-fold tensor product of the
standard representation of SL2(Z) as the image of two generators of this group.
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