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Abstract. We consider the finite binary words Z(n), n ∈ N defined by the following

self-similar process: Z(0) := 0, Z(1) := 01, and Z(n + 1) := Z(n) · Z(n − 1), where the
dot · denotes word concatenation, and w the word obtained from w by exchanging the
zeros and the ones. Denote by Z(∞) = 01110100 . . . the limiting word of this process,
and by z(n) the n′th bit of this word. This sequence z is an analogue of the Thue-Morse
sequence. We show that a theorem of Bacher and Chapman relating the latter to a
“Sierpiński matrix” has a natural analogue involving z . The semi-infinite self-similar
matrix which plays the role of the Sierpiński matrix here is the zeta matrix of the poset
of finite subsets of N without two consecutive elements, ordered by inclusion. We observe
that this zeta matrix is nothing but the exponential of the incidence matrix of the Hasse
diagram of this poset. We prove that the corresponding Möbius matrix has a simple
expression in terms of the zeta matrix and the sequence z .

1. Introduction

Consider the finite binary words T (n), n ∈ N, defined by the following self-similar

process: T (0) := 0, and T (n + 1) := T (n) · T (n), where the dot · denotes word concate-
nation, and w the word obtained from w by exchanging the zeros and the ones. Denote
by T (∞) = 01101001 . . . the limiting word of this process, and by t(n) the n′th bit of
this word. The sequence t is often called the Thue-Morse sequence and has appeared in
various fields of mathematics. See, for example, the paper [AS1], which contains a review
of the main properties of this sequence and which is a good starting point to the abundant
literature on the subject1.

In [BC], Bacher and Chapman showed how the Thue-Morse sequence appears in the
context of LDU decomposition of self-similar matrices. Their result [BC, theorem 1.1]
can be rephrased as follows : Denote by S the symmetric semi-infinite matrix whose
entries are in {0, 1} and such that Si,j ≡

(

i+j
j

)

mod 2 , (i, j) ∈ N
2 . Denote by B the

semi-infinite lower triangular matrix whose entries are in {0, 1} and such that Bi,j ≡
(

i
j

)

mod 2 , (i, j) ∈ N
2 .

B =















1 0 0 0 . . .

1 1 0 0 . . .

1 0 1 0 . . .

1 1 1 1 . . .
...

...
...

...
. . .















S =















1 1 1 1 . . .

1 0 1 0 . . .

1 1 0 0 . . .

1 0 0 0 . . .
...

...
...

...
. . .














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Due to their self-similar properties (see below), both B and S can be considered as
matrix versions of the Sierpiński sieve2 [Si], and B deserves the name Sierpiński matrix.

Denote by D the diagonal semi-infinite matrix whose non-zero entries are Di,i =

(−1)t(i) , i ∈ N. According to Bacher and Chapman,

(1) S = BDBT .

In this note we are interested in the following mixture of the Thue-Morse sequence
and the Fibonacci word3: Consider the finite binary words Z(n), n ∈ N, defined by the

following self-similar process: Z(0) := 0, Z(1) := 01, and Z(n + 1) := Z(n) · Z(n − 1).
Denote by Z(∞) = 01110100 . . . the limiting word of this process, and by z(n) the n′th
bit of this word (so that z(0) = 0, z(1) = 1, etc...).

We will show that a natural analogue of equation (1) involves our sequence z . For this
we will introduce two semi-infinite self-similar matrices, which will play the role of S and
B above. The Thue-Morse sequence and the matrices S and B can be generalized in many
different natural ways. The main point of this note lies in the choice of the definitions of

our analogues for S and B . This choice will be inspired by the theory of partially ordered
sets. Thanks to these “good” definitions, the proofs will be straightforward. Another
result of this note is the observation that the matrix B and its analogue have remarkable

logarithms and inverses (see section 3).

We start by the following interpretation of the Thue-Morse sequence:

Lemma 1. t(n) is equal to the parity of the number of 1’s in the binary expansion of
n (see, for example, [AS1]). �

To a finite subset K ⊂ N, associate the integer n(K) =
∑

k∈K 2k .

Lemma 2. Bn(K),n(J) = 1 if and only if J ⊆ K .

Proof. A theorem of Lucas (see, for example, [GKP, ex. 61, p. 248]), permits us to
determine the parity of

(

n
m

)

in terms of the binary expansion of n and m as follows: write

n =
∑i=N

i=0 εk2
k m =

∑i=N
i=0 ηi2

i . Then we have

(

n

m

)

=

i=N
∏

i=0

(

εi

ηi

)

mod 2.

Since, for each i, εi and ηi are either 0 or 1,
(

εi

ηi

)

= 1 if and only if εiηi = ηi . Hence, if

n =
∑

k∈K 2k and m =
∑

j∈J 2l , then
(

n
m

)

= 1 mod 2 if and only if J ⊂ K . �

Remark 1. It is easy to see that BBT ≡ S mod 2 (by Vandermonde convolution,
[GKP, p. 174]). Hence the result of Bacher and Chapman (equation (1) above) just
explains what correction should be inserted between B and BT so that the equality
becomes valid over the integers.

The length of the word Z(n) is by construction the (n+2)’th Fibonacci number F (n),
assuming the usual convention F (1) = F (2) = 1. Hence it is not unexpected that the

2A classical example of a fractal set, also called Sierpiński gasket [Ma], not to be taken for its cousin
the Sierpiński carpet [AS2, 14.1].

3See, for example, [AS2, 7.1] for an introduction to the Fibonacci word.

2



expansion of natural numbers described below will play here a role similar to the one
played by the binary expansion in the preceding discussion:

Lemma 3. [Ze][AS2, 3.8] Any natural number is uniquely represented as a sum of
non-consecutive Fibonacci numbers of index larger than 1. �

Definition 1. The Zeckendorf expansion of n is the unique finite subset ζn of N

without two consecutive elements such that n =
∑

k∈ζn
F (k + 2).

Denote by |S| the cardinality of some finite set S .

Lemma 4. z(n) = |ζn| mod 2.

Proof. Given some n ∈ N, denote by l the largest element in ζn : F (2 + l) is the
largest Fibonacci number not larger than n. This implies that n = m + F (2 + l) with
m < F (1+ l). Otherwise, n would be of the form m0 +F (1+ l)+F (2+ l) = m0 +F (3+ l).
This would contradict the fact that F (2 + l) is the largest Fibonacci number not larger

than n. It follows from the definition of z that z(n) = z(m + F (2 + l)) = z(m). On the
other hand |ζn| = |ζm| + 1. The lemma follows by induction. �

2. Some self-similar matrices.

The theory of partially ordered sets (posets in the remaining of this paper) will guide
us to produce an analogue of equation (1) involving our sequence z . We will denote by B
the Boolean poset, whose elements are the finite subsets of N, ordered by inclusion. For
all k ∈ N, we will denote by Bk the poset whose elements are the subsets of {0, . . . , k−1},
ordered by inclusion.

A relationship between posets and matrices is provided by the following definition :

Definition 2. The zeta matrix4 of a countable poset P is the matrix whose rows and
columns are indexed by the elements of P , with an entry 1 at the pair (x, y) if x ≤ y, and
0 otherwise.

Example 1. Lemma 2 above can be rephrased as follows : B is the zeta matrix of B
(up to the identification an element K ∈ B with n(K) ∈ N).

Let us introduce a self-similar matrix A, which appears to be natural in our context.
Consider the poset A whose elements are those finite subsets of N without two consecutive

elements, ordered by inclusion. Denote by Ak the poset A∩Bk . Note that the Zeckendorf
expansion realizes a one-to-one correspondence between the elements of A and the natural
numbers, which allows to identify the elements of A with the integers. Denote by A the
zeta matrix of A : Ai,j = 1 iif ζj ⊂ ζi , and 0 otherwise.

To understand in what sense the matrix A is self-similar, let us introduce the following
sequence of matrices A(k), k ∈ N:

4The inverse of this matrix is classically called the “Möbius matrix” of P . See for example [Bó]. The
classical Möbius inversion formula can be interpreted in terms of the Möbius matrix corresponding to the
divisibility order of the integers . The relationship between the Möbius inversion formula and Riemann’s
zeta function motivates the use of the name “zeta matrix” in the context of a general poset.
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A(0) =
(

1
)

, A(1) =

(

1 0
1 1

)

, and, given some integer k, define A(k + 1) to be the

square, lower triangular matrix of size F (k + 3), defined recursively by

A(k + 1) =

(

A(k) 0F (k+2),F (k+1)

A(k − 1) 0F (k+1),F (k) A(k − 1)

)

,

where 0p,q denotes a rectangular block of zeros with p rows and q columns.

For example A(2) =





1 0 0
1 1 0
1 0 1



, and A(3) =













1 0 0 0 0
1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 1 0 1 1













.

Lemma 5. For all k ∈ N, A(k) is the zeta matrix of Ak (up to the identification of
Ak with {0, . . . , F (k + 2) − 1} ⊂ N via the Zeckendorf expension).

Proof. This is true for k = 1. Assume that it is true for some k, and let us show that
A(k + 1)s,t = 1 iff ζt ⊂ ζs. If s < F (k + 2), then a non-zero entry A(k + 1)s,t implies that

t ≤ s. Hence A(k + 1)s,t can be interpreted as an entry of A(k), and the statement holds

by the induction hypothesis. Suppose now that F (k + 2) ≤ s < F (k + 3). We have that
s′ = s−F (k +2) < F (k +3)−F (k +2) = F (k +1). In other words, ζs = ζs′ ∪{k}. Hence
ζt ⊂ ζs if and only if ζt ⊂ ζs′ or ζt ⊂ ζs′ ∪ {n}. The first case is reflected in the left lower
block of A(k + 1). The last case corresponds to the diagonal lower block of A(k + 1). �

Now let us introduce another sequence of matrices R(k), k ∈ N, with entries in Z[X].

R(0) =
(

1
)

, R(1) =

(

1 1
1 X

)

, and, given some integer k, R(k + 1) is the square

symmetric matrix of size F (k + 3), defined recursively by

R(k + 1) =

(

R(k) R(k)T

R(k) X · R(k − 1)

)

,

where R(k) stands for the F (k + 1) × F (k + 2) matrix obtained by removing the F (k)
last rows of R(k).

For example, R(2) =





1 1 1
1 X 1
1 1 X



, and R(3) =













1 1 1 1 1
1 X 1 1 X

1 1 X 1 1
1 1 1 X X

1 X 1 X X2













.

Far all k ∈ N, denote by C(k) the F (k + 2)×F (k + 2) diagonal matrix with entries in

Z[X], whose non-zero entries are C(k)l,l = (X − 1)|ζl|, l ∈ {0, . . . , F (k + 2) − 1}.

Theorem 1. For any k ∈ N, R(k) = A(k)C(k)A(k)T .

Proof. This is true for k = 1. Assume that this is true up to some integer k. Observe
that

C(k + 1) =

(

C(k) 0
0 (X − 1) · C(k − 1)

)

.

A block-wise computation of the product A(k+1)C(k+1) A(k+1)T shows that it satisfies
the recurrence relation that defines R(k + 1). �
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An application. Denote by Σ the symmetric (semi-infinite) matrix with coefficients
in {0, 1} such that Σ = AAT mod 2. An induction shows that :

Lemma 6. Σ is the limiting matrix of the family R(k), k ∈ N, when the variable X

is evaluated to 0. �

Theorem 1 then implies that

(2) Σ = ACAT ,

where C is the diagonal matrix whose i′th diagonal entry is Ci,i = (−1)z(i), i ∈ N. This is
the analogue of the LDU decomposition of Bacher and Chapman (equation (1)) discussed
earlier.

For completeness, we mention a “Boolean” version of theorem 1 which is implicit in
[BC]. It deals with the following families B(k) and S(k), k ∈ N of matrices of size 2k ,
respectively lower triangular and symmetric. The matrices B(0) = S(0) are both equal
to the 1 by 1 identity matrix, and B(k + 1) and S(k + 1) are defined recursively by :

B(k + 1) =

(

B(k) 0
B(k) B(k)

)

, and S(k + 1) =

(

S(k) S(k)
S(k) X · S(k)

)

.

In other words, B(k) = B(1)⊗k (the k′th power of B(1) with respect to the Kronecker

product of matrices, see [HJ, 4.2]), and S(k) = S(1)⊗k . Of course, the matrix B(k) is the
zeta matrix of Bk : B(k)P

i∈I 2i,
P

j∈J 2j = 1 iff J ⊂ I ⊂ {0, . . . , k−1}. For all k ∈ N, denote

by D(k) is the diagonal 2k × 2k matrix whose non-zero entries are Dl,l(k) = (X − 1)|l| ,

l ∈ {0 . . . 2k −1}. These matrices are “auto-similar” in the sense of Bacher and Chapman,
and [BC, theorem 2.1] applied to this particular case yields :

Theorem 2. For any k ∈ N, S(k) = B(k)D(k)B(k)T . �

Since t(l) = |l| mod 2, the case X = 0 corresponds to equation (1).

Observe also that when the variable X is evaluated to −1, S(k) becomes

B(k)

(

1 0
0 −2

)⊗k

B(k)T .

This is a Hadamard matrix, that is an orthogonal matrix with coefficients in {−1, 1},
introduced and studied by Sylvester [Sy] in 1867. Note also that this matrix performs the
Walsh transform used in signal processing.

3. Inverses and logarithms of these zeta matrices.

Denote by I the semi-infinite identity matrix. Recall that the formula

ln(I + M) =

∞
∑

l=1

(−1)l+1

l
M l

makes sense for any strictly lower triangular semi-infinite matrix M , since the computation
of a given element of ln(I +M) involves only a finite sum. We will call m = ln(I +M) the
logarithm of I+M . It is itself a strictly lower triangular semi-infinite matrix. The classical

formula em =
∑∞

l=0
ml

l! makes sense for such a semi-infinite matrix, and em = I + M .
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In particular it makes sense to consider the logarithms of the zeta matrices considered
so far. We will see that these logarithms enjoy a noticeable property (theorem 3 below)
related the poset structure.

Consider two elements x and y of some poset. One says that x covers y if y < x

and if there is no z such that y < z < x. A maximal k−chain in a poset is a subset
{x0, x2, . . . , xk} such that xp covers xp+1 for all 0 ≤ p < k. By the Hasse matrix of a
poset, we mean the incidence matrix of its Hasse diagram, viewed as a directed graph:
The rows and the columns of this matrix are indexed by the elements of the poset, and
the matrix element indexed by a pair (x, y) is 1 if x covers y, and 0 otherwise.

Theorem 3. For any k ∈ N, B(k) and A(k) have a logarithm with entries in {0, 1}.
More precisely, B = eH and A = eG , where H and G are the Hasse matrices of the posets
B and A.

The theorem is a corollary of lemma 7 below, in view of which we introduce the following
terminology.

Definition 2. An injective mapping φ : Q → R between two posets Q and R is
called an ideal embedding if for any x ∈ Q,

φ({y ∈ Q such that y ≤ x}) = {z ∈ R such that z ≤ φ(x)}.

Example. The natural inclusion A ⊂ B is an ideal embedding. �

Lemma 7. If a poset Q can be ideally embedded in the Boolean poset B, then its
Hasse matrix is the logarithm of its zeta matrix.

Proof. We will use below the letters G and A to denote the Hasse matrix and the
zeta matrix of Q. For any k ∈ N, the entry Gk

i,j is equal to the number of maximal

k−chains {x0, x2, . . . , xk} such that x0 = i, xk = j . The key point is that if Q has an
ideal embedding in B, then any interval [i, j] in Q is isomorphic (as a poset) to Bl , where
l = |φ(i)| − |φ(j)|. Since in Bl there are exactly l! maximal l-chains from the full set
{0, . . . , l − 1} down to the empty set, Gk

i,j = l ! if k = l, and vanishes otherwise. In other

words, for all k ∈ N, the matrices 1
k !G

k have entries in {0, 1} and have disjoint support.

On the other hand, the entry Ai,j is by definition equal to one if and only if there exists
a maximal k-chain from i to j , for some k ∈ N. In other words, Ai,j = 1 if and only if

there exists k such that Gk
i,j is non-zero. This proves that A =

∑

k∈N

1
k !G

k . �

Remark 3. It is interesting to give an alternate (longer) proof of lemma 7 , which has
the advantage of providing the explicit formulas of H and G. There are two steps. The
first one consists in proving that B = eH .

In addition to the basic properties of the Kronecker product of matrices (see [HJ, 4.2])
we will need the following key identity [HJ, 4.2.10]: (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD),
where A,B,C,D are four rectangular matrices such that the matrix products involved
in this identity make sense. Recall that the zeta matrix of Bk is B(k) = B(1)⊗k . Note

that B(1) = eH(1) , where H(1) =

(

0 0
1 0

)

is the Hasse matrix of B1 , the poset with two

comparable elements. Now

B(2) = B(1) ⊗ B(1) = eH(1) ⊗ eH(1) = (eH(1) ⊗ I(1)) · (I(1) ⊗ eH(1)),
6



where I(m) denotes the 2m × 2m identity matrix. But eH(1) ⊗ I(1) = eH(1)⊗I(1) , and

similarly I(1)⊗ eH(1) = eI(1)⊗H(1) . Hence L(2) = eH(1)⊗I(1) · eI(1)⊗H(1) . The two matrices
H(1)⊗ I(1) and I(1)⊗H(1) commute, so that B(2) = eH(1)⊗I(1)+I(1)⊗H(1) . This suggest
to define, for any l > 0, the 2l+1 × 2l+1 matrix H(l + 1) recursively by

H(l + 1) = I(1) ⊗ H(l) + H(1) ⊗ I(l) =

(

H(l) 0
I(l) H(l)

)

.

One can check that, for all k ∈ N, H(k) =
∑k−1

l=0 I(l) ⊗ H(1) ⊗ I(k − 1 − l).

On one hand, the recursion above is precisely the one that describes the relationship
between the Hasse matrices of the posets Bl and Bl+1 , and H(l) is indeed the Hasse matrix
of Bl .

On the other hand, the matrices I(1) ⊗ H(l) and H(1) ⊗ I(l) commute, so that

eH(l+1) = eI(1)⊗H(l) · eH(1)⊗I(l) = (I(1) ⊗ eH(l))(eH(1) ⊗ I(l)) =

= eH(1) ⊗ eH(l) = B(1) ⊗ B(l) = B(l + 1).

From this we recover the fact that B = eH .

Now consider an ideal embedding φ of Q in B. Denote by U the matrix whose rows
(resp. columns) are indexed by the elements of Q (resp. B) and whose entries are Ui,j = 1
if j = φ(i) and 0 otherwise. Since the order on Q is induced by Φ from the order on B,
we have that

A = UBUT .

Notice that UUT = I . Denote UT U by ∆. It is a semi-infinite diagonal matrix such
that its i’th diagonal element, is δi = 1 if i is in the image of φ, and 0 otherwise.

Lemma 8. U(H∆ − ∆H) = 0 and U(B∆ − ∆B) = 0.

Proof. (H∆−∆H)i,j = Hi,j(δj − δi). Assume that Hi,j is non-zero. This implies that
j ⊂ i. If in addition i is in the image of φ, then its subset j is also in the image of φ,
since φ is an ideal embedding. Hence both δi and δj are equal to 1. In other words,
i ∈ Im(φ) ⇒ (H∆−∆H)i,j = 0 for all j ∈ Q. This implies that U(H∆−∆H) = 0. The
proof that U(B∆ − ∆B) vanishes is similar. �

Since φ is an ideal embedding, we have that G = UHUT . According to lemma 8,
Gk = UHkUT , for all k ∈ N. But we know that B =

∑

k∈N

1
k !H

k , hence

A = UB UT =
∑

k∈N

1

k !
UHkUT = eG.

This completes the alternate proof of lemma 7. �

To finish with, we notice that the inverses of B and A, i.e. the Möbius matrices of
the corresponding posets, are also quite remarkable : they both have entries in {−1, 0, 1}.
More precisely, we will show that these Möbius matrices have, up to sign, the same entries
as their inverses.

Recall that D and C are the diagonal matrices whose non-zero entries are, respectively,
(−1)t(i) and (−1)z(i) , i ∈ N.

Theorem 4. B−1 = DBD and A−1 = CAC .
7



Proof. Denote the matrix

(

1 0
0 −1

)

by D(1). Since (B(1)D(1))2 = I(1), we have

that I(k) = ((B(1)D(1))2)⊗k = (B(1)⊗kD(1)⊗k)2 , for all k ∈ N. This proves that, for all
k ∈ N, B(k)−1 = D(1)⊗kB(k)D(1)⊗k , and the expression of B−1 follows.

Now recall that A = UBUT and observe that C = UDUT . This implies that

AC = UBUT UDUT = UB∆DUT .

Using the fact that ∆ and D commute, and that ∆UT = UT , we get that AC =
UBDUT . Hence (AC)2 = UBD∆BDUT = UB∆DBDUT . By lemma 8 we know
that UB∆ = U∆B = UB . In addition, we already know that DBD = B−1 . Hence
(AC)2 = UBB−1UT = I . �
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