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Even binary mixtures exhibit surprisingly complex phase equilibria behavior. Understanding their relationships
is of primary industrial importance. A tool is the global phase diagram (GPD) i.e. the partition of the space of
the external (model) parameters into regions where points represent system such that the corresponding pT
diagrams have the same topological type. The boundaries of these regions are hypersurfaces (of codimension 1)
in the space of parameters. We present here a complete classification of the local phenomena corresponding to
codimension 3 singularities in the pT phase diagrams of proper binary mixtures (i.e. the molar fraction x of one
of the species satisfies 0 < x < 1) when a parameter varies so that such a hypersurface is intersected. This work
represents a complement to the classification by Nezbeda et al. (I. Nezbeda, J. Kolafa and W. R. Smith, J.
Chem. Soc., Faraday Trans., 1997, 93(17), 3073). Following Varchenko’s approach, (A. N. Varchenko, J. Sov.
Math., 1990, 52(4), 3305) generic phenomena encountered in binary mixtures when the pressure p and the
temperature T change, correspond to singularities of the convex envelope (with respect to the x variable) of the
‘‘ front ’’ (a multifunction of the variable x) representing the Gibbs potential G[p,T](x). Pressure p and
temperature T play the role of external parameters like l. A total amount of 26 singularities is found (at least 6
of them were not previously described in the literature), and 56 scenarios of evolution of the pT diagram are
obtained. As far as possible, we have quoted examples of modeled or real binary mixtures where these
singularities appear.

1 Introduction

Codimension 2 singularities of pT-diagrams of binary mixtures
were classified in ref. 1. In this paper, we consider codimension
3 singularities (i.e. the case when the system depends on a para-
meter). The physical nature of this external parameter l is left
unspecified. For example l can be a parameter in the equation
of state of the mixture. The theory does not apply directly to
ternary mixtures, since a molar fraction is not an external
parameter (the Gibbs potential has to be convexified with
respect to this variable, see below).
All mathematical ideas used below are explained in ref. 1.

We will use below the notation of this paper. Recall some facts
about the two parameter case (the pressure and the tempera-
ture are considered as two external parameters):
Denote by G[p,T](x) the Gibbs potential considered as a

multivalued function (with singularities) of the variable x
(where x denotes the molar fraction of the second component),
with p and T fixed. A point (p,T) will be called generic if the
convexification of G[p,T] with respect to x is generic. For such
a generic (p,T), the number of singularities in the convexifica-
tion of G[p,T] is even, say 2n, and these singularities subdivide
the interval [0,1] (where x lives) into n disjoint segments which
correspond to heterogeneous equilibria and n+1 segments
which correspond to homogeneous equilibria. A generic (p,T)
point is thus labeled by an odd integer (2n+1) which indicates
the total number of phases of the system as x varies when (p,T)
is constant. The generic phenomena encountered in binary
mixtures when p and T vary are met when the point (p,T) is

such that the convexification of G[p,T] has degenerate (i.e.
non-generic) singularities. The set of such points (p,T) is made
of some curves which separate regions were the potential is
generic. Codimension one singularities correspond to critical
points, azeotropies or triple points. The codimension two singu-
larities are isolated points in the (p,T)-plane. It was proved in
ref. 1 that there are 5 different codimension 2 singularities, not
considering those of pure components (arriving at x ¼ 0 or
x ¼ 1), and the transverse intersections of two codimension
one singularities (points (p,T) where the convexification of
the potential contains two distinct non-generic events of codi-
mension one).
Let ’s consider now the addition of some external parameters

l. The Gibbs potential will be denoted by G[p,T,l]. In thermo-
dynamics, binary mixture models depending on several exter-
nal parameters are studied. The codimension one
singularities in the space of external parameters correspond
to codimension 3 singularities of convex envelopes of
G[p,T,l] . The space of proper parameters (called global phase
space or GPD) is subdivided by an hypersurface into regions
where the (p,T)-diagram is generic. These regions correspond
to the set of ls such that for all (p,T), the convexification of
G[p,T,l] shows singularities of codimension at most 2.
We describe below what happens when a path crosses trans-

versely the hypersurface which separates these regions. Our
goal is to list all possible ways to pass from a generic (p,T)-dia-
gram to another generic (p,T)-diagram by a generic one-para-
meter family of (p,T)-diagrams.
To do this, we consider the three-dimensional parameter

space (p,T,l). At each point of this space there corresponds a
particular G[p,T,l], defined over the [0,1] interval of the x vari-y Present address: Le Chamboud, 38780 Eyzin-Pinet, France.
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able. This space is thus subdivided into regions containing the
(p,T,l) for which the convexification of G[p,T,l] is generic.
Denote by S the complement of these regions. S is a singular
surface. The singularities of S are located on some curves lying
on this surface. These curves meet at some isolated points
which corresponds to more complicated singularities. Codi-
mension 1 singularities of the convexification of G[p,T,l]
(which correspond to critical points, azeotropies and triple
points) occur when (p,T,l) lies on the smooth part of S. Codi-
mension 2 singularities occur when (p,T,l) lies on the singular
curves of S. Codimension 3 singularities occur when (p,T,l) is
one of the isolated singular points of S.
The smooth parts of S receive a natural coorientation by the

following procedure: A smooth component of S separates two
regions where the potential is generic. Such a region can be
labeled by its number of phases. The coorientation (shown
by a small stroke in our pictures) indicates the region where
the number of phases is higher.
The local features of S in a neighborhood of a singularity

are described by a mathematical model of the singularity in
an abstract 3-dimensional space. The true physical singularity,
in the (p,T,l) space, is diffeomorphic to this abstract model.
Therefore, having the model of S in the neighborhood of a

singular point, the (p,T) diagram corresponding to the non-
generic value of l (denoted by l*) is the section of S at
l ¼ l*. The scenario of the variation of the (p,T) diagram is
given by the film of the successive sections of S when l varies
in (l*� e, l*+ e). This scenario depends on the relative posi-
tion of S with respect to the l axis. So, for a given singularity,
there are different scenarios for the variation of the (p,T) dia-
gram. There are 13 possible singularities of codimension 3
for S, and 20 generic scenarios.
Example. Fig. 1a contains a generic scenario obtained by

generic sections of S near a singular isolated point (which is
called a tricritical point, see Section 3.1). This singularity sepa-
rates regions II and IV (using the terminology of ref. 7) in
GPD. A non-generic scenario, obtained by a non-generic sec-
tion of S at the singular point, is shown in Fig. 1b. In fact this
non-generic scenario appears when one moves from class II to
class III in GPD (see Fig. 7 in ref . 4, where the singular point
is called a symmetrical tricritical point).
Still another type of codimension 3 singularity in the (p,T)

diagram appears when the (p,T) plane is non-transverse (i.e.
tangent) to a curve of codimension 2 singularities of S. By ana-
lyzing the non-generic (codimension 1) intersections of the

models of S for the 5 codimension 2 singularities, we obtain
15 additional scenarios.
Eventually, another way to obtain codimension 3 singulari-

ties in the (p,T) plane (and hence new scenarios): When the
smooth part of S is tangent to a (p,T) plane l ¼ constant.
The smooth parts of S can be labeled by the 3 types of codi-
mension 1 singularities of convexification. There should be 3
possible scenarios for each of the 3 types. However, we doubt
that all these scenarios effectively appear in binary mixtures
(we found only two of these scenarios in the literature concern-
ing binary mixtures).
This paper is organized as follows: In Section 2, we explain

the notations used throughout this paper. In Section 3, the list
of all models of possible isolated singularities of S is given,
with the corresponding generic scenarios. In Section 4, we list
all possible scenarios corresponding to the case when the (p,T)
plane is tangent to a curve of singularities of S. In Section 5,
we list all possible scenarios corresponding to the case when
the (p,T) plane is tangent to a smooth component of S. Exam-
ples we are aware of, where these scenarios occur in modeled
and real binary mixtures are indicated in each section. In Sec-
tion 6, we discuss another type of local codimension 3 phe-
nomenon in (p,T) diagrams. In the Appendix the diagram of
adjacencies of the singularities is briefly described.

2 About the notation

We list here the mathematical notation for the singularities
used in this paper. Our notation is somewhat complementary
to that given in ref. 2. The latter is more phenomenological,
the former is based on the mathematical features of the singu-
larities. At a generic point, the graph of the convexification of
G[p,T,l] has a contact of order 2 with its tangent line. Such a
generic point is denoted by (1,2). Codimension 1 singularities
of the convexification of G[p,T,l] (corresponding to the
smooth part of S), are denoted as follows:
(i) (1,4) (critical point),
(ii) (2,2) (azeotropy),
(iii) (1,2)(1,2)(1,2), also denoted by (1,2)3 (triple point).
The meaning of this notation is the following: each par-

enthesized sequence of numbers denotes a point x above which
different pieces of the (multivalued) graph of G[p,T,l] are tan-
gent. The first integer denotes the number m of such tangent
pieces; the second number after a comma (or a sequence of

Fig. 1 Generic (a) and non-generic (b) scenarios obtained as sections of S near the (1,6) singularity.
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numbers separated by a line) denotes the different orders of
contact of the m pieces with the tangent line. A third number
after a comma (if present), denotes the order of contact
between two pieces, in the case when it is different from 2. If
this last number is half-integer, it means that the two corre-
sponding branches form a cusp point. A series of parenthesized
sequences denotes the coexistence of several such points of tan-
gency having a common tangent line.
Codimension 2 singularities of the convexification of

G[p,T,l] are denoted as follows:
(i) (1,4)(1,2) (Split pleat tail, also known as critical end point

in ref. 9),
(ii) (2,2)(1,2) (Dove, a.k.a. azeotropic end point in ref. 9)
(iii) (3,2,5/2) (Wings, missing in ref. 14, a.k.a. critical azeo-

tropic point in ref. 9)
(iv) (1,2)4 (Quadruple point in ref. 9)
(v) (2,2,3) (Double pleat, missing in ref. 9, a.k.a. critical cusp

in ref. 2)
Our notations for codimension 3 singularities will be in

accordance with the above.

3 The thirteen generic isolated singularities of S

3.1 The (1,6) singularity

This singularity occurs when the graph of the convexified
potential G[p,T,l](x) has a contact of order six with its tangent
line at some point x.

The local picture of S near such a point (see Fig. 2a) con-
tains a surface of (1,4) singularities (white) with a self-intersec-
tion starting at the (1,6) isolated point. This line represents an
example of transverse intersection: in the potential there are
two distinct (1,4) singularities. The edge of this surface is the
line of (1,4)(1,2) split-pleat tails (light grey), which contains a
cusp point at the (1,6) singularity and borders the surface of
triple points (dark grey).
Generic sections of S representing the evolution of the (p,T)-

diagrams, avoid the tangent line to the self-intersection line at
the (1,6) point. The smooth critical line becomes non-smooth
at the singular point and afterwards a self-intersection point
appears together with two split-pleat tails (Fig. 3a).
Remark. This singularity is called tricritical point in ref. 9.
Examples. The (1,6) singularity separates II and IV classes of

GPD, (using the notation of ref. 7) in global diagrams (see also
Fig. 3 in ref. 4 and Fig. 4 in ref. 12).

3.2 The (2,2,4) singularity

It occurs when two branches of G[p,T,l] have a contact of
order four.
In the neighborhood of this point (see Fig. 2b) the two

branches of the potential, which remain convex, have up to
four intersection points. The convexified graph has up to four
added segments (i.e. nine different phases). At the (2,2,4)-sin-
gularity the azeotropy surface (2,2) (grey) has a swallowtail.
Its cusp edge is the double pleat line (2,2,3) (dark grey). At

Fig. 2 The S surface near (a) the (1,6), (b) the (2,2,4), (c) the (3,2), (d) the (3,2,7/2) singularities.
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the singular point it has a spatial cusp. The transverse self-
intersection of the azeotrope surface represents the coexistence
of two azeotropes.
Generic sections of S at such a point, representing the evolu-

tion of the (p,T)-diagram as the parameter l varies, avoid the
tangent line to the self-intersection line at the (2,2,4) point.
Such (p,T)-diagrams are shown in Fig. 3b.
Remark. This singularity is not mentioned in ref. 9.

3.3 The (3,2) singularity

This corresponds to the case when three branches of the poten-
tial G[p,T,l] are mutually tangent in a point.
At this singular point (see Fig. 2c), three dove lines (2,2)(1,2)

(black) are mutually tangent. The triple-points surface (1,2)3

(dark grey) has a Whitney umbrella at the (3,2) point. S con-
tains the following multiple singularities (transverse intersec-
tions): self-intersection of the triple points surface and
intersections of two branches of the azeotropy surface (coexis-
tence of two azeotropes).
A generic section of S containing the singular point avoids

the common tangent line to the dove lines and the tangent to
the self-intersection line of the triple points surface. The evolu-
tion of the (p,T)-diagram crossing the singularity is shown in
Fig. 3c.
Remark. This singular point is called a double azeotrope in

ref. 9. Double azeotropy means coexistence of two azeotropes,
at different concentrations,5 which appear at a double pleat
singularity,1 see also Fig. 4d. At the (3,2) singularity three
azeotropes meet, together with two triple points.

Fig. 3 Scenarios, table I.
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3.4 The (3,2,7/2) singularity

This occurs when a smooth branch of the graph of G[p,T,l]
becomes tangent to a cusp point of type 7/2.
At such a point (see Fig. 2d), an azeotrope surface (grey)

with a cusp edge (dark grey) of double pleat points, ends tan-
gentially to the critical points surface (white) along the wings
line (grey). Note that the (transverse) intersection of the critical
points surface and the azeotrope surface ends on this singular-
ity, tangentially to the wings line.
The generic sections of S at the singular points do not con-

tain the common tangent to the wings and the double pleat
lines. In the (p,T)-plane the double pleat point disappears
and the azeotrope line ends on the opposite side of the critical
points line (see Fig. 3d).
Remark. This singularity is not mentioned in ref. 9.

3.5 The (2,4–2) singularity

It occurs when the potential G[p,T,l] has at the same time a
branch which experiences an (1,4) singularity (contact of order
four with the tangent line) and another branch which is tan-
gent to it at the same point.
At such a point (see Fig. 5a), a split-pleat tail line (light

grey) is tangent to a dove line (black) and to the intersection
line of the critical points surface (white) with the azeotropy
surface (grey). This intersection line is a transverse intersec-
tion.
A generic section does not contain the common tangent line

to the dove and split-pleat tail lines. The (p,T)-diagrams before
and after the singular event are similar (see Fig. 3e).
Remark. This singularity is called double critical/azeotropic

end-point in ref. 9.

Fig. 4 The S surface near (a) the (1,4)(1,2), (b) the (2,2)(1,2), (c) the (3,2,5/2), (d) the (2,2,3), (e) the (1,2)4 singularities.
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Examples. An example of this singularity is given in ref. 10,
Fig. 8.

3.6 The (1,8/3) singularity

This singularity is a special point of the wings line, where the
lips having a cusp point tangent to another branch of the
potential vanish, and reappear with the opposite cusp tangent
to the same branch.
In Fig. 5b, the surface of critical points forms a Whitney

umbrella (white). The azeotrope surface (grey) is tangent to
this umbrella along the wings line (dark grey). The selfintersec-
tion of the critical points surface is transverse and represents
potentials with two different (1,4) singularities.
A generic section of S at the singularity does not contain the

tangent to the wings line and the tangent to the self-intersec-
tion line of the umbrella. The (p,T)-diagrams before and after
the singular event are similar in the neighborhood of the wings;
at the singular point the critical points line has a cusp (see Fig.
3f).
Remark. This singularity is not mentioned in ref. 9.
Examples. An example of this singularity is given in ref. 7,

Fig. 5. The azeotrope line meets the critical line at its cusp
point.

3.7 The (2,2,3)(1,2) singularity

This occurs when the tangent line to the graph of G[p,T,l] at a
double pleat point (2,2,3) is tangent to the graph of the poten-
tial at another point.

At such a point (see Fig. 5c), an azeotrope surface (grey)
with a cusp edge (light grey) of double pleat points, ends tan-
gentially to the triple points surface (dark grey) along the dove
line (black). Note that the (transverse) intersection of the triple
points surface and the azeotrope surface ends on this singular-
ity.
The generic sections of S at the singular points do not con-

tain the common tangent to the dove and the double pleat
lines. In the (p,T)-plane the double pleat point disappears
and the azeotrope line ends on the opposite side of the triple
points line (see Fig. 3g).
Remark. This singularity is not mentioned in ref. 9.

3.8 The (3,2,5/2)(1,2) singularity

It occurs when at a wings point of G[p,T,l], the tangent line is
tangent to the graph of the potential at another point.
At such a point (see Fig. 5d), a dove line (black) and a wings

line (dark grey) end together and meet transversely on a split
pleat tail line. Moreover, at the singular point, a transverse
intersection between the triple points surface (grey) and the cri-
tical point surface (white) is ending.
There are four generic sections of S at the singular point: the

corresponding evolutions of the (p,T)-diagram are shown in
Fig. 3h, i, j and k.
Remark. This singularity is called a critical azeotropic end-

point in ref. 9.
Examples. This singularity (section of type (c)) separates the

J and K domains in Fig. 4a of Nezbeda et al.9

Fig. 5 The S surface near (a) the (2,4–2), (b) the (1,8/3), (c) the (2,2,3)(1,2), (d) the (3,2,5/2)(1,2) singularities.
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3.9 The (1,4)(1,2)(1,2) singularity

It occurs when three branches of the potential have a common
tangent line: the first one has a contact of order four, the other
ones have a contact of order two with the line.
At such a point (see Fig. 6a), a quadruple points line (white)

ends where it meets the end-points of two split-pleat tail lines
(light grey). These split-pleat tail lines border a critical point
surface (white) which intersects transversely one of the triple
points surfaces (dark grey).
There are 4 types of generic sections of S containing this sin-

gular point (see Fig. 3l, m, n and o).
Remark. This singularity is called quadruple critical end-point

in ref. 9 and critical–normal–normal point in ref. 2.

3.10 The (1,2)(1,4)(1,2) singularity

It occurs when three branches of the potential have a common
tangent line: the middle one has a contact of order four, the
other ones of order two with the tangent.
At such a point (see Fig. 6b), a quadruple points line (white)

ends where it meets the end-points of two split-pleat tail lines
(light grey). These split-pleat tail lines border a critical point
surface (white).
There are three types of generic sections of S containing this

singular point (see Fig. 7a, b and c).
Remark. In ref. 9, this singularity has the same name as

(1,4)(1,2)(1,2): quadruple critical end-point, whereas it is called
a normal–critical–normal point in ref. 2.
Examples. This singularity (section of type (c)) separates the

domains IV* and IV4 of Fig. 12 in ref. 4 (see also, in Fig. 14 of
ref. 4 the (p,T)-diagrams in these two domains).

3.11 The (2,2)(1,2)(1,2) singularity

It occurs when four branches of the potential have a common
tangent line such that the points of tangency of the first two
branches with this line coincide.
At such a point (see Fig. 6c), a quadruple points line (white)

is intersected by a dove line (black) at the singular point. At
that point the dove line is not smooth: along this line the azeo-
trope surface (grey) is tangent to two different triple points sur-
faces (dark grey). Moreover, a transverse intersection between
the azeotrope surface and a third triple points surface ends tan-
gentially on the quadruple point line (white).
There are three non-equivalent sections of S containing this

singular point (see Fig. 7d, e, and f).
Remark.This singularity is called quadruple azeotropic end-

point in ref. 9 and azeotropic–normal–normal inref. 6.

3.12 The (1,2)(2,2)(1,2) singularity

It occurs when four branches of the potential have a common
tangent line such that the points of tangency of the two central
branches coincide.
At such a point (see Fig. 6d), two dove lines (black) end on a

quadruple points line (white) at the singular point. The dove
lines border the same azeotrope surface (grey), but belong to
two different triple points surfaces (dark grey), which intersect
transversely along a line which ends at the singular point, tan-
gentially to the azeotrope surface.
A generic section of S containing the singular point avoids

the tangent to the quadruple point line and the tangent to
the self-intersection line. There are two types of generic sec-
tions (see Fig. 7g and h).

Fig. 6 The S surface near (a) the (1,4)(1,2)(1,2), (b) the (1,2)(1,4)(1,2), (c) the (2,2)(1,2)(1,2), (d) the (1,2)(2,2)(1,2) singularities.
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Remark. This singularity is called normal–azeotropic–normal
in ref. 6. The (2,2)(1,2)(1,2) and (1,2)(2,2)(1,2) singularities are
not distinguished in ref. 9.

3.13 The (1,2)5 singularity

It occurs when five different generic points of the graph of the
potential have a common tangent line.
Such a point (see Fig. 8) is the meeting point of five lines of

quadruple points (white) and of ten surfaces of triple points
(dark grey). Two of such triple points surfaces intersect each
other transversely (along the light grey line). The surfaces are
cooriented. Around the quintuple point there are eight regions
(generic domains) where the number of phases varies from
three to nine.

There are seven non-equivalent sections of S. In Fig. 7, the
scenarios i and j (resp. k and l; resp. m and n) are distinguished
only by the position of the double triple point.
Remark. This singularity is called a quintuple point in ref. 9.

4. The five cases of tangency between the (p,T)
plane and the singular curves on S

4.1 Tangential section of the split-pleat tail line

At such a point (see Fig. 4a), the surface of triple points (1,2)3

(dark grey) and the surface of critical points (1,4) (white) meet
together and form an angle along the split-pleat tail line (light
grey).

Fig. 7 Scenarios table II.
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Near to the points of tangency of the singular line with the
(p,T) plane, S can be of two types (both depicted in Fig. 4a),
depending on the local shape of the singular curve. A section
of S tangent to the split-pleat tail curve may lie generically
in 2 different positions, giving rise to 4 generic scenarios in
the (p,T)-plane (see Fig. 9a–c and d). They all feature the birth
or the death of a pair of split pleat tails.
Remark. These scenarios in the (p,T)-plane are those shown

in ref. 9, Fig. 6(a) and 6(b), where the singular point is called
double critical end-point.
Examples. An example of this singularity (scenario a) is

given in Nezbeda et al.,11 Fig. 7 and 8.
This singularity (scenario a) separates the domains II and VI

of Fig. 4 in van Pelt et al.,12 whereas domains IV and VII are
separated by the scenario c.
Also, Fig. 4 of Deiters and Pegg,4 is an example of scenario

a.

4.2 Tangential section of the dove line

At such a point (see Fig. 4b), the surface of azeotropy (2,2)
(grey) ends along the dove line (black) on the triple points sur-
face (1,2)3 (dark grey).
Near the points of tangency of the singular line with the

(p,T) plane, S can be of two types (both depicted in Fig. 4b),
depending on the local shape of the singular curve. Hence
one obtains two generic scenarios which feature the birth or
the death of a pair of doves (see Fig. 9e and f).
Examples. These scenarios are those shown in ref. 9, Fig. 10a

and 10b (where the singular point is called a double azeotropic
end-point).

4.3 Tangential section of the wings line

At such a point (see Fig. 4c), the surface of azeotropy
(2,2)(grey) ends tangentially on the critical points surface
(1,4) (white) along the wings line (light grey).
Near to the points of tangency of the singular line with the

(p,T) plane, S can be of two types (both depicted in Fig. 4c),
depending on the local shape of the singular curve. Hence here
are two generic scenarios, which feature the birth or death of a
pair of wings (see Fig. 9g and h).
Remark. In ref. 9, this singular point is called double critical

azeotropic point.

4.4 Tangential section of the double pleat line

At such a point (see Fig. 4d), the surface of azeotropy
(2,2)(grey) has a cusp-edge along the double pleat line (2,2,3)
(light grey). Near to the points of tangency of the singular line
with the (p,T) plane, S can be of two types (both depicted in
Fig. 4d), depending on the local shape of the singular curve.
Hence there are two generic scenarios, which feature the birth
or the death of two double pleats (see Fig. 9i and j).
Remark. This singularity is not mentioned in ref. 9.

4.5 Tangential section of the quadruple points line

At such a point (see Fig. 4e), four surfaces of triple points
(1,2)3 (dark grey) meet along the quadruple points line (white).
There are five generic scenarios, depending on the mutual posi-
tion of the (p,T) plane, S, and the quadruple point line in S.
All these scenarios feature the birth or death of a pair of quad-
ruple points in the ( p,T) plane (see Fig. 9k, l, m, n and o).
Remark. In ref. 9, this singular point is called double quadru-

ple end point.

5 The six cases of tangency between the (p,T) plane
and the smooth part of S

5.1 Tangential section by the (p,T) plane of the critical points
surface

5.1.1 Hyperbolic case. The point of tangency of the surface
with the (p,T) plane is a generic hyperbolic point of the critical
points surface (white) (see Fig. 10a). In the corresponding sce-
nario, two smooth components of the critical line meet at the
singular point (a double point of the critical line), which is suc-
cessively transformed into a different pair of smooth compo-
nents.
Examples. This phenomenon separates classes Vh and VIII

of the global phase diagram in ref. 12, Fig. 14.

5.1.2 Locally convex case. The point of tangency of the sur-
face with the (p,T) plane belongs to a generic locally convex
part of the the critical points surface (white) (see Fig. 10b).
The corresponding scenario features the birth or death of a
smooth closed component of the critical line in the p,T plane.

Fig. 8 The S surface near the (1,2)5 singularity.
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Notice that in this case there are two scenarios, depending of
the coorientation of S (see Fig. 10b).
Examples. This phenomenon is pointed out by Boshkov3

(see also Schneider13).

5.2 Tangential section by the (p,T) plane of the triple points
and azeotropy surfaces

Our theoretical model applies in a similar way to the smooth
part of S containing triple points and azeotropies. In ref. 6
there is an azeotropic saddle point described which corresponds
to the hyperbolic case of tangential section of the azeotropy
surface. We do not know evidences of the existence of the
other corresponding phenomena. It would be interesting to
investigate whether there are some physical reasons of the
non-occurrence of such scenarios.

6 Yet another local variation of the (p,T)-diagram

For the sake of completeness, we mention another local phe-
nomenon which may arise in the (p,T) diagram as an external
parameter varies. It is the birth or death of a pair of an upper
and a lower critical point in a critical line. This phenomenon is
not included in the previous classification because the topology
of the (p,T) diagram does not change. However, the topology
of the (x,T) diagrams does change, i.e. the system experiences
new behavior. For this reason this phenomenon separates dif-
ferent regions in the GPD.
In the (p,T) diagram the critical line has an inflection point

with horizontal tangent. When the external parameter (l) var-
ies in one direction, a minimum and a maximum appear in the
critical curve (expressed as p ¼ p(T)). In terms of S, this point
is a pleat of the projection of S on a plane p ¼ constant (see
Fig. 11).

Fig. 9 Scenarios table III.
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Of course, we could consider theoretically other similar
(non-topological) variations of the (p,T) diagram implying a
change, for example, in the (x,p) diagrams (i.e. when an inflec-
tion point of a codimension 1 line in the (p,T) diagram has a
vertical tangent). We do not know, however, any example of
this type.
Examples. This phenomenon separates regions III and IIIm

of the GPD in ref. 7 and 8. See also ref. 3.
Remark. An analogous phenomenon concerning the azeo-

tropy surface is described in ref. 6, where it is called a double
azeotropic cusp. A similar point for triple lines likely does
not exist.

7 Conclusions

In this paper, we made a few steps into the systematic applica-
tion of the methods of singularity theory to the local study of
GPD. Here the GPD was the one-dimensional space of a para-
meter l, which may have many different physical meanings: a
parameter in a model (including the case when this parameter
is the ‘‘ time ’’ in a contact transformation), a (smoothed) num-
ber of carbons in an homologous series, etc.
Several issues for which a similar approach should be rele-

vant were not considered here. A natural sequel to this work
would be to examine what happens in the neighborhood of
the pure states x ¼ 0 and x ¼ 1. Furthermore, some non-local
phenomena may occur when some singularity arrives from infi-

Fig. 10 Left: (p,T) plane tangent to (a) a locally hyperbolic surface, (b) a locally convex surface of critical points; right: corresponding scenarios.

Fig. 11 Pleat of the projection of the critical points surface of S along the p direction and the corresponding scenario.

Fig. 12 Diagram of adjacencies for non-tangential singularities up to
codimension three.
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nity. Singularities of higher codimension have yet to be inves-
tigated.
Some of the singularities and the scenarios identified in this

paper were missing in the previous classifications. A few of
them can be observed in the published works about modeled
and actual binary mixtures. We hope that experiment will lead
to the observation of the remaining ones.

Appendix

We include here (Fig. 12) the diagram of adjacencies between
the singularities discussed in this paper. It helps to present in a
synthetic way the different items of the classification according
to their codimension and to understand the relationships
between them, i.e. how the different items piece together.
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