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Abstract. Let L be a fixed branch – that is, an irreducible germ of curve – on a normal

surface singularity X. If A,B are two other branches, define uL(A,B) :=
(L ·A) (L ·B)

A ·B ,

where A·B denotes the intersection number of A and B. Call X arborescent if all the dual
graphs of its resolutions are trees. In a previous paper, the first three authors extended
a 1985 theorem of P loski by proving that whenever X is arborescent, the function uL
is an ultrametric on the set of branches on X different from L. In the present paper
we prove that, conversely, if uL is an ultrametric, then X is arborescent. We also show
that for any normal surface singularity, one may find arbitrarily large sets of branches
on X, characterized uniquely in terms of the topology of the resolutions of their sum,
in restriction to which uL is still an ultrametric. Moreover, we describe the associated
tree in terms of the dual graphs of such resolutions. Then we extend our setting by
allowing L to be an arbitrary semivaluation on X and by defining uL on a suitable space
of semivaluations. We prove that any such function is again an ultrametric if and only if
X is arborescent, and without any restriction on X we exhibit special subspaces of the
space of semivaluations in restriction to which uL is still an ultrametric.
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Introduction

Let X be a normal surface singularity, which will mean for us throughout the paper a
germ of normal complex analytic surface. A branch on it is an irreducible germ of formal
curve on X. In his 1985 paper [37], P loski proved a theorem which may be reformulated
in the following way:

If X is smooth, then the map which associates to any pair (A,B) of branches
on it the quotient

m(A)m(B)

A ·B
of the product of their multiplicities by their intersection number, is an
ultrametric on the set of branches on X.

P loski’s proof was computational, using Newton-Puiseux series and their characteristic
exponents.

The first three authors searched a more conceptual proof, valid if possible in a wider
context. This led them to prove in [17, Theorem 4.18] that the previous theorem is not
specific to smooth germs X, but that it could be generalized in the following form to all
arborescent singularities, which are the normal surface singularities whose resolutions with
normal crossing exceptional divisors have trees as dual graphs:

Let X be an arborescent singularity and L a fixed branch on it. Then the
map uL which associates to any pair (A,B) of branches on X the quotient

(L ·A) (L ·B)

A ·B
,

is an ultrametric on the set of branches on X distinct from L.

Note that on arbitrary normal surface singularities the intersection numbers are defined
in the sense of Mumford [35] and may take non-integral (but still rational) values.

One may recover P loski’s theorem as a particular case of the previous one. Indeed,
smooth germs X are arborescent and the ultrametric property of the quotients involved in
P loski’s theorem may be tested on any finite set of branches. Then it is enough to choose
a smooth branch L which is transversal to all the branches in a fixed such finite set.

Any ultrametric on a finite set has an associated finite rooted tree, whose set of vertices
different from the root is identified with the closed balls relative to the ultrametric, and
whose root is a supplementary vertex of valency 1. In the case of the ultrametrics uL, this
tree may be characterized in the following way (see [17, Theorem 4.20]):

Let X be an arborescent singularity and L a fixed branch on it. Let F be a
finite set of branches on X, containing L. Choose an embedded resolution of
the sum of branches in F . Then the rooted tree associated to the restriction
of uL to F \ {L} is isomorphic to the convex hull of the representative
vertices of the strict transforms of the branches of F in the dual graph of the
total transform of F , rooted at the vertex representing the strict transform
of L.

The main aspect of the approach of [17] was to express the intersection numbers of
branches on a normal surface singularity X in terms of intersection numbers of exceptional
divisors on a resolution Xπ of X. What made ultimately everything work was the following
inequality between the intersection numbers of the divisors of the basis (Ěu)u of the vector
space of real exceptional divisors of Xπ which is dual to the basis formed by the prime
exceptional divisors (Eu)u:
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Let X be an arborescent singularity and Xπ a normal crossings resolution of
it. Let Eu, Ev and Ew be not necessarily distinct exceptional prime divisors
of Xπ. Then one has the inequality:

(−Ěu · Ěv)(−Ěv · Ěw) ≤ (−Ěv · Ěv)(−Ěu · Ěw),

with equality if and only if v separates u and w in the dual graph of Xπ.

More or less at the same time as [17], Gignac and the fourth author developed in [19]
foundations for the dynamical study of holomorphic endomorphisms of normal surface
singularities. As a crucial ingredient in their work, they proved that the previous inequality,
as well as the characterization of the case of equality were in fact true for all normal surface
singularities.

This generalized inequality (see Proposition 1.17) is also the crucial ingredient in the
present paper. Even if this alternative viewpoint on it is not used here, let us mention
the following intriguing reformulation of the inequality (see Proposition 1.18), because we
think that it could suggest other researches:

Let X be a normal surface singularity and Xπ a normal crossings resolution
of it. Let Eu, Ev and Ew be pairwise distinct exceptional prime divisors of
Xπ. Then the spherical triangle determined by the duals Ěu, Ěv and Ěw
has only acute or right angles and the angle at the vertex associated to Ěv
is straight if and only if v separates u and w in the dual graph of Xπ.

The main results of the present paper are:

• We prove a converse of one of the main theorems of [17], which stated that uL is
an ultrametric whenever X is arborescent (see Theorem 1.44). Namely, given a
normal surface singularity X and a branch L on it, then uL is an ultrametric on
the set of branches different from L only if X is arborescent. Therefore:

The normal surface singularity X is arborescent if and only if all the
functions uL, for varying branches L on X, are ultrametrics.

• We generalize the previous theorem of [17] to arbitrary normal surface singularities
(see Theorem 1.40). Namely, given such a singularity X, a branch L on it and a
finite set F of branches on X containing L, we show that uL is an ultrametric on
this finite set whenever the dual graph of the total transform of the sum of all the
branches in F in an arbitrary embedded resolution satisfies a precise topological
condition. It is interesting that this condition does not involve intersection numbers
or genera of prime exceptional divisors. It is always satisfied when X is arborescent,
which allows to recover [17, Theorem 4.18].

• We generalize Theorem 1.44 to arbitrary semivaluations on X (see Theorem 2.18).
Namely, we replace the branch L, seen as a particular semivaluation (associating to
an element of the local ring of X the intersection number of its divisor with L) by
an arbitrary suitably normalized semivaluation λ on X, and we consider an analog
uλ of the function uL, defined this time on the space of normalized semivaluations
which are distinct from λ. We prove that:

The normal surface singularity X is arborescent if and only if all the
functions uλ, for varying semivaluations λ of X, are ultrametrics.

• We also generalize Theorem 1.40 to arbitrary semivaluations on X (see Theo-
rem 2.51). Namely, we prove that for any normal surface singularity X, any nor-
malized semivaluation λ on it, and any set F (not necessarily finite) of normalized
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semivaluations containing λ, the function uλ is an ultrametric in restriction to F
whenever F satisfies a suitable topological condition in the space of normalized
semivaluations of X.

The topological conditions involved in the statements of Theorem 1.40 and Theorem 2.51
are analogous, involving finite graphs in the first case and special types of infinite graphs
in the second case. Let us explain and compare both cases.

Given a finite connected graph G, a block of it is a maximal connected subgraph which
cannot be disconnected by the removal of a single vertex. Its bricks are those blocks which
are distinct from edges. The other blocks are precisely the bridges of G, that is, those
edges whose removal disconnects the graph. We associate to any connected graph G a tree
BV(G), called the brick-vertex tree of G, whose set of vertices is the union of the set of
vertices and of bricks of G. The edges of BV(G) are either bridges of G or they connect a
brick of G (seen as a vertex of BV(G)) to a vertex of it (seen again as a vertex of BV(G)). In
our context, the importance of this construction comes from the fact that BV(G) encodes
the way the vertices of G get separated by an arbitrary one of them (see Proposition 1.34).

Now, given a finite set S of branches on a normal surface singularity (containing the
reference branch L), we look at the dual graph of its total transform in an embedded
resolution of their sum. The clue is to consider the convex hull of the vertices representing
the strict transforms of the branches of S in the brick-vertex tree of this dual graph. We
prove that:

If the convex hull Conv(F) of the branches of F in the brick-vertex tree of
the dual graph of the chosen embedded resolution does not contain bricks
of valency at least 4 when seen as vertices of Conv(F), then uL is an ul-
trametric in restriction to F \ {L}. Moreover, in this case the rooted tree
of uL restricted to F \ {L} is isomorphic to Conv(F), rooted at the vertex
corresponding to L.

Let us pass to the semivaluations of X. Compared to valuations, semivaluations may
achieve the value +∞ on other elements of the local ring of X than simply 0. Allowing to
work not only with valuations, but also with semivaluations, has the advantage that any
branch on X has an associated semivaluation, as explained above. Also, any prime excep-
tional divisor of a normal crossings resolution of X has an associated semivaluation, which
is in fact a valuation. Therefore, the vertices of the dual graphs of the total transforms of
the sums of finite sets of branches on X embed naturally in the space of semivaluations of
X. In fact, this embedding can be extended to the whole dual graph, seen as a topological
space.

It is more convenient to our purpose, as it was in the model case of smooth X treated
in Favre and Jonsson’s book [13], to consider a space of normalized semivaluations. The
normalization condition is simply to consider only semivaluations which take the value 1
on the maximal ideal of the local ring of X. It ensures that one gets a topological space of
dimension 1. In this paper we describe it as the topological space associated to a graph of
trees of finite type (see Proposition 2.49). We extend the notion of brick-vertex tree to such
spaces (see Section 2.5). In the case of the space of normalized semivaluations, there is only
a finite number of bricks, which correspond bijectively to those of the dual graph of any
normal crossings resolution of X. In fact, the bricks are precisely the non-punctual cyclic
elements of the space of semivaluations, also known as true cyclic elements, defined as in
the classical cyclic element theory initiated by Whyburn around 1926. In Remark 2.48 we
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give historical details about that theory, since we believe that it is not well-known in the
singularity theory community.

It is interesting to note that from the start, this theory had as one of its main objectives
to describe an analogy between the set of points of a tree – or, more generally, of a dendrite
– and the set of cyclic elements of a Hausdorff topological space. Nevertheless, it seems
that our construction of brick-vertex tree is new.

Using the brick-vertex tree of the space of normalized semivaluations of X, we prove
precise analogs for the functions uλ of the results formulated in terms of brick-vertex trees
of finite graphs for the functions uL (see Section 2.6).

In Part 1 we treat the case of the functions uL restricted to finite sets of branches, and in
Part 2 the case of the functions uλ restricted to arbitrary sets of normalized semivaluations.
Both parts are divided into sections, each one of them starting with a description of its
content.

In the whole paper, we deal for simplicity with complex normal surface singularities.
Note that, in fact, our approach works for singularities which are spectra of normal 2-
dimensional local rings defined over fields of arbitrary characteristic. Indeed, our treat-
ment is ultimately based on the fact that the intersection matrix of a resolution of the
singularity is negative definite (see Theorem 1.2 below), a theorem which is true in this
greater generality (see Lipman [31, Lemma 14.1]). For the description of semivaluation
spaces associated to regular surface singularities over fields of any characteristic, we refer
to Jonsson’s paper [27, Section 7] – see in particular its Section 7.11 for a discussion of
the specificities of non-algebraically closed base fields. Jonsson’s approach can be directly
generalized to any normal surface singularity defined over arbitrary fields, by applying his
constructions to the sets of semivaluations centered at smooth points in any good resolution
of the given singularity.

Acknowledgements. The authors would like to thank Charles Favre who, viewing
their papers [17] and [19], still in progress at that time, suggested them to work together
on a combination of both approaches. The third author is grateful to Norbert A’Campo
for a conversation which allowed him to realize the spherical reformulation of the crucial
inequality. This research was partially supported by the French grants ANR-12-JS01-0002-
01 SUSI, ANR-17-CE40-0002-01 Fatou and Labex CEMPI (ANR-11-LABX-0007-01), and
also by the Spanish Projects MTM2016-80659-P and MTM2016-76868-C2-1-P.

1. Ultrametric distances on finite sets of branches

Let X be a normal surface singularity and L a finite branch on it. Let uL be the
function introduced by the first three authors in [17], which associates to every pair (A,B) of
branches onX which are different from L the number (L·A)(L·B)(A·B)−1. In this first part
of the paper we study its behaviour on finite sets of branches on X. Our main results are
that uL is an ultrametric on any such set if and only if X is arborescent (see Theorem 1.44)
and that even whenX is not arborescent, it is still an ultrametric in restriction to arbitrarily
large sets of branches, which may be characterized topologically in terms of their total
transform on any good resolution of their sum (see Theorem 1.40). These theorems need a
certain amount of preparation, which explains the need for a subdivision of this part into
six sections. The content of each section is briefly described at its beginning.
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1.1. Mumford’s intersection number of divisors.

In this section we recall Mumford’s definition of intersection number of Weil divisors
on a normal surface singularity X (see Definition 1.10). This definition passes through an
intermediate definition of total transform of such a divisor by a resolution of the singularity
(see Definition 1.7), which in turn uses basic properties of the intersection form on such a
resolution. That is why we begin the section by recalling the needed theorems about the
intersection theory on resolutions of X (see Theorem 1.2 and Propositions 1.1, 1.4, 1.5).
We also introduce a lot of the notations used elsewhere in the paper. The most important
one for the sequel is that of bracket 〈u, v〉 of two prime divisorial valuations u, v on X (see
Definition 1.6), which may be interpreted as Mumford’s intersection number of a pair of
branches adapted to the two valuations (see Proposition 1.11).

In the whole paper, we fix a normal surface singularity (X,x0), that is, a germ of
complex analytic normal surface. In particular, the germ is irreducible and has a represen-
tative which is smooth outside x0. In order to shorten the notations, most of the time we
will write simply X instead of (X,x0). We will denote by OX the local ring of X.

A branch on X is a germ at x0 of irreducible formal curve lying on X. The set of

branches on X will be denoted by B(X) .

By a divisor on X we will mean an integral Weil divisor, that is, an element of the
free abelian group generated by the branches on X. As usual, a principal divisor is the
divisor (f) of a formal meromorphic function f on X, that is, of an element of the fraction
field of the completion of OX relative to its maximal ideal.

A resolution of X is a proper bimeromorphic morphism π : Xπ → X of complex analytic
spaces, such that Xπ is smooth and π is an isomorphism over X \ {x0}. If π : Xπ → X is a
resolution of X, we will say that Xπ is a model of X. The reduced exceptional divisor

of the resolution π will be denoted by E(π) and its set of irreducible components by

P(π) . By an exceptional divisor on Xπ we mean, depending on the context, either

an element of the abelian group E(π)Z freely generated by the elements of P(π), of the

associated Q-vector space E(π)Q or of the associated R-vector space E(π)R .

The irreducible components of the reduced exceptional divisors of the various resolutions
of X will be called prime exceptional divisors. By associating to a prime exceptional
divisor its corresponding integer-valued valuation on the local ring OX (that is, the van-
ishing order along the divisor), we may identify P(π) with a set of divisorial valuations on

the local ring OX (see Section 2.1). Therefore, denoting by Eu the prime divisor on Xπ

corresponding to u ∈ P(π), we may think that u also denotes the corresponding divisorial
valuation on OX . Whenever we will reason with several models at the same time, we will
denote by Eπu instead of Eu the prime divisor on the model Xπ corresponding to the divi-
sorial valuation u. But when we will work with a fixed model, for simplicity we will drop
from the notations this dependency on the model.

We will say that the divisorial valuations u on OX associated to prime divisors Eu
are prime divisorial valuations. We will denote by P(X) the set of prime divisorial

valuations. It is the union of the subsets P(π) of the set of divisorial valuations of X, when
π varies among the resolutions of X. If u ∈ P(X) and Xπ is a model such that u ∈ P(π),
we say that u appears on the model Xπ.

Given a resolution π of X, the intersection number of exceptional divisors of Xπ defines
a symmetric bilinear form on the vector space E(π)R, called its intersection form. For
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simplicity, we will denote by D1 ·D2 the intersection number of the exceptional divisorsD1

and D2, without mentioning the morphism π explicitly. This convention may be motivated
by the classical fact that the intersection number is birationally invariant in the
following sense:

Proposition 1.1. If the model Xπ2 dominates the model Xπ1, then the intersection number
of two divisors of Xπ1 is equal to the intersection number of their total transforms on Xπ2.

Proof. Let ψ : Xπ2 → Xπ1 be the domination morphism between the two models. Recall
the projection formula, comparing intersection numbers on the two models (see Hartshorne
[23, Appendix A.1]):

(1) D2 · ψ∗D1 = ψ∗D2 ·D1

for every D1 ∈ E(π1)R and D2 ∈ E(π2)R (the left hand side being computed on Xπ2 and the
right hand side on Xπ1). Here ψ∗D1 denotes the total transform of D1 by the morphism
ψ and ψ∗D2 denotes the direct image of D2 by the same morphism. Consider now two
divisors A,B on Xπ1 . Then:

ψ∗A · ψ∗B = (ψ∗ψ
∗A) ·B = A ·B,

the first equality being a consequence of the projection formula (1) applied to D1 = B,
D2 = ψ∗A and the second equality being a consequence of the fact that ψ∗ψ

∗A = A. �

Note that the previous assertion does not remain true if one replaces total transforms of
divisors by strict transforms. In particular, for fixed u, v ∈ P(X), the intersection number
Eπu · Eπv depends on the model Xπ on which Eπu and Eπv appear. Compare this fact with
Proposition 1.5 below.

One has the following fundamental theorem concerning the intersection form on a fixed
model (see Du Val [9] and Mumford [35] in what concerns point (1) and Zariski [51, Lemma
7.1] in what concerns point (2)):

Theorem 1.2. Let Xπ be a model of the normal surface singularity X.

(1) The intersection form on the vector space E(π)R is negative definite.
(2) If D ∈ E(π)R \ {0} is such that D · H ≥ 0 for all effective divisors H ∈ E(π)R,

then −D is effective and it is of full support in the basis (Eu)u∈P(π), that is, all the
coefficients of its decomposition in this basis are positive.

The second statement is a consequence of the following theorem of linear algebra, which
will be used in the proof of Proposition 1.17 (one may verify easily that Zariski’s proof in
[51, Lemma 7.1] transcribes immediately in a proof of it):

Proposition 1.3. Let E be a Euclidean finite dimensional vector space. Consider a basis
B of E such that the plane angles generated by any pair of its vectors are right or obtuse.
Assume moreover that B cannot be partitioned into two non-empty subsets orthogonal to
each other. Denote by σ the cone generated by B and let σ̌ be the cone generated by the
dual basis. Then σ̌ \ 0 is included in the interior of σ.

In order to get Theorem 1.2 (2) from Proposition 1.3, one takes as Euclidean vector space
E the space of exceptional divisors E(π)R, endowed with the opposite of the intersection
form and with the basis (Eu)u∈P(π). The hypothesis on the angles is satisfied because
Eu ·Ev ≥ 0 for all u 6= v. The hypothesis on the impossibility to partition the basis in two
orthogonal non-empty subsets is equivalent to the connectedness of the exceptional divisor
E(π). In turn, this is a consequence of the hypothesis that X is normal, as a special case
of the so-called Zariski main theorem (see [23, Corollary 11.4]).
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If D ∈ E(π)R is a divisor such that −D is effective, we will say that D is anti-effective.
If D ·H ≥ 0 for all effective divisors H ∈ E(π)R, we will say that D is nef (numerically
eventually free). Usually one says in this case that D is nef relative to the morphism
π, but in order to be concise we will drop the reference to π.

If Eu is an exceptional prime divisor on the model Xπ, we denote by Ěu ∈ E(π)Q the
dual divisor with respect to the intersection form. It is defined by:

(2) Ěu · Ev = δu,v for all v ∈ P(π),

where δu,v denotes Kronecker’s delta. The existence and uniqueness of this dual basis is
a consequence of Theorem 1.2 (1). The fact that it lives in E(π)Q follows from the fact
that all the intersection numbers Eu · Ev are integers. One has the following immediate
consequence of formulae (2):

(3) D =
∑

v∈P(π)

(
D · Ěv

)
Ev

for all D ∈ E(π)R.
As an immediate consequence of Theorem 1.2 (2) and of formula (3) applied to the nef

divisors Ěu, we get:

Proposition 1.4. The divisors Ěu are anti-effective with full support in the basis (Eu)u∈P(π)
and Ěu · Ěv < 0 for all u, v ∈ P(π).

In contrast with the fact that the intersection numbers Eu ·Ev depend on the model on
which they are computed, one has the following invariance property:

Proposition 1.5. Let u, v ∈ P(X). Then the intersection number Ěu · Ěv does not depend
on the model on which it is computed.

Proof. Let ψ : Xπ2 → Xπ1 be the domination morphism between two models of X. In this
proof we will not drop the reference to the model on which one works, using the notations
Eπiu , Ě

πi
u for i ∈ {1, 2}. In view of Proposition 1.1, it is enough to show that if u ∈ P(π1),

then the divisor Ěπ2u is the total transform of the divisor Ěπ1u .
By the projection formula (1), one has:

Eπ2v · ψ∗Ěπ1u = 0

for all v ∈ P(π2) \ {u} and

Eπ2u · ψ∗Ěπ1u = ψ∗E
π2
u · Ěπ1u = Eπ1u · Ěπ1u = 1.

This shows that one has indeed ψ∗Ěπ1u = Ěπ2u . �

The following definition is inspired by the approaches of Favre-Jonsson in [15, Appendix
A] and Jonsson [27, Section 7.3.6]:

Definition 1.6. Let u, v be two possibly equal prime divisorial valuations of X. Their
bracket is defined by:

〈u, v〉 := −Ěu · Ěv ∈ Q∗+.
Here Eu and Ev denote the representing divisors on a model on which both of them appear.

By Proposition 1.5, the bracket is independent of the choice of model on which both u
and v appear. We get in this way a function:

〈·, ·〉 : P(X)× P(X)→ Q∗+.
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Till now we have worked with total transforms of divisors living on models of X, that is,
on smooth surfaces. Let us consider now the case of a divisor A on X. If A is a principal
divisor, then one may define its total transform π∗A by a resolution π as the divisor of
the pull-back of a defining function of A. The total transform is independent of the choice
of defining function. Moreover, as a consequence of the projection formula (1), which is
still true if one works with a proper birational morphism between normal surfaces, the
intersection number of the total transform of A with any exceptional divisor on Xπ is 0.
This property was converted by Mumford [35] into a definition of the total transform of a
not necessarily principal divisor on X:

Definition 1.7. Let A be a divisor on (X,x0) and π : Xπ → X a resolution of X. The
total transform of A on Xπ is the Q-divisor π∗A = Aπ +Aexπ on Xπ such that:

(1) Aπ is the strict transform of A on Xπ. Its support is the closure of π−1(|A| \
{x0}) in Xπ, each one of its irreducible components being endowed with the same
coefficient as its image in X.

(2) The support of the exceptional transform Aexπ of A on Xπ is included in the

exceptional divisor E(π).
(3) π∗A · Eu = 0 for each irreducible component Eu of E(π).

The fact that such a divisor exists and is unique comes from the fact that condition (3)
of the definition may be written as a square linear system of equations whose unknowns are
the coefficients of Aexπ in the basis (Eu)u∈P(π) of E(π)R, and whose matrix is the intersection
matrix (Eu · Ev)u,v∈P(π). This matrix is non-singular, by Theorem 1.2 (1). Note that we
make here a slight abuse of language, as one gets a matrix only after having chosen a total
order on the set P(π).

Note also that in Definition 1.7, one allows Xπ to be any model of X, without imposing
it to be adapted in any sense to the divisor A. We say that π is an embedded resolution
of A if the total transform π∗A is a divisor with normal crossings. In this case, each branch
of A has a strict transform on Xπ which intersects transversally a unique prime exceptional
divisor. Therefore, one has the following immediate consequence of Definition 1.7:

Proposition 1.8. Assume that A is a branch and that π is an embedded resolution of it.
Let Ea ∈ P(π) be the unique prime exceptional divisor which intersects the strict transform
of A. Then:

Aexπ = −Ěa.

Let us introduce the following denomination for the divisor Ea:

Definition 1.9. Let A be a branch on X and π be an embedded resolution of it. The
unique prime exceptional divisor Ea ∈ P(π) which intersects the strict transform of A on
Xπ is called the representing divisor of A on Xπ.

Using the notion of total transform of divisors from Definition 1.7, Mumford defined in
the following way in [35] the intersection number of two divisors without common branches
on X:

Definition 1.10. Let A,B be two divisors on X without common branches. Then their

intersection number A ·B ∈ Q is defined by:

A ·B := π∗A · π∗B,

for any resolution π of X.
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The fact that this definition is independent of the resolution has a proof similar to that
of Proposition 1.1. In the special case in which both A and B are branches, we get the
following interpretation of the bracket, whose proof is a direct application of Proposition 1.8:

Proposition 1.11. Let A,B be two distinct branches on X. Consider an embedded reso-
lution Xπ of the divisor A+B. If Ea and Eb are the representing divisors of A and B on
Xπ, then:

A ·B = 〈a, b〉.

1.2. The angular distance.

In this section we recall the notion of angular distance ρ of prime divisorial valuations
(see Definition 1.12), introduced in a greater generality by Gignac and the last author in
[19] and by the first three authors in a slightly different form in [17] for the restricted class
of arborescent singularities. The definition uses the bracket of Definition 1.6. The fact that
ρ is indeed a distance depends on a crucial inequality of Gignac and the last author, which
we recall in Proposition 1.17. We conclude the section with a list of reformulations of this
inequality (see Proposition 1.18).

Let Xπ be a model of X and let u, v ∈ P(π) be two prime divisorial valuations appearing
on it. By Theorem 1.2 (1), the intersection form on E(π)R is negative definite. Let us
apply the Cauchy-Schwartz inequality to its opposite bilinear form and to the vectors
Ěu, Ěv ∈ E(π)R. Using Proposition 1.4 and Definition 1.6, we get the following inequalities:

(4) 0 < 〈u, v〉2 ≤ 〈u, u〉 · 〈v, v〉,
with equality if and only u = v. This allows to define:

Definition 1.12. The angular distance of the prime divisorial valuations u, v ∈ P(X)
is:

(5) ρ(u, v) := − log
〈u, v〉2

〈u, u〉 · 〈v, v〉
∈ [0,∞).

As an immediate consequence of inequality (4) and of the characterization of the case
of equality, one gets:

Proposition 1.13. For every pair of prime divisorial valuations (u, v) of X, one has
ρ(u, v) ≥ 0, with equality if and only if u = v.

Remark 1.14. A slightly different notion was introduced before by the first three authors
in [17, Definition 4.11], in the special case of arborescent normal surface singularities. It
was introduced almost simultaneously by the last author and Gignac for arbitrary semi-
valuations of X in [19, Definition 2.37].

As indicated by the name chosen in Definition 1.12, ρ is indeed a metric on the set
P(X) (see Proposition 1.18 (II) below). But this fact is not immediate. It is a consequence
of an inequality of Gignac and the last author (see Proposition 1.17 below). In order to
state this inequality, we need the following graph-theoretical notion (see Section 1.4 for our
vocabulary concerning graphs):

Definition 1.15. Let a, b, c be three not necessarily pairwise distinct vertices of the con-
nected graph Γ. One says that c separates a from b in Γ if:

• either c ∈ {a, b};
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• or a and b belong to distinct connected components of the topological space Γ\{c}.

We will apply the previous notion of separation to the dual graphs of the good models
of X:

Definition 1.16. Let π : Xπ → X be a resolution of X. The resolution π and the
model Xπ are called good if their exceptional divisor has normal crossings and its prime

components are smooth. The dual graph Γπ of a good model Xπ has vertex set P(π)

and set of edges between any two vertices u, v ∈ P(π) in bijection with the intersection
points on Xπ between the associated prime divisors Eu and Ev.

Here comes the announced inequality of Gignac and the last author (see [19, Proposition
1.10]), which is crucial for the present paper:

Proposition 1.17. ([19, Proposition 1.10]) Let Xπ be a good model of the normal surface
singularity X, and let Eu, Ev and Ew be not necessarily distinct exceptional prime divisors
of π. Then one has the inequality:

(6) (−Ěu · Ěv)(−Ěv · Ěw) ≤ (−Ěv · Ěv)(−Ěu · Ěw),

with equality if and only if v separates u and w in the dual graph Γπ of Xπ.

Proof. Let us sketch a slight variant of the original proof. We work with the opposite of
the intersection form, which is positive definite. Denote therefore 〈V1, V2〉 := −V1 · V2 for
any V1, V2 ∈ E(π)R. Inequality (6) may be rewritten as:

(7) 〈Ěu −
〈Ěu, Ěv〉
〈Ěv, Ěv〉

Ěv , Ěw〉 ≥ 0.

Using Equation (3), we see that the truth of the previous inequality for all w ∈ P(π) and
fixed u, v ∈ P(π) is equivalent to the following statement:

(8) the divisor Ěu −
〈Ěu, Ěv〉
〈Ěv, Ěv〉

Ěv is effective.

The key of the proof of (8) is to understand geometrically the previous expressions. Con-
sider the linear hyperplane Hw of E(π)R spanned by the vectors Ea, for a ∈ P(π) \ {w}.
Those vectors form a basis of the hyperplane Hw. Look at the dual basis relative to the
restriction of 〈·, ·〉 to Hw. As can be verified by an immediate computation, the vector cor-
responding to Eu in this dual basis is exactly the vector occuring in (8). Now let us apply
Proposition 1.3 to the Euclidean space (Hw, 〈·, ·〉) and the basis (Ea)a∈P(π)\{w}. We deduce
that the coefficients of the elements of its dual basis in the starting basis are non-negative,
which is exactly the statement (8).

There is a slight difference with the hypotheses of Proposition 1.3. There one assumed
that the basis could not be partitioned in two non-empty orthogonal subsets. Here we are
in a situation in which the dual graph is not necessarily connected. Namely, as we work
in the hyperplane Hw, we drop the component Ew from the exceptional divisor, therefore
the dual graph of the remaining components gets decomposed in a finite positive number
of connected components. The associated partition of P(π) \ {w} induces an orthogonal
direct sum decomposition of Hw, each term of this sum having a connected dual graph.
The dual basis of (Ea)a∈P(π)\{w} is the union of the dual bases of the individual terms of
this orthogonal direct sum. Apply then Proposition 1.3 to each such term. One gets in
this way easily the characterization of the case of equality in 7. �

Proposition 1.17 may be reformulated in the following ways:
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Proposition 1.18. Let Xπ be a good model of X, and let Eu, Ev and Ew be not necessarily
distinct exceptional prime divisors of π. Then the following statements hold:

(I) 〈u, v〉 · 〈v, w〉 ≤ 〈v, v〉 · 〈u,w〉, with equality if and only if v separates u from w in
the dual graph Γπ.

(II) The function ρ is a metric on the finite set P(π), with equality in the triangle
inequality ρ(u, v) + ρ(v, w) ≥ ρ(u,w) if and only if v separates u from w in Γπ.

(III) The spherical triangle with vertices u, v, w in the directions of Ěu, Ěv, Ěw on the
unit sphere of E(π)R for the opposite of the intersection form has all its angles in
the interval (0, π/2] and is rectangle at v if and only if v separates u from w in Γπ.

Proof. The equivalence of the inequality (6) with the inequality (I) and the assertion on
the triangle inequality in (II) are a simple consequence of Definitions 1.6 and 1.12 and
Proposition 1.13.

The reformulation (III) needs a little more explanations. First, note that inequality (6)
may be rewritten as:

−Ěu · Ěv√
(−Ěu · Ěu)(−Ěv · Ěv)

· −Ěv · Ěw√
(−Ěv · Ěv)(−Ěw · Ěw)

≤ −Ěu · Ěw√
(−Ěu · Ěu)(−Ěw · Ěw)

.

If we measure angles using the opposite of the intersection form (which is a Euclidean
metric on the real vector space E(π)R, by Theorem 1.2 (1)), the previous inequality may
be rewritten as:

cos(∠ĚuĚv) · cos(∠ĚvĚw) ≤ cos(∠ĚuĚw).

But this last inequality is equivalent to the fact that the angle at vertex v of the spherical
triangle directed by the vectors Ěu, Ěv, Ěw belongs to the interval (0, π/2]. The fact that
one has equality if and only if the angle is π/2 is the content of the spherical Pythagorean
theorem. �

Remark 1.19.

(1) We may speak about the spherical triangle with vertices at u, v, w, without men-
tioning the model on which we work because, by Proposition 1.5, this triangle is
independent of the model up to isometry. Note that a spherical triangle may have
2 or 3 angles ≥ π/2, but that in our case at most one angle is equal to π/2, the
two other ones being acute. This results from the fact that if v separates u from
w, then neither u separates v from w, nor w separates u from v.

(2) For the moment we have no applications of the spherical geometrical viewpoint
(III), but we think that it is intriguing and that it is worth formulating, as a very
vivid way of remembering the inequality of Proposition 1.17.

(3) The fact that inequality (6) could be reformulated in the spherical geometrical way
(III) was noticed by the third author in the summary [38] of the work [17] of the
first three authors concerning arborescent singularities.

1.3. A reformulation of the ultrametric problem.

In this section we begin the study of the function uL introduced by the first three authors
in [17], defined whenever L is a fixed branch L on the normal surface singularity X. It
associates to every pair (A,B) of branches on X which are different from L the number
(L ·A) (L ·B)(A ·B)−1. In [17] it was proved that those functions are ultrametrics for any
arborescent singularity (see Definition 1.21), a fact which generalizes a theorem of P loski
[37] concerning the case when X is smooth. Two important results of the present paper
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are that this property characterizes arborescent singularities (see Theorem 1.44) and that
even if the singularity X is not arborescent, uL is still an ultrametric in restriction to
conveniently defined sets of branches on X (see Theorem 1.40). Those theorems will be
proved in subsequent sections, the present one introducing preliminary material. Namely,
given a finite set F of branches containing L, in Corollary 1.23 we reformulate the condition
that uL is an ultrametric on F \ {L} as the condition that the angular distance is additive
on F . Then we recall the correspondence between additive distances on finite sets F and
metric trees having a subset of vertices labeled by F (see Proposition 1.27).

Let L be a fixed branch on X. If A,B are two other branches, assumed to be distinct
from L, let us define following [17]:

(9) uL(A,B) :=


(L ·A) (L ·B)

A ·B
, if A 6= B,

0, if A = B.

In [17, Theorem 4.18], the first three authors proved the following theorem, as a gener-
alization of a theorem of P loski [37] concerning the case where X is smooth:

Theorem 1.20. If X is an arborescent singularity, then uL is an ultrametric on the set
B(X) \ {L} of branches on X which are distinct from L.

We use here the following vocabulary, also introduced in [17]:

Definition 1.21. A normal surface singularity is called arborescent if the dual graphs
of its good models are trees.

The present paper is an outgrowth of our desire to understand in which measure The-
orem 1.20 extends to other normal surface singularities. As we will show below (see The-
orem 1.44), uL is an ultrametric for some/any branch L if and only if X is arborescent.
We were very surprised to discover that, even if X is not arborescent, uL remains an
ultrametric in restriction to convenient sets of branches on X (see Theorem 1.40 below).

Before arriving at that theorem, we need a certain amount of preparation. Let us begin
with a reformulation of the ultrametric inequality for uL, whose proof is left to the reader:

Proposition 1.22. Let L,A,B,C be four pairwise distinct branches on X. Consider an
embedded resolution π of their sum. Denote by El, Ea, Eb, Ec the representing divisors of
L,A,B and respectively C on Xπ. Then the following inequalities are equivalent, as well
as the corresponding equalities:

(1) uL(A,B) ≤ max{uL(A,C), uL(B,C)}.
(2) (A ·B)(L · C) ≥ min{(A · C)(L ·B), (B · C)(L ·A)}.
(3) 〈a, b〉 · 〈l, c〉 ≥ min{〈a, c〉 · 〈l, b〉, 〈b, c〉 · 〈l, a〉}.
(4) ρ(a, b) + ρ(l, c) ≤ max{ρ(a, c) + ρ(l, b), ρ(b, c) + ρ(l, a)}.

In the previous proposition, the branches L,A,B,C were fixed. By applying this propo-
sition to all the quadruples in a finite set of branches F , we get immediately:

Corollary 1.23. Let F ⊂ B(X) be a finite set of branches on X. Consider an embedded
resolution π of their sum and denote by Fπ ⊂ P(π) the set of prime exceptional divisors
representing the elements of F in Xπ according to Definition 1.9. Then the following
properties are equivalent:

(1) For some L ∈ F , the function uL is an ultrametric on F \ {L}.
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H-shaped X-shaped Y-shaped F-shaped C-shaped

Figure 1. The 5 possible S-trees, when S has 4 elements

(2) For all L ∈ F , the function uL is an ultrametric on F \ {L}.
(3) The bracket 〈·, ·〉 satisfies the inequality:

〈a, b〉 · 〈l, c〉 ≥ min{〈a, c〉 · 〈l, b〉, 〈b, c〉 · 〈l, a〉}, for all (a, b, c, l) ∈ (Fπ)4.

(4) The angular distance ρ satisfies the inequality:

ρ(a, b) + ρ(l, c) ≤ max{ρ(a, c) + ρ(l, b), ρ(b, c) + ρ(l, a)}, for all (a, b, c, l) ∈ (Fπ)4.

Let us introduce the following vocabulary concerning the metrics which satisfy condition
(4) of Corollary 1.23:

Definition 1.24. Let S be a finite set. One says that a distance δ on S is tree-like if, for
all (a, b, c, d) ∈ S4, one has the following 4-point condition:

(10) δ(a, b) + δ(c, d) ≤ max{δ(a, c) + δ(b, d), δ(a, d) + δ(b, c)}.
This means that, up to a permutation of the three sums, one has:

(11) δ(a, b) + δ(c, d) ≤ δ(a, c) + δ(b, d) = δ(a, d) + δ(b, c).

The term 4-point condition was introduced by Buneman in [7]. We chose the name tree-
like for the previous kind of metrics because such finite metric spaces may be interpreted
geometrically as special kinds of trees (see Proposition 1.27 below). Let us introduce first
more vocabulary about trees:

Definition 1.25. A finite tree is a finite simply connected simplicial complex of dimension

1. The convex hull Conv(F) of a set F of vertices of a tree is the subtree obtained as

the union of the paths joining pairwise the elements of F . If S is a finite set, then an
S-tree is a finite tree whose set of vertices contains the set S and such that all its vertices
of valency 1 or 2 are elements of S. An isomorphism of S-trees is an isomorphism of
trees which is the identity in restriction to the set S.

Given two S-trees, the fact that all their vertices of valency 1 are elements of S implies
that there exists at most one isomorphism between them. When S has 4 elements, there are
exactly 5 different S-trees up to isomorphism. They are represented in Figure 1, together
with the names we will use for them in the sequel.

Definition 1.26. A metric tree is a finite tree endowed with a map from its set of edges
to the set of positive real numbers. The number associated to an edge is called its length.
The induced distance of a metric S-tree is the distance on S associating to each pair of
elements of S the sum of length of the edges lying on the unique path joining them in the
tree.
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Figure 2. An {a, b, c, d, e}-tree endowed with a length function

An example of metric S-tree is shown in Figure 2. Here S = {a, . . . , e}. Denoting by δ
the induced distance on S, one has for instance δ(a, d) = 3 + 2 + 2 and δ(b, c) = 2 + 1.

It is immediate to check that the distance which a metric S-tree induces on the finite set
S satisfies the 4-point condition. Therefore, it is tree-like, in the sense of Definition 1.24.
Conversely, one has the following proposition (see Buneman’s paper [7] and the successive
generalizations of Bandelt and Steel [2] and Böcker and Dress [3]):

Proposition 1.27. Let S be a finite set and δ be a distance on it. If δ is tree-like, then
there exists a unique S-tree T endowed with a length function such that:

• the induced distance on S is equal to δ;
• the tree T is the convex hull Conv(S) of its subset S;
• all the vertices of T of valency 2 are elements of S.

The main idea of the proof of the previous proposition is that an S-tree is determined up
to isomorphism by the isomorphism types of the convex hulls of all quadruples of elements
of S, which are in turn determined by the equalities in the 4-point condition and in the
triangle inequalities concerning them. For instance, given a quadruple Q ⊂ S, the H-
shaped and X-shaped Q-trees (see Figure 1) are precisely those Q-trees for which one has
strict triangle inequalities. Among them, the H-shaped tree is characterized by the fact
that one has a strict inequality in the 4-point condition (11), for a convenient labeling of
the elements of Q by the letters a, b, c, d.

Proposition 1.27 allows us to define:

Definition 1.28. Let δ be a tree-like metric on a finite set S. Then the unique S-tree
endowed with a length function such that the induced distance on S is equal to δ is called
the tree hull of the metric space (S, δ).

1.4. A theorem about special metrics on the set of vertices of a graph.

Let Xπ be a good model of X. Consider the angular distance ρ on the vertex set
V(Γπ) = P(π) of the associated dual graph Γπ. In Proposition 1.18, we saw that the
cases of equality in the triangle inequalities associated to the metric space (V(Γπ), ρ) are
characterized by separation properties in Γπ. The aim of this section is to prove that if a
metric δ on the set of vertices V(Γ) of a connected graph Γ satisfies this kind of constraint,
then it becomes tree-like (in the sense of Definition 1.24) in restriction to special types
of subsets F of V(Γ) (see Theorem 1.36). Moreover, the tree hull of (F , δ) (according to
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Figure 3. A few separable graphs and their cut-vertices marked in red

Figure 4. A few nonseparable graphs

Definition 1.28) may be described as the convex hull of F in a tree canonically associated
to the graph Γ, its brick-vertex tree BV(Γ) (see Definition 1.32).

In the sequel, we will use the following notion of graph:

Definition 1.29. A graph Γ is a finite cell complex of dimension at most 1. In particular,
it may have loops or multiple edges, and it may have connected components which are

simply points. We will denote by V(Γ) its set of vertices and by A(Γ) its set of edges.

The valency of a vertex v of Γ is the number of germs of edges adjacent to v (a loop based
at v counting twice, as it contributes with two germs in this count).

If we want to insist on the graph in which we compute the valency (in situations where
we deal with several graphs at the same time), we will speak about the Γ-valency of a
vertex v.

It will be important for us to look at the edges of a connected graph Γ according to their
separation properties:

Definition 1.30. Let Γ be a connected graph. A cut-vertex of Γ is a vertex whose
removal disconnects Γ. A bridge of Γ is an edge such that the removal of its interior
disconnects Γ. The graph Γ is called separable if it admits at least one cut-vertex (see
Figure 3). Otherwise, it is called nonseparable (see Figure 4).

The only nonseparable graphs which are trees are the segments. All the other nonsepa-
rable graphs have the property that any two of their edges are contained in a circuit, that
is, a union of edges whose underlying topological space is homeomorphic to a circle. The
trees may be characterized as the connected graphs all of whose edges are bridges.

Every connected graph contains a distinguished family of nonseparable graphs, its blocks,
among which we distinguish the bricks:

Definition 1.31. The blocks of a connected graph Γ are its maximal subgraphs which
are nonseparable (see Figure 5). A block which is not an edge is called a brick.

The blocks of a connected graph Γ may be characterized as the unions of edges of each
equivalence class for the following equivalence relation on the set A(Γ): two edges are
equivalent if they are either equal or if they are both contained in the same circuit. The
blocks of Γ which are edges are its bridges. Trees may be characterized as the connected
finite graphs which have no bricks.
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It is an elementary exercise to check that the following construction leads indeed to a
tree:

Definition 1.32. The brick-vertex tree BV(Γ) of a connected graph Γ is the tree whose

vertex set is the union of the set of bricks of Γ and of the set of its vertices. The set of
its edges consists of the bridges of Γ, and of new edges connecting a brick of Γ to a vertex
of Γ (seen as vertices of BV(Γ)) if and only if the brick contains the vertex. A vertex of
BV(Γ) associated to a brick of Γ will be called a brick-vertex.

Examples of planar brick-vertex trees are shown in Figures 5 and 9. The bricks are
emphasized by shading the plane regions spanned by their vertices and edges.

Γ BV(Γ)

Figure 5. The brick-vertex tree of a connected graph.

Remark 1.33. Whitney introduced the blocks of a finite graph in his 1932 paper [46],
under the name of components. His definition was slightly different: the blocks were the
final graphs (necessarily inseparable) of a process which chooses at each step a cut-vertex of
the graph and decomposes the connected component which contains it into the connected
subgraphs which are joined at that vertex. The term block seems to have been introduced
for this concept in Harary’s 1959 paper [20]. In Tutte’s 1966 book [44], the blocks are
called cyclic elements, a term originating from general topology (see Remark 2.48). The
use of the term brick for the blocks which are not bridges seems to be new. A construction
related to the brick-vertex tree is known under the name of cut-tree (see Tutte’s book [44,
Section 9.5]), block-cut tree (see Harary’s book [21, Page 36]), or block tree (see Bondy and
Murty’s book [4, Section 5.2]). In that construction, which was introduced by Gallai [16]
and Harary and Prins [22], one considers only the set of cut-vertices of Γ, instead of the
full set of vertices, and all the blocks, not only the bricks. Later on, Kulli [28] introduced
the block-point tree of a connected graph, in which one still considers all the blocks, but
also all the vertices, not only the cut-vertices.

The following proposition is the reason why we introduced the notion of brick-vertex
tree:

Proposition 1.34. Let a, b, c be three not necessarily pairwise distinct vertices of the con-
nected graph Γ. Then the following properties are equivalent:

(1) a separates b from c in the graph Γ;
(2) a separates b from c in the brick-vertex tree BV(Γ).
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Proof. First notice that if b = c 6= a, then a does not separate them neither in Γ or BV(Γ),
while if a coincides with either b or c, then it separates b from c both in Γ and BV(Γ) (see
Definition 1.15). Hence, we may suppose that a, b, c are pairwise distinct.

• Suppose first that a does not separate b from c in Γ. Therefore, there exists a
path γ joining b and c in Γ \ {a}. Decompose γ in a finite sequence of concatenating edges
ej with endpoints vj−1, vj for j = 1, . . . , n, with v0 = b, vn = c, and vj 6= a for all j. We
construct a path γ̃ joining b and c in BV(Γ) \ {a} as follows: If vj−1 and vj belong to a
brick B, then we replace the edge ej with the concatenation of the two edges {vj−1, B},
{B, vj}. If vj−1 and vj belong to a bridge, then we keep ej .

• Suppose now that a does not separate b from c in BV(Γ). Therefore, there
exists a path γ̃ joining b and c in BV(Γ) \ {a}. As above, we decompose γ̃ as a finite
sequence of edges ej = {vj−1, vj}. We construct a path γ joining b and c in Γ \ {a} as
follows. The endpoints of every edge composing γ̃ are either both vertices of Γ, or one is a
vertex and the other is a brick of Γ. In the first case, we keep ej . In the second case, since
b and c in BV(Γ) correspond to vertices of Γ, up to replacing j by j+ 1 if necessary we can
assume that vj−1 and vj+1 correspond to vertices of Γ, and vj corresponds to the brick B
containing them. Notice that a could be inside B as well. Since vj−1 and vj+1 belong to
B, there exist two paths inside the brick B in Γ joining vj−1 to vj+1, which intersect only
at their endpoints. Therefore, at least one of them doesn’t pass through a. We replace
then the two edges ej and ej+1 of γ̃ by such a path in Γ. �

Remark 1.35. Proposition 1.34 holds also if we replace the brick-vertex tree by Kulli’s
block-point tree (see Remark 1.33 for its definition), the proof being completely analogous.
In fact, we could work in this first part of the paper with the block-point tree of Γ. We
chose to work with Definition 1.32 since it has the advantage of extending directly to graphs
of R-trees (see Section 2.5). Notice that for a tree Γ, its brick-vertex tree coincides with Γ,
while Kulli’s block-point tree is isomorphic to the barycentric subdivision of Γ.

By Proposition 1.34, the brick-vertex tree of Γ encodes precisely the way in which the
vertices of Γ get separated by the elimination of one of them.

Recall the reformulation of Proposition 1.17 given in Proposition 1.18 (II). It states that
if one looks at the angular distance ρ on the vertex set V(Γπ) of the dual graph Γπ of a
good model Xπ of X, then one has an equality ρ(u, v) +ρ(v, w) = ρ(u,w) in the triangular
inequality associated to the triple (u, v, w) of vertices of Γπ if and only if v separates u
from w in Γπ. The following theorem, which is the main result of this section, describes
special subsets of vertices of the graphs endowed with metrics having the same formal
property (recall that the convex hull of a finite set of vertices of a tree was introduced in
Definition 1.25):

Theorem 1.36. Let Γ be a finite connected graph and δ : V(Γ)2 → [0,∞) a metric such
that one has the equality:

(12) δ(a, b) + δ(b, c) = δ(a, c)

if and only if the vertex b separates a from c in Γ. Consider a set F of vertices of Γ,
and their convex hull Conv(F) in the brick-vertex tree BV(Γ) of Γ. If each brick of Γ has
Conv(F)-valency at most 3, then the restriction of δ to F is tree-like and the associated
tree is isomorphic as an F-tree to Conv(F).

Proof. In order to make clear at each moment whether we work inside the graph Γ or inside
its brick-vertex tree BV(Γ), we will denote by a the vertex a of Γ when we think about it
as a vertex of BV(Γ).
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Figure 6. The case of an H-shaped tree in the proof of Theorem 1.36

Assume that F ⊂ V(Γ) satisfies the hypotheses of the theorem. Consider four pairwise
distinct points a, b, c, d ∈ F and the convex hull Conv(a, b, c, d) of their images in the
brick-vertex tree BV(Γ).

We will consider several cases, according to the shape of this convex hull. In every case
we will prove that in restriction to {a, b, c, d}, the metric δ satisfies the 4-point condition
and that the shape of this convex hull is determined by the four triangle inequalities
among a, b, c and d. Then, thanks to Proposition 1.27, we conclude that the tree hull of
({a, b, c, d}, δ) in the sense of Definition 1.28 is indeed isomorphic as a {a, b, c, d}-tree to
the convex hull Conv(a, b, c, d), finishing the proof of the proposition.

• Assume that Conv(a, b, c, d) is H-shaped.
Denote by µ and ν the two 3-valent vertices of Conv(a, b, c, d). We may assume, up to

renaming the four points, that µ and ν separate a and b from c and d, as illustrated in
Figure 6.

We claim that there exists then a cut-vertex p of Γ with the following properties:

(a) p separates both a and b from both c and d;
(b) either p does not separate a from b or it does not separate c from d.

In order to prove this, let us consider two cases:

(i) One of the points µ and ν of BV(Γ) is a cut-vertex of Γ.
Assume for instance that µ = p, where p is a cut-vertex of BV(Γ). The convex
hull Conv(a, b, c, d) having the shape illustrated in Figure 6, we see that p has the
announced properties.

(ii) Both points µ and ν of BV(Γ) are bricks of Γ.
By construction, all edges of BV(Γ) join either two vertices coming from Γ, or a
brick-vertex with a vertex coming from Γ. We deduce that there exists necessarily a
separating vertex p in the interior of the geodesic [µν] of BV(Γ). Again, the convex
hull Conv(a, b, c, d) having the shape illustrated in Figure 6, we see that p has the
announced properties.

Using the fact that p satisfies properties (a) and (b) above and the hypothesis that δ is a
distance on V(Γ), as well as the characterization of the equality in the triangle inequality,
we get:

δ(a, b) + δ(c, d) <
< (δ(a, p) + δ(b, p)) + (δ(c, p) + δ(d, p)) =
= (δ(a, p) + δ(c, p)) + (δ(b, p) + δ(d, p)) =

= δ(a, c) + δ(b, d) =
= (δ(a, p) + δ(d, p)) + (δ(b, p) + δ(c, p)) =

= δ(a, d) + δ(b, c).
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Figure 7. The case of an X-shaped tree in the proof of Theorem 1.36
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ab
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C-shaped

Figure 8. The Y -shaped, F -shaped and C-shaped trees in the proof of
Theorem 1.36

This shows that δ satisfies the 4-point condition in restriction to {a, b, c, d}, and that one
has a strict inequality in this condition. In addition, one has by Proposition 1.34 and the
hypothesis that there is no equality among the 4 triangle inequalities concerning triples of
points among a, b, c, d.

• Assume that Conv(a, b, c, d) is X-shaped.
Denote by µ the unique point of this graph which is of valency 4. By hypothesis, no

brick of Conv(F) is of valency ≥ 4. Therefore, µ = p, where p is a separating vertex of Γ.
Moreover, p separates pairwise the points a, b, c, d. Therefore:

δ(a, b) + δ(c, d) =
= (δ(a, p) + δ(b, p)) + (δ(c, p) + δ(d, p)) =
= (δ(a, p) + δ(c, p)) + (δ(b, p) + δ(d, p)) =

= δ(a, c) + δ(b, d) =
= (δ(a, p) + δ(d, p)) + (δ(b, p) + δ(c, p)) =

= δ(a, d) + δ(b, c).

This shows again that δ satisfies the 4-point relation in restriction to {a, b, c, d}. As in the
previous case, one has no equality among the 4 triangle inequalities concerning triples of
points among a, b, c, d.

In the remaining cases we assume that ā, b̄, c̄ and d̄ are as in Figure 8.

• Assume that Conv(a, b, c, d) is Y-shaped.
By Proposition 1.34, we have that d separate a from b, d separates b from c and also d

separates a and c. Using this fact and the hypotheses of the theorem, we get that:

δ(a, b) + δ(c, d) = δ(a, c) + δ(b, d) = δ(a, d) + δ(b, c) = δ(a, d) + δ(b, d) + δ(c, d).
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Thus the 4-point condition (11) is verified with equalities in this case. Reasoning as in
the previous cases, one gets that the only equalities among the triangle inequalities are of
the form δ(x, y) = δ(x, d) + δ(d, y) for x, y ∈ {a, b, c}, x 6= y.

• Assume that Conv(a, b, c, d) is F-shaped.
By Proposition 1.34, we have that neither c nor d separate a from b but c separates b

from d and also c separates a from d. We obtain the following triangle inequalities:

δ(a, b) < δ(a, c) + δ(b, c) and δ(a, b) < δ(a, d) + δ(b, d)

and the equalities

δ(b, d) = δ(b, c) + δ(c, d) and δ(a, d) = δ(a, c) + δ(c, d).

It is immediate to see from these relations that the four point condition (11) holds with
a strict inequality, where the right hand side of (11) is equal to δ(a, c) + δ(b, c) + δ(c, d).

• Assume that Conv(a, b, c, d) is C-shaped.
By Proposition 1.34, we have that b separates a from d, that b separates a from c and

that c separates b from d. The triangle inequalities become equalities in this case:

δ(a, d) = δ(a, b) + δ(b, d), δ(a, c) = δ(a, b) + δ(b, c) and δ(b, d) = δ(b, c) + δ(c, d).

It follows that the 4-point condition (11) holds with a strict inequality, where the right
hand side (11) is equal to δ(a, b) + 2δ(b, c) + δ(c, d). �

Example 1.37. In Figure 9 is illustrated a situation in which the hypotheses of Theo-
rem 1.36 are satisfied. In the left picture, we have a graph Γ. Here F = {a1, . . . , a13} is
depicted in light-green. Note that in this example all the vertices in F are of valency 1,
which is not a hypothesis of Theorem 1.36. The cut vertices are in red. Shaded areas cor-
respond to bricks. Dark-green shaded edges represent some of the bridges (the one whose
endpoints are both cut points).

In the right picture, we have represented the brick-vertex tree BV(Γ). The light-green
shaded subgraph is the set Conv(F) ⊂ BV(Γ).

Notice that there are 4 brick-vertices of BV(Γ) which have valency at least 4 (3 of them
have valency 4 and one of them has valency 5). But at those vertices the convex hull
Conv(BV(F)) has only valency 3. This convex hull has also two points of valency 4, but
both of them are cut-vertices.

a1

a2

a3

a4
a5

a6

a7

a8
a9 a10

a11
a12

a13

a1

a2

a3

a4
a5

a6

a7

a8
a9 a10

a11
a12

a13

Figure 9. Example 1.37, in which the hypotheses of Theorem 1.36 are satisfied.
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1.5. Applications to finite sets of branches on normal surface singularities.

The main result of this section (Theorem 1.40) is the announced generalization to ar-
bitrary normal surface singularities of the fact that uL is an ultrametric on arborescent
singularities (see Theorem 1.20). This generalization, stating that in general uL is an ultra-
metric in restriction to special sets of branches, describable topologically on any embedded
resolution of their sum, is an immediate corollary of Theorem 1.36 of the previous section.

Applying Theorem 1.36 to the angular distance ρ, we get:

Corollary 1.38. Let π be a good resolution of X. Consider a subset F of the set of vertices
of the dual graph Γπ and its convex hull Conv(F) in the brick-vertex tree BV(Γπ) of Γπ. If
each brick of Γπ has Conv(F)-valency at most 3, then the restriction of ρ to F is tree-like
and the associated tree is isomorphic as an F-tree to Conv(F).

In order to state the next results, it is convenient to introduce the following vocabulary:

Definition 1.39. If F ⊂ B(X) is a finite set of branches on X, then an injective reso-
lution of F is an embedded resolution of their sum such that different branches in F have
different representing divisors (in the sense of Definition 1.9).

If π is an injective resolution of F , then we have a canonical injection of F in P(π). We
will identify sometimes F and its image, saying for instance that F is a subset of the set
of vertices of Γπ.

We deduce immediately from Corollaries 1.38 and 1.23 the following theorem, which is
our extension of Theorem 1.20 to not necessarily arborescent normal surface singularities:

Theorem 1.40. Let X be a normal surface singularity. Consider a finite set F of branches
on it and denote by L one of them. Let π be an injective resolution of the sum of branches
in F . Identify F with the set of prime divisors representing its elements. If each brick
of Γπ has Conv(F)-valency at most 3, then the function uL : (F \ {L})2 → [0,∞) is an
ultrametric and the associated rooted F-tree is isomorphic to Conv(F).

Note that Theorem 1.20 is indeed a special case of Theorem 1.40. This is a consequence
of the fact that for arborescent singularities, Γπ has no bricks.

Remark 1.41. The rooted tree associated to uL in Theorem 1.40 is end-rooted in the sense
of [17, Definition 3.5], that is, its root is of valency 1. It corresponds to a supplementary
element associated to the set of closed balls of the ultrametric, which may be thought
as a ball of infinite radius. The approach of the paper [17] was to work exclusively with
rooted trees associated to ultrametrics. By contrast, in the present paper our trees are
associated to metrics satisfying the 4-point condition (see Definition 1.24), therefore they
are not canonically rooted. One may translate one approach into the other one using
Proposition 1.22.

An important aspect of Theorem 1.40 is that it depends only on the topology of the total
transform of the branches on an embedded resolution of their sum, and neither on special
properties of the values of the intersection numbers of the prime exceptional divisors, nor
on their genera.

Example 1.42. The condition on the valency of brick-points in Theorem 1.40 (and of
analogous theorems like Theorem 2.51) is not necessary in general.

One of the easiest examples is given by a singularity X for which the dual graph of its
minimal good resolution is a tetrahedron. Denote by E1, E2, E3, E4 the exceptional primes,
and assume that they all have the same self-intersection −k, k ≥ 4. By symmetry, Ěi · Ěj is
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constant for any 1 ≤ i 6= j ≤ 4. The brick-vertex tree has here a brick-vertex of valency 4,
but the 4-point condition is satisfied. See Examples 2.53 and 2.54 for a deeper description
of this example.

1.6. An ultrametric characterization of arborescent singularities.

The aim of this section is to prove a converse to Theorem 1.20. Namely, we prove that if
uL is an ultrametric for some branch L on X, then X is arborescent (see Theorem 1.44).

In the next proposition we show that if the normal surface singularity is not arborescent,
then one may find four branches on it such that for any one of them, called L, the associated
function uL is not an ultrametric on the set of remaining three branches (even if the
proposition is not stated like this, the fact that its conclusion may be formulated in this
way is a consequence of Proposition 1.22):

Proposition 1.43. Let Xπ be a good model of X. Assume that a, b,m, p are four pairwise
distinct vertices of the dual graph Γπ, such that:

• both m and p are adjacent to a;
• a does not separate b from either m or p.

Denote by xm the intersection point of Ea and Em and by xp the intersection point of Ea
and Ep. Let A and B be branches on X whose representing divisors on Xπ are Ea and
Eb respectively. Then there exist branches Cm and Cp whose strict transforms on Xπ pass
through xm and xp respectively, such that:

(13) (A ·B)(Cm · Cp) < (Cm ·A)(Cp ·B) < (Cm ·B)(Cp ·A).

Ep Em

xp xm

(Cp)π

Ea

(Cm)π

Eb

Aπ

Bπ

Figure 10. Geometric situation of Proposition 1.43.

Proof. Consider a branch Cm whose strict transform (Cm)π passes through the point xm, is
smooth and tangent to the prime exceptional divisor Ea. Denote by s ∈ N∗ the intersection
number (Cm)π ·Ea. As (Cm)π ·Em = 1 and the intersection numbers of (Cm)π with all the
other irreducible components of the exceptional divisor of π are all 0, we deduce that:

(Cm)exπ = −Ěm − sĚa.
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Consider an analogous branch Cp whose strict transform passes through xp, and such
that one has (Cp)π · Ea = t ∈ N∗. One gets:

(Cm)exπ = −Ěp − tĚa.
See Figure 10 for the relative positions of prime exceptional divisors and strict transforms
of branches.

As Aexπ = −Ěa and Bex
π = −Ěb, we see that the desired system of inequalities becomes:

(14)
〈a, b〉 · (〈m, p〉+ t〈m, a〉+ s〈a, p〉+ ts〈a, a〉) <

(〈m, a〉+ s〈a, a〉)(〈p, b〉+ t〈a, b〉) <
(〈m, b〉+ s〈a, b〉)(〈p, a〉+ t〈a, a〉).

We want to show that we may find pairs (s, t) ∈ N∗ × N∗ such that (14) holds. Let us
consider in turn both inequalities.
• After developing the products and eliminating the cancelling terms, the left-hand

inequality becomes:

(15) (〈a, a〉〈b, p〉 − 〈a, b〉〈a, p〉)s+ (〈a,m〉〈b, p〉 − 〈a, b〉〈m, p〉) > 0.

Note that the left-hand side of (15) is a polynomial of degree 1 in the variable s. By
Proposition 1.18 and the hypothesis that a does not separate b from p in the dual graph
of π, the coefficient 〈a, a〉〈b, p〉 − 〈a, b〉〈a, p〉 of s is positive. Therefore, the inequality (15)
becomes true for s big enough.
• Similarly, the right-hand inequality of (14) becomes:

(16) (〈a, a〉〈b,m〉−〈a, b〉〈a,m〉)t−(〈a, a〉〈b, p〉−〈a, b〉〈a, p〉)s+〈a, p〉〈b,m〉−〈a,m〉〈b, p〉 > 0.

Assume that s was chosen such that (15) holds. The left-hand side of (16) is then a
polynomial of degree 1 in the variable t. Its dominating coefficient 〈a, a〉〈b,m〉−〈a, b〉〈a,m〉
is > 0, because a does not separate b from m. Therefore, the inequality (16) becomes true
for t big enough. �

As an easy consequence of the previous proposition, we get the announced characteriza-
tion of arborescent singularities:

Theorem 1.44. Let X be a normal surface singularity. Then the following properties are
equivalent:

(1) For any branch L ∈ B(X), the function uL is an ultrametric on the set B(X)\{L}.
(2) There exists a branch L ∈ B(X), such that the function uL is an ultrametric on the

set B(X) \ {L}.
(3) The bracket 〈·, ·〉 satisfies the following inequality:

〈a, b〉 · 〈l, c〉 ≥ min{〈a, c〉 · 〈l, b〉, 〈b, c〉 · 〈l, a〉}, for all (a, b, c, l) ∈ (P(X))4.

(4) The singularity X is arborescent.

Proof.

• The equivalences (1) ⇐⇒ (2) ⇐⇒ (3) are a direct consequence of Corollary 1.23.
• The implication (4) =⇒ (1) is a direct consequence of Theorem 1.20.
• The implication (1) =⇒ (4) is a direct consequence of Proposition 1.43. Indeed,

that proposition implies that on any non-arborescent singularity, one may find four
branches such that if L is any one of them, uL is not an ultrametric in restriction
to the remaining three branches.

�
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2. Ultrametric distances on valuation spaces

In this second part of the paper, we generalize the results of Part 1 to the setting of
valuation spaces. We keep denoting by (X,x0) a normal surface singularity and by OX
its local ring. We denote by R = RX the completion ÔX of its local ring relative to its
maximal ideal and by m = mX the unique maximal ideal of R.

2.1. Semivaluation spaces of normal surface singularities.

In this section we recall the definitions of semivaluations and valuations of X, as well
as that of normalized such objects. Then we recall the classification of semivaluations into
divisorial, quasi-monomial (in particular irrational), curve and infinitely singular.

Let [0,+∞] be the union of the set of non-negative real numbers and of the single-
element set {+∞}, endowed with the usual total order. In this paper we will consider the
following notion of semivaluation:

Definition 2.1. A semivaluation on X (or on R) is a function ν : R→ [0,+∞] satisfying
the following axioms:

(1) ν(0) = +∞ and ν(1) = 0;
(2) ν(φψ) = ν(φ) + ν(ψ) for all φ, ψ ∈ R;
(3) ν(φ+ ψ) ≥ min{ν(φ), ν(ψ)} for all φ, ψ ∈ R;
(4) 0 < ν(m) < +∞;

where ν(m) := min{ν(φ) φ ∈ m}. The semivaluation ν is normalized if in addition
ν(m) = 1. The semivaluation ν is a valuation if ν−1(+∞) = {0}. The set of semivaluations

on X will be denoted as V̂∗X , while the set of normalized semivaluations will be denoted

by VX .

Remark 2.2. There are more general notions of semivaluation which do not require the
condition (4) on Definition 2.1, or which take values on the non-negative part of the ad-
ditive semigroup R2, with respect to the lexicographical ordering. In the literature, the
semivaluations of Definition 2.1 are usually called centered (which makes reference to the
condition ν(m) > 0), finite (meaning that m < +∞) and of rank 1 (since they take values
on the non-negative part of (R,+)).

If ν is a semivaluation on X, so is λν for any λ ∈ R∗+ := (0,+∞). In particular, any
semivaluation is proportional to a normalized one.

Remark 2.3. The normalization with respect to the maximal ideal is not the only possible
one. It is sometimes useful to normalize with respect to other ideals of R. A typical choice
(see [13, 14] for the smooth setting) is to normalize with respect to the value taken on a
given irreducible element x of R, that is, by considering only semivaluations which satisfy
ν(x) = 1. In this case a special care must be taken for the curve valuation νC with
C = {x = 0}, since intC(x) = +∞ (see below for the definitions of νC and intC).

One may define semivaluations on R as [0,+∞]-valued functions ν on the set of ideals
of R satisfying the following constraints for any pair (a, b) of ideals of R:

• ν(a) ≥ ν(b) whenever a ⊆ b;
• ν(ab) = ν(a) + ν(b);
• ν(a + b) ≥ min{ν(a), ν(b)};
• 0 = ν(R) < ν(m) < ν(0) = +∞.
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The correspondence between the two versions of the definition is given by setting ν(a) :=
min{ν(φ) φ ∈ a} for any ν which is a semivaluation according to the first version. Con-
versely, if ν is a semivaluation according to the second version, we get a semivaluation
according to the first version by defining simply ν(φ) := ν(φR) for all φ ∈ R.

Note that for any semivaluation ν, the set ν−1(+∞) is a prime ideal of R. Therefore, it
defines either the point x0 or a branch on X.

Definition 2.4. The support of a semivaluation of R is the vanishing locus of the prime
ideal ν−1(+∞).

The spaces V̂∗X and VX come equipped with natural topologies:

Definition 2.5. The weak topologies on the sets V̂∗X and VX are the weakest ones such
that the maps φ 7→ ν(φ) are continuous for any φ ∈ R.

In the foundational work [50], Zariski gave a classification of semivaluations according
to some algebraic invariants (rank, rational rank, transcendence degree). Those different
kinds of semivaluations can also be characterized by their geometric properties. We recall
here a few facts about this classification in our setting.

• Divisorial valuations. They are the valuations associated to exceptional primes
E ∈ P(X), as seen in Section 1.1. Let Xπ be a good model of X, and E ∈ P(π)
be any irreducible (and reduced) component of the exceptional divisor π−1(x0).

Then the map divE , which associates to a function φ ∈ R the order of vanishing

of φ ◦ π along E, defines a valuation of X. We say that a valuation is divisorial
if it is of the form λ divE , with λ ∈ R∗+. When λ = 1, the divisorial valuation is
called prime, a denomination already used in Part 1. For any exceptional prime
E ∈ P(X) we denote by νE := b−1E divE the normalized valuation proportional

to divE , where bE := divE(m) ∈ N∗ is the generic multiplicity of νE . Finally,

for any good model Xπ of X, we denote by S∗π the set of normalized divisorial

valuations associated to the primes of π.
• Quasi-monomial and irrational valuations. Quasi-monomial valuations of X

are constructed as follows. Let Xπ be a good model of X, and let P ∈ E(π) be any
point in the exceptional divisor E(π) of π. Pick local coordinates (x, y) at P adapted
to E(π) (i.e., so that E(π) ⊆ {xy = 0} locally at P ). For any (r, s) ∈ (R∗+)2, we may
consider the monomial valuation µr,s on the local ring of Xπ at P , defined on the set
of monomials in x and y by setting µr,s(x) = r and µr,s(y) = s, and extended to any
element φ ∈ R by taking the minimum of µr,s on the set of monomials appearing
in φ. The valuation νr,s defined by νr,s := π∗µr,s : φ 7→ µr,s(φ ◦ π) is an element

of V̂∗X , called a quasimonomial valuation. If r and s are rationally dependent,
it turns out that νr,s is a divisorial valuation (associated to an exceptional prime
obtained after a toric modification of Xπ in the coordinates (x, y)). If r and s are
rationally independent, we call the valuation νr,s an irrational valuation.

Notice that we can also define νr,s when either r or s vanishes. For example,
suppose that E(π) = {x = 0} = E locally at P . Then the valuation ν1,0 coincides
with divE , while ν0,1 is not a centered valuation: it would correspond up to a
multiplicative constant to the order of vanishing along the branch determined by
the projection of {y = 0} to X.

Given a good model Xπ, we denote by Sπ the set of normalized quasimonomial

valuations (where we allow either r or s to be zero) described as above for some
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point p ∈ π−1(x0), and call it the skeleton of Xπ. Notice that Sπ admits a
structure of finite connected graph, with set of vertices S∗π, and edges between two
points νE and νF for each intersection point between E and F in π−1(x0).
• Curve semivaluations. They are the semivaluations associated to branches in
B(X). Given such a branch L, a curve semivaluation associated to L is any

positive real multiple of intL , which in turn is defined by intL(φ) := L · (φ), where

φ ∈ R and (φ) denotes the divisor of φ. As for divisorial valuations, we denote
by νL := m(L)−1intL the normalized semivaluation proportional to intL, where

m(L) ∈ N∗ is the multiplicity of L. Notice that curve semivaluations are never
valuations, since intL(φ) = +∞ for any φ ∈ R vanishing on L. In fact, the support
of intL according to Definition 2.4 is exactly L.
• Infinitely singular valuations. These are the remaining elements of V̂∗X . They

are characterized by having rank and rational rank equal to 1, and transcendence
degree equal to 0. They are also characterized as valuations whose value group
is not finitely generated over Z. They can be thought as curve semivaluations
associated to branches of infinite multiplicity (see [13, Chapter 4]).

Remark 2.6. In Part 1, we considered only divisorial valuations. Given such a valuation
u, we denoted by Eu the exceptional prime associated to it. Since here we consider other
types of valuations, not associated to exceptional primes, we prefer to denote by ν ∈ VX
any kind of valuation, and write ν = νE if ν is the divisorial valuation associated to the
exceptional prime E.

2.2. B-divisors on normal surface singularities.

In the first part of the paper, it was crucial to associate a dual to any prime divisor on
a model of X. By looking at the divisor as a prime divisorial valuation, and by collecting
its associated dual divisors on all the models, one gets a particular b-divisor, in the sense
of Definition 2.10. In this section we explain how to extend the previous construction to
all semivaluations on X (see Definition 2.9). As an application, we show how to extend to
the space of normalized semivaluations the notions of bracket (see Definition 2.11) and of
angular distance (see Definition 2.14).

Let π : Xπ → X be a good resolution of the normal surface singularity X and ν ∈ V̂∗X
a semivaluation of X. By the valuative criterion of properness, any ν ∈ V̂∗X has a unique
center in Xπ, which lies in the exceptional divisor of π. The center is characterized as the
unique scheme-theoretic point ξ ∈ Xπ so that ν takes non-negative values on the local ring
OXπ ,ξ of elements of the fraction field of R whose pullbacks to Xπ are regular at ξ, and
strictly positive values exactly on its maximal ideal mξ.

One may define unambiguously the value ν(D) taken by ν on any divisor D ∈ E(π)R
(see for instance [27, Section 7.5.2] for the case where R is regular, which extends without
changes to our case, or [19, Section 2.2]). The idea is to define first ν(D) when D is prime,
by evaluating ν on a local defining function of D, and to extend it then by linearity. Such
local defining functions may be taken as pull-backs of elements of the localization of R at
the defining prime ideal ν−1(+∞) of the support of ν, to which ν extends canonically.

Any semivaluation on X induces a dual divisor on Xπ, according to the next proposition
(see [12, Page 400] or [19, Proposition 2.5]):

Proposition 2.7. For any semivaluation ν ∈ V̂∗X , there exists a unique divisor Zπ(ν) ∈
E(π)R such that ν(D) = Zπ(ν) ·D for each D ∈ E(π)R.
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We will use the following name for this divisor:

Definition 2.8. The divisor Zπ(ν) characterized in Proposition 2.7 is called the dual
divisor of ν in the model Xπ.

The name alludes to the fact that for a divisorial valuation divE , we have Zπ(divE) = Ě.
Here Ě denotes the dual divisor of E, as defined by relations (2).

Definition 2.9. The collection Z(ν) = (Zπ(ν))π, where π varies along all good resolutions
of X, is called the b-divisor associated to ν.

This name is motivated by the fact that Z(ν) is a b-divisor in the following sense, due
to Shokurov [42] (the letter “b” is the initial of “birational”):

Definition 2.10. A collection (Zπ)π, where π varies among all good resolutions of X
and Zπ ∈ E(π)R, is called a b-divisor of X if for any pair of models (π, π′) such that π′

dominates π, one has:
ψ∗Zπ′ = Zπ,

if π′ = π ◦ ψ.

In Part 1, we noticed that the intersection of two dual divisors does not depend on
the model used to compute it (see Proposition 1.5). This allows to define the intersection

number Z(ν) · Z(µ) of two b-divisors associated to divisorial valuations ν, µ ∈ V̂∗X .
In the general case of an arbitray pair of semivaluations (ν, µ) of X, the intersection

number Zπ(ν)·Zπ(µ) may depend on the model π. In fact, we always have Zπ′(ν) ·Zπ′(µ) ≤
Zπ(ν) · Zπ(µ), for any model π′ dominating π. This allows to define:

Z(ν) · Z(µ) := inf
π

(
Zπ(ν) · Zπ(µ)

)
∈ [−∞, 0).

We refer to [5, 12, 19] for further details on b-divisors associated to valuations.
Recall that in Definition 1.6 was introduced the bracket of two prime divisorial valua-

tions. The next definition extends the bracket to arbitrary pairs of semivaluations:

Definition 2.11. Let ν, µ ∈ V̂∗X be two semivaluations of X. Their bracket is defined by:

〈ν, µ〉 := −Z(ν) · Z(µ) ∈ (0,+∞].

When ν = µ, the self-bracket α(ν) := 〈ν, ν〉 is called the skewness of ν.

Remark 2.12. The skewness α(ν) has been analized for germs of smooth surfaces in [13],
where it was defined as the supremum of the ratio between the values of ν and of the
multiplicity function. With this interpretation, the skewness is sometimes called the Izumi
constant of ν, a denomination which refers to the works [25, 26] of Izumi. Its study has
been the focus of several works, see e.g. [40, 10, 34, 41, 6]. The b-divisor interpretation
given by Favre and Jonsson is more recent, and it has been used to study several properties
of valuation spaces for smooth and singular surfaces (see e.g. [27, 19]).

Let us consider now the restriction of the bracket to the space VX of normalized semi-
valuations. The skewness is always finite for quasimonomial valuations, while it is always
infinite for curve semivaluations. It can be any value in (0,+∞] for infinitely singular

valuations. We denote by VαX the set of normalized valuations with finite skewness.

More generally, one can show (see [19, Proposition 2.12]) that 〈ν, µ〉 is determined on a
model Xπ, i.e., 〈ν, µ〉 = −Zπ(ν) · Zπ(µ) as far as ν and µ have different centers on Xπ. As
for two distinct normalized semivaluations, there is always a model on which their centers
are disjoint, we deduce that:
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Proposition 2.13. The bracket of two distinct normalized semivaluations is always finite.

Carrying on the analogies with the divisorial case of Part 1, we define the notion of
angular distance of semivaluations, as introduced in [19].

Definition 2.14. The angular distance of two normalized semivaluations µ, ν ∈ VX is:

(17) ρ(ν, µ) := − log
〈ν, µ〉2

α(ν) · α(µ)
∈ [0,∞]

if ν 6= µ, and 0 if ν = µ.

Remark 2.15. The function ρ defines an extended distance on VX (see [19, Proposition
2.38]), in the sense that it vanishes exactly on the diagonal, it is symmetric, and it satisfies
the triangular inequality (like a standard distance), but it may take the value +∞ in some
cases. In fact, ρ(ν, µ) = +∞ exactly when ν 6= µ and at least one of the semivaluations
ν and µ has infinite skewness. This locus can be precisely determined, by reducing first
to the smooth case using [19, Lemma 2.41], and by describing then the skewness of a
semivaluation in terms of its Puiseux parameterization, as in [13, Chapter 4] (when one
works over C) or using Jonsson’s approach in [27, Section 7] (when one works over an
arbitrary field, possibly of positive characteristic). In particular, ρ defines a distance on
VαX , hence on the set of normalized quasimonomial valuations. The topology induced by
ρ on VX is usually called the strong topology, in order to distinguish it from the weak
topology introduced in Definition 2.5.

2.3. Ultrametric distances on semivaluation spaces of arborescent singularities.

In Section 1.3 we started the study of the function uL, that culminated with the charac-
terization of arborescent singularities given in Theorem 1.44. This section is devoted to the
proof of an analog for semivaluation spaces (see Theorem 2.18). We will study functions

uλ depending on an arbitrary semivaluation λ ∈ V̂∗X , defined on VX×VX . In the particular
case in which λ is the curve semivaluation intL associated to a branch L on X, we get
uintL = uL (see Remark 2.17).

Definition 2.16. Let X be a normal surface singularity, and let λ ∈ V̂∗X be any semival-
uation. Let ν1, ν2 ∈ VX be any normalized semivaluations on X. We set:

(18) uλ(ν1, ν2) :=


〈λ, ν1〉 · 〈λ, ν2〉
〈ν1, ν2〉

if ν1 6= ν2,

0 if ν1 = ν2.

Remark 2.17. Since 〈ν1, ν2〉 < +∞ when ν1 6= ν2 (see Proposition 2.13), the function uλ
is well defined with values in [0,+∞], and it vanishes if and only if ν1 = ν2. The value
+∞ is sometimes achieved. In fact, while the denominator is always strictly positive, we
have 〈λ, ν〉 = +∞ if and only if λ = ν and α(λ) = +∞. In particular, uλ takes only finite
values if α(λ) < +∞, while it always takes finite values on (VX \ {λ})2.

Notice that if ν1 and ν2 tend to the same valuation ν, then 〈λ,ν1〉·〈λ,ν2〉〈ν1,ν2〉 tends to 〈λ,ν〉
2

α(ν) .

This value is finite as long as ν 6= λ, and it is 0 if and only if α(ν) = +∞. This always
happens when ν is a curve semivaluation, and never happens for quasimonomial valuations.

Notice also that uλ can be extended to (V̂∗X)2 using an analogous formula. In fact, by
homogeneity of the bracket, we have uλ(b1ν1, b2ν2) = uλ(ν1, ν2) for any b1, b2 ∈ (0,+∞).

Finally, Definition 2.16 clearly generalizes (9). In fact, if L,A,B are branches on X, then
uL(A,B) = uintL(intA, intB), where intL, intA, intB are the curve valuations associated to
L,A,B respectively.
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The aim of this section is to prove the following result, which is a generalization of
Theorem 1.44:

Theorem 2.18. Let X be a normal surface singularity. Then the following properties are
equivalent:

(1) For any semivaluation λ ∈ V̂∗X , the function uλ is an extended ultrametric distance
on VX .

(2) There exists a semivaluation λ ∈ V̂∗X , such that the function uλ is an extended
ultrametric distance on VX .

(3) The singularity X is arborescent.

Before starting the proof, let us give some definitions and preliminary results, analogous
to those described in Part 1.

Definition 2.19. Let X be a normal surface singularity, and µ, ν1, ν2 ∈ VX be three
normalized semivaluations. We say that µ separates ν1 and ν2 (or the couple (ν1, ν2))
if either µ ∈ {ν1, ν2}, or ν1 and ν2 belong to different connected components of VX \ {µ}.

Proposition 2.20 ([19, Proposition 2.14]). Let X be a normal surface singularity and
µ, ν1, ν2 ∈ VX be three normalized semivaluations. Then we have:

(19) 〈µ, ν1〉 · 〈µ, ν2〉 ≤ 〈µ, µ〉 · 〈ν1, ν2〉.
Moreover, the equality holds if and only if µ separates ν1 and ν2.

Notice that, by homogeneity, Proposition 2.20 holds also for non-normalized valuations.

Proposition 2.21. Let X be a normal surface singularity, and νj ∈ VX , for j = 1, . . . , 4,
be four normalized semivaluations. Suppose that there exists µ ∈ VX that separates simul-
taneously the couple (ν1, ν2) and the couple (ν3, ν4). Then:

(20) 〈ν1, ν2〉 · 〈ν3, ν4〉 ≤ 〈ν1, ν3〉 · 〈ν2, ν4〉.
Moreover, the equality in (20) holds if and only if µ also separates simultaneously the couple
(ν1, ν3) and the couple (ν2, ν4).

Proof. By Proposition 2.20, we have

〈µ, ν1〉 · 〈µ, ν3〉 ≤ 〈µ, µ〉 · 〈ν1, ν3〉,(21)

〈µ, ν2〉 · 〈µ, ν4〉 ≤ 〈µ, µ〉 · 〈ν2, ν4〉.(22)

We want to prove the inequality

(23) 〈ν1, ν2〉 · 〈ν3, ν4〉 · 〈µ, µ〉 ≤ 〈µ, ν2〉 · 〈µ, ν4〉 · 〈ν1, ν3〉,
which implies the statement (20) by applying (22). Now, again by Proposition 2.20, we
have

〈µ, ν1〉 · 〈µ, ν2〉 = 〈µ, µ〉 · 〈ν1, ν2〉,(24)

〈µ, ν3〉 · 〈µ, ν4〉 = 〈µ, µ〉 · 〈ν3, ν4〉,(25)

where the equalities are given by the fact that µ separates both couples (ν1, ν2) and (ν3, ν4).
From these equalities, together with (21), we deduce that:

〈ν1, ν2〉 · 〈ν3, ν4〉 · 〈µ, µ〉2 = 〈µ, ν1〉 · 〈µ, ν3〉 · 〈µ, ν2〉 · 〈µ, ν4〉
≤ 〈µ, µ〉 · 〈ν1, ν3〉 · 〈µ, ν2〉 · 〈µ, ν4〉,

which gives the desired inequality (23).
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Finally, by Proposition 2.20, the inequalities (21) and (22) are equalities if and only if µ
separates both the couple (ν1, ν3) and the couple (ν2, ν4). This concludes the proof. �

Proof of Theorem 2.18. Clearly (1) implies (2).

Let us prove that (3) =⇒ (1). Let λ ∈ VX be any normalized semivaluation. Since
by construction uλ is symmetric and vanishes only on the diagonal, it is enough to show
that the ultrametric triangular inequality holds.

Let ν1, ν2, ν3 ∈ VX , and assume that c := 〈λ, ν1〉 · 〈λ, ν2〉 · 〈λ, ν3〉 ∈ [0,+∞] is finite. This
is guaranteed for example if the three semivaluations are taken in VX \ {λ}. Let us define
I1, I2, I3 by:

uλ(ν1, ν2) =
〈λ, ν1〉 · 〈λ, ν2〉
〈ν1, ν2〉

=
c

〈ν1, ν2〉 · 〈λ, ν3〉
=:

c

I3
,

uλ(ν1, ν3) =
〈λ, ν1〉 · 〈λ, ν3〉
〈ν1, ν3〉

=
c

〈ν1, ν3〉 · 〈λ, ν2〉
=:

c

I2
,

uλ(ν2, ν3) =
〈λ, ν2〉 · 〈λ, ν3〉
〈ν2, ν3〉

=
c

〈ν2, ν3〉 · 〈λ, ν1〉
=:

c

I1
.

We want to show that if X is arborescent, then among the quantities I1, I2, I3, at least two
coincide, and they are smaller or equal that the third one.

Since X is arborescent, the convex hull Conv(ν1, ν2, ν3, λ) of {ν1, ν2, ν3, λ} has one of
the shapes represented in Figure 1. Possibly reordering the four semivaluations, we may
assume that they are in counter-clockwise order, starting from the top right corner. In the
case of the Y -shape, assume that the branch point is λ (in other cases the argument is the
same). We study case by case, according to the shape of Conv(ν1, ν2, ν3, λ):

• H-shaped. Let µ be any point in the horizontal segment. It separates all couples but at
least one between ν1, λ and ν2, ν3. By Proposition 2.21 we deduce that I3 = I2 < I1.

• X-shaped. The branch point µ separates all couples, and I1 = I2 = I3.
• Y -shaped. The branch point µ = λ separates all couples, and again I1 = I2 = I3.
• F -shaped. Let µ be the branch point. It separates all couples, but ν1, ν2, and we get

I1 = I2 < I3.
• C-shaped. Let µ be any point in the vertical segment. It separates all couples but ν1, ν2

and ν3, λ. We get I1 = I2 < I3.

The case when some of the valuations ν1, ν2, ν3, λ coincide is easier, and is left to the
reader. We conclude that uλ defines an ultrametric distance on VX \{λ} (and an extended
ultrametric on VX).

We conclude the proof by showing that (2) =⇒ (3). We proceed by contradiction,
and assume that X is not arborescent, i.e., that VX contains a loop S. We have fixed
a valuation λ for which uλ is an ultrametric distance. We will show that there exist
ν1, ν2, ν3 ∈ VX satisfying

(26) 〈ν3, λ〉 · 〈ν1, ν2〉 < 〈ν2, λ〉 · 〈ν1, ν3〉 < 〈ν1, λ〉 · 〈ν2, ν3〉,
or I3 < I2 < I1, if we use the notations introduced in the previous part of the proof. This
would contradict the hypothesis that uλ is an ultrametric distance.

But this is the valuative counterpart of Proposition 1.43, which can be proved in this
more general setting by using Proposition 2.20 instead of Proposition 1.17. The role of
a, b,m, p will be played by ν3, λ, ν1, ν2 respectively. In particular, given b, it suffices to pick
ν3 as any point in S so that λ is in the connected component of VX \{λ} containing S \{λ}.
We may assume that ν3 is divisorial, associated to an exceptional prime divisor Ea. Fix a
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model Xπ such that λ and ν3 have different centers in π, and denote by Em and Ep the
exceptional prime divisors adjacent to Ea, whose associated valuations belong to S. Up to
taking a higher model, we may also assume that the center of λ is disjoint from Em and
Ep, and that ν3 does not separate λ from either νEm or νEp . Proposition 1.43 gives two
valuations ν1 and ν2, corresponding respectively to monomial valuations at the points xm
and xp of Figure 10, which satisfy (26). �

2.4. R-trees and graphs of R-trees.

In Section 1.4, we associated to any finite connected graph Γ a tree BV(Γ), called its
brick-vertex tree. We then applied this construction to the dual graph of the embedded
resolution of the sum of a finite set F of branches on a normal surface singularity X, and
we were able to describe using it a situation in which uL defines an ultrametric distance
on F \ {L} (see Theorem 1.40) .

In Section 2.1 we described the space VX of normalized semivaluations of X, which can
be seen as a projective limit of dual graphs of all possible good resolutions of X.

In this section we construct an analog of the brick-vertex tree for the space VX . With
this scope in mind, we first recall the tree structure carried by the space of normalized
valuations at a smooth surface singularity. Then we introduce the more general concept of
graph of R-trees (see Definition 2.23) and we explain how to associate to such a graph a
topological space, called its realization (see Definition 2.24). We conclude the section by in-
troducing several operations on graphs of R-trees, regularizations (see Definition 2.34) and
refinements (see Definition 2.36), which will be used in the next section in the construction
of the brick-vertex tree of a graph of R-trees.

Tree structures.

When X is smooth, the space of normalized valuations V := VX has been deeply

studied by Favre and Jonsson in [13] (see also Jonsson’s course [27]). It is referred to as
the valuative tree, since it carries the structure of a R-tree in the sense of [27, Definition
2.2]. Let us first recall the definition of this notion:

Definition 2.22. An interval structure on a set I is a partial order ≤ on I under which
I becomes isomorphic as a poset to the real interval [0, 1] or to the trivial real interval {0}
(endowed with the standard total order of the real numbers). A sub-interval J ⊆ I is a
subset of I that becomes a subinterval of [0, 1] under such isomorphism. If I is a set with
an interval structure, we denote by I− the same set with the opposite interval structure.

An R-tree is a set W together with a family { [x, y] ⊆ W | x, y ∈ W} of subsets

endowed with interval structures, and satisfying the following properties:

(T1) [x, x] = {x};
(T2) if x 6= y, then [x, y] = [y, x]− as posets; moreover, x = min[x, y] and y = min[y, x];
(T3) if z ∈ [x, y], then [x, z] and [z, y] are subintervals of [x, y] such that [x, z]∪ [z, y] =

[x, y] and [x, z] ∩ [z, y] = {z};
(T4) for any x, y, z ∈ W , there exists a unique element w = x ∧z y ∈ [x, y] such that

[z, x] ∩ [y, x] = [w, x] and [z, y] ∩ [x, y] = [w, y];
(T5) if x ∈W and (yα)α∈A is a net in W such that the segments [x, yα] increase with α

(relative to the inclusion partial order of the subsets of W ), then there exists y ∈ W such
that

⋃
α[x, yα) = [x, y).

Here we used the notation [x, y) := [x, y]\{y}. We define analogously (x, y] and (x, y) .
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Recall that a net is a sequence indexed by a directed set, not necessarily countable.
An R-tree structure on the set W induces a natural topology, called weak topology. It

is constructed as follows. Fix any z ∈W , and pick any two points x, y ∈W \ {z}. We say
that x ∼z y if z 6∈ [x, y] (a condition equivalent to (z, x] ∩ (z, y] 6= ∅, found sometimes in

the literature). An equivalence class is called a tangent direction −→v at z, and the set

of all such classes is denoted by TzW (see Example 2.31). Tangent directions need to be

thought as branches at a point z of W , and in some way as infinitesimal objects (hence the
name tangent direction). For this reason we distinguish an element −→v ∈ TzW from the set

Uz(
−→v ) of points x ∈W \ {z} representing −→v , which is seen as a subset of W . We declare

Uz(
−→v ) to be open for any z varying in W and −→v varying among all tangent directions at

z. The weak topology is generated by such open sets (i.e., it is the weakest topology for
which all the sets Uz(

−→v ) are open). When considering the R-tree structure of V, the weak
topology defined here coincides with the weak topology defined in Section 2.1.

Graphs of R-trees.

The structure of the space of normalized semivaluations VX associated to a normal
surface singularity X has been investigated from a viewpoint similar to that of the present
paper by Favre [12], and by Gignac and the last-named author in [19]. It has also been
investigated from somewhat different perspectives by Fantini [11], Thuillier [43] and de
Felipe [8].

Roughly speaking, VX is obtained patching together copies of the valuative tree V along
any skeleton S associated to a good resolution π (see Proposition 2.49). By definition, VX
admits an R-tree structure if and only if the singularity X is arborescent. To cover the
general case, we introduce the concept of graph of R-trees, which generalizes the concept
of finite graph.

Seen combinatorially, a finite graph is given by a set of vertices V and a set of edges E,
both seen abstractly and related by incidence maps. One may then consider a topological
realization of it: the edges can be seen as real segments Ie = [0, 1], and the incidences
may be realized by maps ie : {0, 1} → V , which give the identifications between the ends
of the segment Ie and some vertices of V . We may assume that every vertex in V is in
the image on one such ie. The graph can be then realized topologically as the disjoint
union of all segments Ie (and of the set V ) quotiented by the identification of the ends to
vertices according to the maps ie. In order to define graphs of R-trees, we replace in this
construction the segments with R-trees:

Definition 2.23. A graph of R-trees of finite type is defined by the following data:

(G1) Three sets V,E,D, with V and E finite.
(G2) A family (We)e∈E of R-trees with two distinct marked points xe, ye ∈We, together

with a map ie : Ve := {xe, ye} → V .
(G3) A family (Wd)d∈D of R-trees with a marked point xd ∈ Wd, together with a map

id : Vd := {xd} → V .

We denote such a structure by (V,W ) , where W := (Wa)a∈A is a family of R-trees as

described above, with A := E tD. An element Wa is called a tree element of (V,W ). If
a ∈ E, Wa is called an edge element, while if a ∈ D, Wa is called a decoration element
of (V,W ). The maps ia are called identification maps.
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The previous definition has both topological aspects (as we consider R-trees as building
blocks) and combinatorial ones (as one has incidence maps). As for finite graphs, this
definition allows to get a topological space:

Definition 2.24. Given a graph of R-trees (V,W ), its realization Z is the set defined as

Z(V,W ) :=
⊔
a∈A

Wa

/
∼,

where Wa 3 x ∼ x′ ∈Wa′ if and only if x ∈ Va, x′ ∈ Va′ and ia(x) = ia′(x
′).

Remark 2.25. Notice that we defined the realization Z of a graph of R-trees (V,W )
merely as a set, and not as a topological space, even though it is endowed naturally by the
topology induced by the one on the tree elements through the quotient by the equivalence
relation ∼. This topology, to which we will refer as the quotient topology, is not well
adapted to our purposes (see Remark 2.32). We will introduce a second topology, called
the weak topology (see Definition 2.30), and we will consider a realization of Z as a
topological space with respect to the weak topology.

Up to restricting V if necessary, we will always assume that for any v ∈ V , there exists
an a ∈ A such that v ∈ ia(Va). In this case, we can identify v with the class of elements
of the form ia(x) that satisfy ia(x) = v. Analogously, we will use the same notation for a
tree Wa and its natural projection into Z.

Let x, y ∈ Z be two points, and suppose that there exists a ∈ A such that x, y ∈Wa. The
R-tree structure of Wa gives us a unique segment [x, y]a which lies in Wa. This notation is
well defined but for one case, namely if a ∈ E and i(xa) = i(ya) = v. In this case we will
denote by [v, v]a the natural projection of the segment [xa, ya]a in Wa, and by [v, v] the
singleton {v}.

Remark 2.26. We say that the graph in Definition 2.23 is of finite type because we impose
both the set of vertices V and that of edge elements E to be finite. One can remove these
conditions in (G1) and get more general objects. Since our interest in graphs of R-trees
lies solely in the description of valuation spaces, we will only need to work with graphs
of R-trees of finite type. We will hence assume all graphs of R-trees to be of finite type,
without further mention.

Nevertheless, most of the results in this section will apply for general graphs of R-trees.
We will use the finiteness of V and E in the next sections, to deduce the finiteness of the
number of bricks (see Section 2.5).

Moreover, the definition of graphs of R-trees can be easily adapted to other situations,
for example to Q-trees, or trees of spheres, etc.

From a graph of R-trees, we can easily extract a finite graph (in the sense of Defini-
tion 1.29), which encodes its geometric complexity:

Definition 2.27. Let (V,W ) be a graph of R-trees, with realization Z(V,W ). Its skeleton

S(V,W ) is the subset of Z(V,W ) obtained as the union of the projected segments [xe, ye]e,

while e varies in E.

Example 2.28. The top left part of Figure 11 depicts an example of graph of R-trees
(V,W ), where V consists of two points {vr, vg} (depicted in red and green), and W consists
of four tree elements: one decoration element and three edge elements. Marked points are
colored red or green according to the identification maps.
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On the right part, we can see its realization, obtained by gluing together the tree elements
along the marked points according to the identification maps.

Its skeleton S(V,W ), denoted by thick lines, consists of the projection to Z of the three
segments between the marked points of the three edge elements.

The lower left part of Figure 11 depicts the regularization of (V,W ), a notion introduced
below in Definition 2.34.

Figure 11. A graph of R-trees, its regularization, their realization and the
corresponding skeleton.

As indicated in Remark 2.25, the quotient topology on the realization of a graph of
R-trees is not well adapted. Another topology can be introduced, using the notion of arc
between two points of the realization:

Definition 2.29. Let (V,W ) be a graph of R-trees, with realization Z. Let x, y be two
points in Z. An arc γ between x and y is a subset of Z obtained as a finite concatenation
of segments [sj , sj+1]aj , j = 0, . . . , n, where

• s0 = x, sn+1 = y, and sj ∈ V for all j = 1, . . . n;
• sj , sj+1 ∈Waj for all j = 0, . . . , n;
• any two segments in the concatenation intersect in at most finitely many points.

Here comes the definition of the topology on the realization:

Definition 2.30. Let (V,W ) be a graph of R-trees, with realization Z. For any z ∈ Z, and
any x, y ∈ Z \ {z}, we say that x ∼z y if there exists an arc between x and y, which does
not contain z. The weak topology on Z is the weakest topology for which any subset U
of Z representing an equivalence class for ∼z, for any z ∈ Z, is a open set.

Notice that, in contrast with the situation for R-trees, the equivalence classes for ∼z do
not correspond directly with tangent vectors at z. In fact, one can define tangent vectors
at a point z ∈ Z as the union of tangent vectors at z ∈ Wa for all a ∈ A. When Z
admits cycles, it may happen that the spaces associated to two tangent vectors at a point
z belonging to the cycle could belong to the same equivalence class with respect to ∼z. See
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[19, Section 2.4] for a description of this phenomenon for normalized semivaluation spaces
attached to normal surface singularities.

Example 2.31. Consider again the graph of R-trees (V,W ) described in Example 2.28,
and its realization Z, depicted on the top left and right part of Figure 11 respectively.
The tangent space at the green point vg consists of 6 tangent vectors, associated to the
1 + 4 + 1 tangent vectors appearing on the first 3 tree elements. By contrast, Z \ {vg} has
5 connected components. The discrepancy is due to the fact that vg belongs to a cycle
of the realization Z of (V,W ). Similarly, the red point vr has 7 tangent directions, while
Z \ {vr} has 5 connected components.

R-trees and more generally graphs of R-trees should not be thought only as topological
spaces. In fact for applications to semivaluation spaces, one usually needs to go back and
forth from the weak topology to the strong topology induced by ρ (see [13, 14, 27, 18, 15,
19]). Nevertheless, the weak topology will be very handy, for example in order to be able
to talk about connected components of cofinite subsets of Z(V,W ) and to define bricks.

Remark 2.32. Let us compare the two topologies introduced for the realization Z of a
graph of R-trees: the quotient topology and the weak topology. On the one hand, it is easy
to see that the topology induced on Wa by the weak topology on Z does coincide with the
weak topology on Wa given by its R-tree structure. On the other hand, the weak topology
on Z does not coincide in general with the quotient topology.

Consider for example the graph (V,W ) where V consists of just one element V = {p},
and the family W = (Wd)d∈D is an infinite family of decoration elements (not reduced to a
point). In this case, the realization Z admits a structure of R-tree, and the topology induced
by this R-tree structure coincides with the weak topology of its graph of R-tree structure.
In particular, an open connected neighborhood of p would contain all decoration elements
Wd, but for a finite number of d ∈ D. In contrast, an open connected neighborhood of p for
the quotient topology is the union of open connected neighborhoods of p in any decoration
element Wd, and in particular it need not contain any Wd.

Operations on graphs of R-trees.

Since the aim of this paper is not to develop a complete theory of graphs of R-trees, we
will not give a definition of morphisms of R-trees, nor of isomorphic trees. Nevertheless,
we will consider in this subsection a few operations on graphs of R-trees, which will change
the graph structure without changing the underlying realization (seen as a topological
space). With this in mind, we will say that two graphs of R-trees are equivalent if their
realizations are homeomorphic with respect to the weak topologies.

The first operation is related to the choice of the marked points in the tree elements. In
fact, following the parallel with classical graphs, we consider the additional condition:

(G4) the marked points Va of a tree element Wa are ends of Wa (i.e., elements that do
not disconnect Wa).

Definition 2.33. Graphs of R-trees satisfying the additional condition (G4) are called
regular.

Given any graph of R-trees (V,W ), one can consider the following construction. For any
d ∈ D, the tree Wd has a marked point x = xd. For any tangent vector −→v ∈ TxWd, set
Wd,−→v := Ux(−→v ) ∪ {x}. The set Wd,−→v is an R-tree, with marked point x. Set id,−→v (x) :=
id(x). We replace Wd by the family (Wd,−→v )−→v ∈TxWd

.
Analogously, for any e ∈ E, the tree We has two marked points x = xe and y = ye.

Consider the set of connected components of We \ Ve. For any such component U , set
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We,U := U . Notice that there is a unique component U such that We,U contains Ve, namely,
the one containing the open segment (x, y). We set Ve,U := We,U ∩ Ve, and ie,U : Ve,U → V
so that it coincides with ie on its domain of definition. We replace We with the family
(We,U )e,U .

Clearly (V, (Wd,−→v ,We,U )
d,
−→
V ,e,U

) defines a graph of R-trees equivalent to (V,W ), and

satisfying property (G4). Therefore it is regular.

Definition 2.34. The graph of R-trees (V, (Wd,−→v ,We,U )
d,
−→
V ,e,U

) constructed above is called

the regularization of (V,W ).

Example 2.35. On the bottom left part of Figure 11, we can see the regularization (V,W ′)
of (V,W ) considered in Example 2.28. In this case, W ′ consists of ten tree elements. Notice
that the number of edge elements remains unchanged.

Given a graph of R-trees (V,W ), one can define refinements of its structure by adding
new vertices. Assume for simplicity that (V,W ) is regular (analogous constructions can be
done in the non-regular case). Denote by Z the realization of (V,W ), and let p ∈ Z \V be
any point. Since p is not a vertex, it belongs to a unique tree element Wa.

If Wa is a decoration element with marked point x, we consider the R-tree W ′a = Wa

with marked points x and p. Set V ′ = V ∪ {p}, then i′a(x) = ia(x) and i′a(p) = p. Taking
V ′ as set of vertices, and the family W ′ obtained from W by replacing Wa with W ′a, we get
a new (in general non-regular) graph of R-trees, equivalent to (V,W ). Notice that in this
case the number of vertices and edges increases by one. Moreover, the skeleton S(V ′,W ′)
strictly contains S(V,W ).

If Wa is an edge element with marked points x and y, set z = x∧p y and V ′ = V ∪{p, z}.
For any tangent vector −→v ∈ TzWa, define W ′a(

−→v ) as the closure of Ux(−→v ) in Wa. Set
V ′a(−→v ) := W ′a(

−→v ) ∩ V ′. Notice that V ′a(−→v ) always contains z, and contains another point
in V ′ in at most three cases (associated to the tangent vectors towards the elements p, x, y).
We define i′

a,−→v : W ′a(
−→v ) → V ′ in an similar fashion than the previous case. The couple

(V ′,W ′), where W ′ is the family obtained from W by replacing Wa with the family W ′a(
−→v ),

defines again a graph of R-trees equivalent to (V,W ). In this case the number of vertices
increases either by 1 or by 2, as the number of edges. Finally, also in this case S(V ′,W ′) ⊇
S(V,W ), with equality if and only if p ∈ S(V,W ).

Definition 2.36. Any finite composition of the operation described above and regulariza-
tions will be called a refinement of the graph structure (V,W ).

Example 2.37. Consider again the regular graph (V,W ′) described by Example 2.35,
with realization Z, depicted in Figure 11. In the left part of Figure 12 we added two
vertices, depicted in blue and yellow, obtaining four vertices V ′ = {re, rg, rb, ry}. The two
new vertices belong to unique tree elements, that you can see in the top right part of the
picture. In the bottom right, we describe the (double) refinement (V ′,W ′′) of (V,W ′) with
respect to these two new vertices. The yellow vertex belongs to a decoration element. In
this case the new element associated becomes an edge element, and we add a segment to
the skeleton (denoted by thick lines). The blue vertex belongs to an edge element, and to
the skeleton S(V,W ′). In this case, this edge element splits in two edge elements, plus a
decoration element.

Remark 2.38. Let W be an edge element of some graph of R-trees, with marked points

x, y. For any point z ∈ [x, y], define Nz as
⋃
−→v
Uz(
−→v ) ∪ {z}, where −→v varies among the
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Figure 12. Refinement of a graph of R-trees.

tangent vectors at z not represented by either x nor y. It can be also described as the set of
points w ∈W such that [w, z]∩ [x, y] = {z}. The set Nz admits a natural R-tree structure,
as a subtree of the tree element W . It can be also seen as an R-tree rooted at z, or again
as a graph of R-trees with a single vertex z and a single decoration tree. We will refer to
Nz as the tree at z transverse to [x, y]. It will be used below to define implosions of
graphs of R-trees (see Definition 2.45).

2.5. Bricks and the brick-vertex tree of a graph of R-trees.

In this section we extend the notions of brick and of brick-vertex tree to graphs of
R-trees (see Definition 2.47). In the next section, we will apply this extended notion of
brick-vertex tree to the semivaluation space VX of a normal surface singularity X, proving
first that it has a structure of graph of R-trees, and getting then Theorem 2.51, which is
the counterpart of Theorem 1.40 for semivaluation spaces.

The following is an analog of Definition 1.15:

Definition 2.39. Let Z be the realization of a graph of R-trees, and x, y, z three points of
Z. We say that z separates x and y if x and y belong to different connected components
of Z \ {z}.

In particular, z does not separate itself from any other point. Notice that if z 6∈ {x, y},
then z separates x and y if and only if all arcs between x and y contain z.

Let us define now an analog of Definition 1.31:

Definition 2.40. Let Z be the realization of a graph of R-trees. A subset C ⊆ Z is called
cyclic if for every couple (x, y) of distinct points of C, no point z ∈ C \ {x, y} separates
them. A cyclic element of Z is a cyclic subset which is maximal with respect to inclusion.
A cyclic element is called a brick if it does not consist of a single point.

Notice that if C = {x}, then C is a cyclic element if and only if for all y ∈ Z \ {x} there
exists z ∈ Z \ {x} such that z separates x and y in Z.
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Proposition 2.41. Let Z be the realization of a graph (V,W ) of R-trees. Then any brick
of Z is contained in the skeleton S(V,W ).

Proof. Let x be any point in Z \S(V,W ). We want to prove that {x} is a cyclic element of
Z. This is equivalent to showing that for any point y ∈ Z \ {x}, there exists a third point
z that separates x and y.

Since x 6∈ S(V,W ), there exists a unique a ∈ A so that x ∈ Wa. We first assume that
Wa is a decoration element, and denote by z the unique point marked point of Wa. Then
z separates x and any point y in Z \Wa. Let now y be any point in Wa \ {x}. In this case,
any point in (x, y) separates x and y.

Suppose now that Wa is an edge element, say with ends xa, ya. By definition we have
Wa ∩ S(V,W ) = [xa, ya]. Set z := xa ∧x ya. It belongs to [xa, ya], and by our assumption
it is different from x. In this case, z separates x and any point outside the connected
component U of Wa \ [xa, ya] containing x (i.e. any point representing the tangent vector
at z towards x). Finally, let y be any point in U \{x}. Then the segment [x, y] is contained
in U , and any point in (x, y) separates x and y. �

We deduce that the bricks of Z may be identified with the bricks of the skeleton S(V,W )
with respect to its finite graph structure.

As an immediate consequence of Proposition 2.41, we get the following property of
graphs of R-trees, assumed as usual to be of finite type:

Corollary 2.42. Let Z be the realization of a graph of R-trees. Then Z has a finite number
of bricks.

Proof. Pick any graph structure (V,W ) whose realization is Z, and denote by S = S(V,W )
the skeleton associated to it, with its structure of finite graph. Let E = [x, y] be an edge
of S. Then either E is a bridge of S, in which case every point in (x, y) is a cyclic element,
or E is not a bridge, and in this case E belongs to a brick. Since the number of edges is
finite, so is the number of bricks. �

The absence of bricks characterizes the graphs of R-trees whose realizations have again
a structure of R-tree:

Proposition 2.43. Let Z be the realization of a graph of R-trees. Suppose that no cyclic
element of Z is a brick. Then Z admits a structure of R-tree.

Proof. We aim at defining an R-tree structure on Z satisfying the conditions of Defini-
tion 2.22.

Since all cyclic elements of Z are points, we infer that for every couple of points (x, y)
in Z, there exists a unique arc γ = γ(x, y) between x and y. To show this, suppose by
contradiction that there are two such arcs that do not coincide. Then in the union of the
two we have a cycle, which would be contained in a brick, against the assumption.

Fix any regular structure (V,W ) of graph of R-trees, whose realization is Z. Then γ is
a finite concatenation of segments Ij = [sj , sj+1] contained in tree elements Waj . We set
[x, y] = γ, with the segment structure obtained by taking a concatenation of the orders
given by the segment structures on Ij . It is easy to see that (T2) is satisfied for this family
of intervals, while property (T3) holds directly by construction.

To verify property (T4), we have to show that for any triple x, y, z of points in Z, there
exists a unique element w = x∧zy so that [z, x]∩[y, x] = [w, x] and [z, y]∩[x, y] = [w, y]. The
uniqueness of such w is trivial, hence we only need to show its existence. Consider the set
I = [z, x]∩ [z, y], with the partial order induced by the one in [z, x]. By uniqueness of arcs
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between two points, we infer that I is itself a (possibly not closed) interval. Decompose
[z, x] =

⋃
j [sj , sj+1]aj where [sj , sj+1]aj belongs to Waj . Let k be the highest index for

which Wak ∩ I 6= ∅. Notice that if y 6∈ Wak , then [z, y] intersects Wak ∩ V in a point s̃
different from sk. Set:

• xk = x if x ∈Wak , and xk = sk+1 otherwise;
• yk = y if y ∈Wak , and yk = s̃ otherwise;
• zk = z if z ∈Wak , and zk = sk otherwise.

Set now w = xk ∧zk yk, the wedge being taken with respect to the tree structure on Wak .
Clearly, w satisfies property (T4).

Finally, property (T5) clearly holds for Z. In fact, for any sequence of segments [x, yα)
in Z, there exists z ∈ Z so that [z, yα] belongs to a certain tree element Wa for α big
enough. Then property (T5) derives directly from the analogous property for Wa. �

We want now to generalize the brick-vertex trees we defined for finite graphs to the case
of graphs of R-trees. In order to get such a definition, we need first to introduce a few
more constructions.

There is a natural way to associate an R-tree to any non-empty set:

Definition 2.44. Let B be any non-empty set. Let ∼ be the equivalence relation on
B × [0, 1] defined by by (x, s) ∼ (y, t) if and only if (x, s) = (y, t) or t = s = 0. The
quotient

Star(B) = B × [0, 1]/ ∼
is called the star over B. We will denote by xt the class in Star(B) corresponding to the

point (x, t), and by vB the apex of Star(B), which is represented by (x, 0) for any x ∈ B.

Each star Star(B) is endowed with a natural structure of R-tree, whose definition we
leave to the reader.

Let (V,W ) be a regular graph of R-trees, Z be its realization, and B be a brick of Z.
For any point z ∈ B \V , there exists a unique edge element We(z) containing z. We denote
by Nz the R-subtree at z transverse to e as defined in Remark 2.38. Then, we consider the

graph of R-trees N ′z which has one vertex {z}, and two decorative elements:

• Nz, with marked point {z}, and
• the segment [vB, z1] ⊂ Star(B), with marked point z1.

It is easy to see that N ′z has no bricks, and is therefore an R-tree by Proposition 2.43.

Given a brick B, let us denote by E(B) the set of indices e ∈ E such that the edge

[xe, ye] between the two marked points of an edge element We is contained in B.

Definition 2.45. Let (V,W ) be a regular graph of R-trees, Z be its realization, B be a
brick of Z. For any z ∈ B \V , consider the R-tree N ′z as defined above. Set V ′ = V ∪{vB},
and consider the family W ′ of R-trees given by:

• the decorative elements Wd, d ∈ D, of W , with same marked point and same
identification map;
• the edge elements We with e ∈ E \ E(B), with same marked points and same

identification map;
• the decorative elements N ′z for z ∈ B \ V , with marked point {vB} and natural

identification map;
• the edge elements [vB, v1] ⊂ Star(B), for any v ∈ B ∩ V , with marked points vV

and v1, and identifications i(vB) = vB and i(v1) = v.
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Then (V ′,W ′) is a graph of R-trees, that we will call the implosion of (V,W ) along the
brick B. We denote by Z ′ the realization of the graph (V ′,W ′) and by iB : Z → Z ′ the
associated natural injection.

Note that the injection iB : Z → Z ′ is not continuous with respect to the weak topologies
in Z and Z ′. This is due to the fact that the topology induced on iB(B) by the topology
on Z ′ is the discrete topology, which does not coincide with the topology induced on
B by the weak topology of Z (which is the standard topology defined on a graph, see
Proposition 2.41). In other terms, we replaced the brick B with its star Star(B), and
not with the cone with base B, which corresponds to the analogous construction done
by replacing the discrete topology on B with the standard topology of its finite graph
structure.

Proposition 2.46. Let (V,W ) be a regular graph of R-trees, and Z be its realization.
Assume that Z has n ≥ 1 bricks, and let B be any one of them. Let (V ′,W ′) be the
implosion of (V,W ) along the brick B, and Z ′ its realization. Then Z ′ has exactly n − 1
bricks, given by the images through the natural injection iB of the bricks of Z different from
B.

Proof. We only need to check that all points in Star(B) \ iB(B) form singleton cyclic ele-
ments of Z ′. By Proposition 2.41, the bricks of Z ′ are contained in the skeleton S(V ′,W ′),
which intersects Star(B) exactly in the edge elements [vB, v1] with v ∈ V ∩B (see Defini-
tion 2.45). Let w be any point in Star(B) \ iB(B), and assume by contradiction that w is
contained in a brick B′. Since Star(B) is a tree, we get that B′ ∩ (Z ′ \ Star(B)) =: C 6= ∅.
But then, B ∪ i−1B (C) would be a cyclic subset of Z strictly containing B, which is in
contradiction with the maximality of B with respect to inclusion. �

Given any graph of R-trees, we can apply recursively regularizations and brick implo-
sions, in order to kill all bricks. In fact, by Corollary 2.42, the number of bricks is finite,
and by Proposition 2.46, the number of bricks strictly decreases under brick implosion.
The final product of this process will be a graph of R-trees (V ′,W ′), in which all cyclic
elements are trivial. By Proposition 2.43, its realization Z ′ admits a structure of R-tree.
It is the brick-vertex tree of the starting graph of R-trees:

Definition 2.47. Let Z be the realization of a graph of R-trees (V,W ), and Z ′ be the
R-tree described above, obtained by recursive regularizations and brick implosions of all

bricks of Z. Then Z ′ is called the brick-vertex tree of Z, and denoted by BV(Z) . The

points of Z ′ corresponding to apices of bricks of Z are called brick points of the brick-
vertex tree. We denote by ibv : Z → Z ′ the natural injection obtained by the composition
of the natural injections iB described above for brick implosions.

We end this section with a remark about the notion of cyclic element from a topological
perspective.

Remark 2.48. The term cyclic element is standard in general topology, while that of brick
was introduced by us in order to get a common denomination for the graph-theoretic blocks
which are not bridges and for the cyclic elements which are not points. Indeed, while the
notion of block is combinatorial and that of cyclic element is topological, the underlying
topological space of a brick of a finite graph is a brick of its underlying topological space
(see Proposition 2.41).

Cyclic elements can be defined for much more general topological spaces than for finite
graphs or realization spaces of graphs of R-trees. This notion was introduced by Whyburn
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in his 1927 paper [47], as a mean to describe the overall structure of Peano continua, i.e.,
the compact connected metric spaces which may be obtained as continuous images of the
real interval [0, 1] inside some Euclidean space Rn. He defined the cyclic elements of such
a topological space as its maximal subsets C such that any two distinct points of them
are contained in a circle topologically embedded in C. In fact, he initially studied only
plane Peano continua, and he extended in later papers the theory to arbitrary ones using
ingredients from Ayres’ 1929 paper [1]. Later on, in the 1930 paper [29], Kuratowski and
Whyburn simplified the theory of cyclic elements by defining them as in Definition 1.31
above.

The main point of this theory was to explain that the cyclic elements of a Peano con-
tinuum are organized in a tree-like manner. For instance, given any two cyclic elements,
there is a unique connected union of cyclic elements which contains them and is minimal
for inclusion – this is an analog of the uniqueness of path joining two points of a tree.

Later, the theory of cyclic elements was extended to more general settings (see e.g.
[49, 30, 36] as well as the references in McAllister’s surveys [32], [33] of the theory up to 1966
and in the interval 1966–81 respectively). In fact, as pointed out by Rado and Reichelderfer
in [39], most of the results of the theory can be obtained in the very general situation of a
set endowed with a “cyclic transitive relation” (a cyclic transitive relation R on a set S is a
binary relation which is reflexive, symmetric, and such that if x1 R x2 R . . .R xn R x1, then
xi R xj for all i, j = 1 . . . , n). In particular, in this generality one does not need topological
spaces in order to talk about cyclic elements. This last aspect is very interesting in our
setting, since as already pointed out, valuative spaces carry two natural topologies, with
quite different properties (the weak topology is non-metrizable, and the space is compact
and locally compact, while the strong topology is metrizable, but the space is not locally
compact).

Let us mention that the Peano spaces in which all the cyclic elements are points are
called dendrites (see [48]). Ważewski proved in [45] the existence of a universal dendrite,
in which embed all other dendrites. Recently, Hrushovski, Loeser and Poonen found in
[24, Corollary 8.2] a representation of it as a special type of valuation space, under a
countability hypothesis on the base field.

In what concerns the relation between cyclic element theory of topological spaces and
block theory of graphs, it is interesting to note that in the paper [46], in which Whitney
introduced the notion of nonseparable graph (see Definition 1.30), he quotes an article of
Whyburn on cyclic element theory, but that following that date the two fields seem to have
evolved quite independently of each other.

2.6. Semivaluation spaces as graphs of R-trees.

In this section we apply the constructions of the previous section to the space of normal-
ized valuations associated to a normal surface singularity. We first prove that its space of
normalized semivaluations admits a structure of connected graph of R-trees (see Proposi-
tion 2.49). Then we prove the valuative analog of Theorem 1.40, stating that the functions
uλ are ultrametrics on special types of subspaces of the space of normalized semivaluations
(see Theorem 2.51). We conclude the paper with several examples which show that the
hypothesis of the theorem are not necessary in order to get ultrametrics.

Proposition 2.49. Let X be a normal surface singularity, and VX its associated space
of normalized semivaluations. Then VX admits a structure of connected graph of R-trees,
that is, it is a connected realization space of a graph of R-trees. More precisely, any good
resolution defines canonically such a structure.
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Proof. Let π : Xπ → X be any good resolution. We set V as the set of divisorial valuations
associated to the primes of π. For any point p ∈ π−1(x0), we set Wp = Uπ(p), which
consists in the set Uπ(p) of all semivaluations whose center in Xπ is p, plus the divisorial
valuations of the form νE with E 3 p (which belong to V ). Since π−1(x0) has simple
normal crossings, either p belongs to a unique prime E of π, in which case we declare Wp a
decoration element, with marked point νE , or p belongs to exactly two exceptional primes
E and F , in which case we declare Wp an edge element, with marked points νE and νF .
Since for any such p, (Xπ, p) is a smooth point, the set Wp is isomorphic to the valuative
tree, hence it is an R-tree. The couple (V, (Wp)p∈π−1(x0)) defines a structure of graph of
R-trees on VX . �

Example 2.50. In Figure 13, we may see on the left the dual graph Γπ of a good resolution
π of some normal surface singularity X. In this example, there are 3 bricks, depicted in
orange, blue and yellow. On the right side, we may see a depiction of the semivaluation
space VX . The structure of a graph of R-trees induced by π in this case has as vertices
the vertices of Γπ under identification with the corresponding valuations (we denoted them
as S∗π), edge elements correspond to the trees along the edges of Γπ, and all other tree
elements are decorations. The thick colored segments correspond to bricks of VX with
respect to its structure of graph of R-trees.

Figure 13. The dual graph associated to a good resolution π of a normal
surface singularity X, with bricks shaded, and its associated space VX of
normalized semivaluations.

We are now able to state and prove the following theorem, which is an analog of Theo-
rem 1.40 for valuation spaces:

Theorem 2.51. Let X be a normal surface singularity, VX the associated space of nor-
malized semivaluations, and J ⊆ VX any subset of it. Let BV(VX) be the brick-vertex tree
of VX , and consider its subtree W = Conv(ibv(J )). If TvBW consists of at most 3 points
for every brick vertex vB ∈W , then uλ defines an extended ultrametric distance on J , for
any λ ∈ J .

Proof. Fixed any λ ∈ J , we need to prove that

(27) uλ(ν1, ν3) ≤ max{uλ(ν1, ν2), uλ(ν2, ν3)}
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a1

Figure 14. The brick-vertex tree BV(VX) for the example of Figure 13.

for any triple ν1, ν2, ν3 ∈ J . Notice that (27) is satisfied if either ν1, ν2 or ν3 coincide
with λ, since at least two of the three values would be +∞ (see Remark 2.17). We may
hence assume that λ 6∈ {ν1, ν2, ν3}. In particular, the three values in (27) are finite. Set
J := {ν1, ν2, ν3, ν4}.

By proceeding as in Proposition 1.22 and Corollary 1.23, we get that (27) is equivalent
to showing that ρ is tree-like, i.e., it satisfies the 4-point condition (10).

Take any good resolution π : Xπ → X. Any valuation ν ∈ J either belongs to S∗π, or it
belongs to the weakly open set Uπ(p) associated to the center p = p(ν) ∈ π−1(x0) of ν in
Xπ. Let Sπ denote the skeleton associated to π, and let Γ be the subset of VX given by
the union of Sπ and the segments [νE , ν] ∈ Uπ(p), where p = p(ν) is as above, E is any
exceptional prime of π containing p, and ν varies in J . The set Γ admits a structure of
finite graph. In fact, up to taking higher good resolutions, we may assume that for any
distinct ν, ν ′ ∈ J , their centers in Xπ are also dinstinct. We may also assume that any
valuation in J either belongs to Sπ, or its center in Xπ is a smooth point of π−1(x0). In
this case, the structure of finite graph on Γ has as vertices S∗π ∪ J , and as edges all the
edges in Sπ, eventually cut by elements in J ∩ Sπ, plus all the edges associated to the
segments [νE , ν] with ν ∈ J as described above (see Figure 15).

The function ρ defines a distance on the set of vertices of Γ, satisfying the condition
(12). This is a consequence of Proposition 2.20 applied to the reformulations given in
Proposition 1.18.

Consider now the brick-vertex tree BV(Γ) associated to Γ. The embedding of Γ in VX
induces an embedding of BV(Γ) inside BV(VX). Since the tangent space of W at any brick
point consists at most of 3 points, the Conv(J)-valency of any brick point of Γ is at most
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Figure 15. Graphs embedded in VX , illustrating the proof of Theorem 2.51.

3. We can apply Theorem 1.36, and deduce that ρ is tree-like on the set J , and we are
done. �

Notice that, as in the case of finite graphs, we get again the proof of the implication (3)
=⇒ (1) of Theorem 2.18 as a direct corollary of Theorem 2.51.

Example 2.52. Figure 14 depicts the brick-vertex tree associated to the semivaluation
space VX represented in Figure 13. The thick vertices in orange, blue and yellow denote
the brick-vertices of BV(VX), while the dark green segments belong to the stars on them.
The image needs to be thought with the green part not intersecting the rest of the space.

In Figure 15 consider a set J of four valuations in VX as in the proof of Theorem 2.51,
that are depicted in light green. The dark red area denotes the skeleton associated to the
minimal good resolution of X, while the light red part corresponds to the part added to Sπ
to obtain Γ. The thick red dots correspond to the divisorial valuations in S∗π (not belonging
to J), while the pink-purple dots are the rest of divisorial valuations added for describing
the graph structure on Γ.

Example 2.53. As for its counterpart for finite sets of branches formulated in Theo-
rem 1.40, the condition on the valency of brick-points in Theorem 2.51 is not necessary
in general. Consider again the singularity studied in Example 1.42, whose minimal good
model Xπ has four exceptional primes E1, . . . , E4 of self-intersection −4, which intersect
transversely each another. The skeleton associated to it is the 1-skeleton of a tetrahedron.
Denote by νj the prime divisorial valuation associated to Ej for all j = 1 . . . , 4, and de-
note by µt the monomial valuation at the intersection point p between E1 and E2, so that
Zπ(µt) = (1− t)Ě1 + tĚ2.
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Since all these valuations belong to the skeleton Sπ, which is included in a unique brick,
any choice of 4 valuations a, b, c, d among ν1, ν2, ν3, ν4, µt for 0 < t < 1 would not satisfy
the hypotheses of Theorem 2.51.

By computing the bracket between µt and νj , we get

5〈ν1, µt〉 = 2− t, 5〈ν2, µt〉 = 1 + t, 5〈ν3, µt〉 = 5〈ν4, µt〉 = 1.

For any choice of 4 valuations a, b, c, d, we consider now the values I1 = 25〈a, b〉〈c, d〉, I2 =
25〈a, c〉〈b, d〉 and I3 = 25〈a, d〉〈b, c〉. We recall that a, b, c, d satisfy the 4-point condition
if and only if two out of these three values coincide and the third is greater or equal to
the other two. First, pick the quadruple ν1, µt, ν3, ν4: we get I1 = 2 − t, I2 = I3 = 1. In
this case the 4-point condition is satisfied. Then, pick the quadruple ν1, µt, ν2, ν3: we get
I1 = 2− t, I2 = 1, I3 = 1 + t. In this case the 4-point condition is never satisfied.

Example 2.54. We saw in Example 2.53 how the validity of the 4-point condition may
depend on the valuation when it varies inside the same brick. We now investigate how it
varies when changing the self-intersections of prime divisors in some model. To this end,
consider again the singularity X defined in Example 2.53, and the point p of intersection
of E1 and E2. Denote by E5 the exceptional prime divisor corresponding to the blow-up of
p. In this new model Xπ′ , the self intersections of the strict transforms of Ej , j = 1, . . . , 4,
and of E5, are respectively −5,−5,−4,−4,−1.

Consider now the normal surface singularity Y whose minimal resolution has the same
dual graph as of Xπ′ , but satisfying E2

5 = −2 instead of −1. Denote by νj the prime
divisorial valuation associated to Ej for all j = 1 . . . , 4 and by ν5 the one associated to E5.
Let µ′t be the monomial valuation at the intersection between the strict transform of E2

and E5, so that Zπ′(µ
′
t) = (1− t)Ě2 + tĚ5. In this case, we get

80〈ν1, µ′t〉 = 7 + 8t, 80〈ν3, µ′t〉 = 80〈ν4, µ′t〉 = 10.

For the choice of valuations a, b, c, d given by ν1, µ
′
t, ν3, ν4, we consider I1 = 802〈a, b〉〈c, d〉,

I2 = 802〈a, c〉〈b, d〉 and I3 = 802〈a, d〉〈b, c〉. In this case we get I2 = I3 = 100 and
I1 = 12(7 + 8t).

In particular, we notice that the 4-point condition is satisfied for this quadruple if and
only if t ≥ 1

6 . Notice also that µ′t parametrizes the segment [ν2, ν5], which is contained
in the segment [ν2, ν1]. The situation here is quite different from the one described in
Example 2.53, where the 4-point condition of the quadruple ν1, µt, ν3, ν4 was satisfied for
any choice of µt. In particular, the valuations ν1, ν2, ν3, ν4 satisfy the 4-point condition for
X, but they do not satisfy the 4-point condition for Y .
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36

[15] C. Favre and M. Jonsson. Dynamical compactifications of C2. Ann. of Math. (2), 173(1):211–248, 2011.
8, 36
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