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Abstract

Following Favre, we define a holomorphic germ f : (Cd, 0) → (Cd, 0) to
be rigid if the union of the critical set of all iterates has simple normal
crossing singularities. We give a partial classification of contracting rigid
germs in arbitrary dimensions up to holomorphic conjugacy. Interestingly
enough, we find new resonance phenomena involving the differential of f
and its linear action on the fundamental group of the complement of the
critical set.

Introduction

In this paper, we are concerned with the problem of analytic and formal classifications of con-
tracting holomorphic germs at the origin in Cd, i.e., holomorphic germs f : (Cd, 0) → (Cd, 0)
such that every eigenvalue λ of the differential df0 at 0 satisfies 0 ≤ |λ| < 1. The case of locally
invertible maps is treated in detail in the literature (see, e.g., [Ste57], [RR88] or [Ber06, Chapter
4]). Such a map is not necessarily linearizable, but is analytically conjugated to a polynomial
normal form that involves only resonant monomials. In particular, the analytic and formal clas-
sifications coincide. When the map is not invertible, the situation is far more complicated since
the topological type of the critical set and its images are formal (hence analytic) invariants of
conjugacy.

To get around this problem, a natural class of maps has been introduced in [Fav00] and was
referred to as rigid germs. A rigid germ f : (Cd, 0) → (Cd, 0) is a holomorphic germ for which
the generalized critical set C(f∞) =

⋃
n∈N f

−nC(f), where C(f) denotes the critical set of f , has
simple normal crossing singularities at the origin.

Favre gave a complete classification of contracting rigid germs in dimension 2 (when C(f∞)
is also totally invariant), and proved these germs were conjugated to a polynomial (or rational)
normal form. This classification has very interesting applications to the study of a special class
of non-Kähler compact complex surfaces: Kato surfaces (see, e.g., [Dlo84], [Dlo88], [DOT03]).
The importance of this class was further emphasized by the work of [FJ07] and [Rug11], since
any holomorphic two-dimensional germ is birationally conjugated to a rigid germ.

In this article, we explore the classification of contracting rigid germs in higher dimensions.
In this setting, we shall exhibit new resonance phenomena involving the differential of f at

0 and its linear action on the fundamental group of the complement of the generalized critical
set. We shall then give some partial results on the classification of contracting rigid germs (see
Theorem 3.7 and Theorem 4.1).

We shall also show (see Examples 5.2 and 5.3) how the complexity of the geometry of the
images of C(f∞) by f and its iterates makes it impossible to get an explicit full classification.

A general motivation for studying contracting rigid germs in higher dimensions comes from
the close relationship between these objects and special non-Kähler manifolds introduced by Kato
(see, e.g., [Kat78], [Kat85], [OR06]). We shall return to this in a later work.
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The first natural invariant for holomorphic germs f : (Cd, 0)→ (Cd, 0) is given by the differ-
ential df0 at 0. In particular the number of non-zero eigenvalues of df0, or equivalently the rank
of dfd0 , is also invariant under iterations.

For contracting rigid germs one can consider a second natural invariant related to the (gen-
eralized) critical set. Let W 1, . . . ,W q be the irreducible components of C(f∞): since f is rigid,
they are smooth and intersect transversely at 0; moreover, since C(f∞) is backward invariant,
for every k = 1, . . . , q we have

f∗W k =

q∑
l=1

aklW
l

for suitable akl ∈ N. We define the internal action of f to be the matrix A = A(f) := (akl ). It
can be understood geometrically since A represents the action of f on the fundamental group
π1(∆d \ C(f∞)), where ∆d is a small open polydisc centered in 0.

If W k = {uk = 0} is a periodic component for f∗, i.e., (f∗)
η
W k = W k for a suitable η ∈ N∗,

then ∂
∂uk

∣∣
0

defines an eigenvector for df0 associated to a non-zero eigenvalue. These eigenvalues
are responsable for (part of) the classical resonances, given by the Poincaré-Dulac theorem.

For sake of simplicity, assume all periodic components are fixed and the nilpotent part of df0

vanishes. Observe that this can always be achieved replacing f by a suitable iterate.
We shall also assume that A is injective. We observe that in dimension 2, one can always semi-

conjugate a rigid germ f to another one g satisfying this condition by [Fav00, Proposition 1.4],
[FJ07, Theorem 5.1], [Rug11, Remark 4.8] (see also Remark 3.11): there exists a (not necessarily
invertible) holomorphic germ Φ : (C2, 0)→ (C2, 0) such that det dΦ0 6≡ 0 and Φ ◦ f = g ◦ Φ.

Classical resonances appear as algebraic relations between the eigenvalues of df0. The analysis
of these resonances leads to the Poincaré-Dulac theorem. Studying contracting rigid germs, a
second kind of resonances appears, involving algebraic relations between (non-zero) eigenvalues
of df0 and eigenvalues of the internal action A(f).

Let us denote by λ ∈ (D∗)s the vector of non-eigenvalues of df0 (where D∗ denotes the
punctured unitary disc in C), and pick some coordinates w = (x, ·) such that df0 = Diag(λ, 0).

Set x = (x1, . . . , xs) and let n = (n1, . . . , ns) ∈ Ns be a multi-index with |n| := n1 + . . .+ns ≥
1. Then a monomial xn :=

∏s
k=1(xk)nk is secondary resonant if and only if λn is an eigenvalue

for A.
We can now state our main result.

Theorem A. Let f : (Cd, 0)→ (Cd, 0) be a contracting rigid germ with injective internal action.
Suppose that all periodic components of C(f∞) are fixed, and the nilpotent part of df0 vanishes.
Then f is holomorphically conjugated to a map of the form

(x, y, z) 7→
(
σPD(x), βxEyD

(
1l + g(x)

)
, h(x, y, z)

)
, (1)

where

• x ∈ Cs, y ∈ Cp, z ∈ Cd−(s+p), β ∈ (C∗)p and 1l = (1, . . . , 1);

• E ∈M(s× p,N) and D ∈M(p× p,N) are matrices with detD 6= 0;

• σPD : (Cs, 0) → (Cs, 0) is a contracting invertible germ in Poincaré-Dulac normal form
(hence a polynomial), and df0 = d(σPD)0 ⊕ 0;

• {y1l = 0} ⊆ C(f∞) ⊆ {x1ly1l = 0};

• g : (Cs, 0)→ (Cp, 0) is a polynomial map that contains only secondary resonant monomials;
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• h : (Cd, 0)→ (Cd−(s+p), 0) is a holomorphic map such that dh0 = 0.

Remark. Theorem A still holds if we replace C by a (possibly non-archimedean, not algebraically
closed) complete metrized field K of char(K) = 0, provided that the eigenvalues of df0 belong to
K. See Remarks 1.1, 1.6, 2.1, 2.16, 3.12, 4.5 for further details.

Notice that Theorem A does not hold over fields of positive characteristic, already for d =
p = 1 (see Remark 3.12 for further details).

To read (1), we set xE =
((
xE
)1
, . . . ,

(
xE
)p) ∈ Cp, with

(
xE
)k

=

s∏
l=1

(xl)e
k
l ,

where x = (x1, . . . , xs) and E = (ekl ), and analogously for other similar expressions. Moreover, if
α = (α1, . . . , αp) ∈ Cp and y = (y1, . . . , yp) ∈ Cp, we shall write

αy = (α1y1, . . . , αpyp) ∈ Cp.

This normal form has several features. The first part x ◦ f depends only on x, and defines a
polynomial biholomorphism σPD : Cs → Cs. The second part y ◦ f depends only (polynomially)
on x and (monomially) on y. We also get the following corollary.

Corollary B. Let f : (Cd, 0) → (Cd, 0) be a contracting rigid germ satisfying the hypotheses of
Theorem A. Then f preserves (at least) s+ 1 smooth foliations F1, . . . ,Fs, G. The foliation Fk
has codimension k for k = 1, . . . , s, while G has codimention s+p. Moreover, Fl is a subfoliation
of Fk for every l ≥ k, and G is a subfoliation of Fs.

In the following we shall deal with rigid germs without the assumptions on the fixed compo-
nents and the nilpotent part. We shall then prove Theorem 3.7 as a generalization of Theorem A.
We shall also study the special case of a rigid germ f : (Cd, 0)→ (Cd, 0) with s+p = d−1, where
s is the number of non-zero eigenvalues of df0, and p is the number of non-periodic irreducible
components of C(f∞) (see Theorem 4.1). In particular we get the classifications for rigid germs
for which C(f∞) has either (d− 1) or d irreducible components.

These results solve the classification of rigid germs in dimension 3, but for the case s+ p = 1.
We shall show (see Examples 5.2 and 5.3) how an explicit classification of rigid germs in this case
is not possible.

To prove Theorem A, we first apply Poincaré-Dulac normalization techniques. We then get
a germ f : (Cd, 0) → (Cd, 0) whose first s coordinates are given by a contracting invertible
polynomial σPD : (Cs, 0) → (Cs, 0) in Poincaré-Dulac normal form. We then use the rigid
assumption to get (1) with g = g(x, y, z) that a priori depends on all coordinates. We finally
conjugate again to get g = g(x) that depends only on x. The study of resonances in this case
will allow us to get g polynomial.

Conjugations that maintain the Poincaré-Dulac normal form are called renormalizations. See
for example [AT05] for a renormalization process in the tangent-to-the-identity case, [AR] for
a general procedure for formal renormalizations, or [Rai10] for other techniques to study the
convergence of the Poincaré-Dulac normalization.

At every step, we first deal with the formal conjugacy. To expand in formal power series
compositions of maps, we shall need to introduce matrices of indices. This will allow to fully
understand the combinatorial structure of the formal problem. Dealing with the general case
(where the components of C(f∞) are not necessarily fixed, and df0 has a nilpotent part) will
make the combinatorial structure even more intricate.
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Once the formal normal form is achieved, we solve the convergence problem as in the Poincaré-
Dulac result.

This paper is organized as follows. In Section 1 we prove some preparatory lemmas. In Section
2 we prove a generalization of the Poincaré-Dulac Theorem suited for contracting rigid germs. In
Section 3 we define secondary resonances and prove Theorem A in the general case. In Section 4
we deal with the special case s+ p = d− 1. In Section 5 we specify all results to dimension 3.
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1 Linear Part

Let f : (Cd, 0)→ (Cd, 0) be a contracting rigid germ, and W 1, . . . ,W q be the irreducible compo-
nents of C(f∞). It is natural to choose coordinates w = (w1, . . . , wd) such that W k = {wk = 0}
for k = 1, . . . , q. Moreover, as anticipated in the introduction, we want to split irreducible compo-
nents between periodic and non-periodic ones with respect to the action of f∗. Up to permuting
coordinates, we can then suppose that the matrix A = A(f) is of the form

A =

(
B C
0 D

)
, (2)

where B ∈ M(r × r,N) for a suitable 0 ≤ r ≤ q is a permutation matrix, C ∈ M(r × p,N) with
p = q − r, and D ∈M(p× p,N).

Since C(f∞) is backward f -invariant, in the chosen coordinates we can write

(u, y, t) 7→
(
αuB

(
1l + θ(u, y, t)

)
, βuCyD

(
1l + g(u, y, t)

)
, k(u, y, t)

)
, (3)

with

• u ∈ Cr, y ∈ Cp and t ∈ Cd−q;

• α ∈ (C∗)r and β ∈ (C∗)p;

• θ : (Cd, 0)→ (Cr, 0), g : (Cd, 0)→ (Cp, 0), k : (Cd, 0)→ (Cd−q, 0);

• C(f∞) = {u1ly1l = 0}.

Remark 1.1. Observe that this reduction to maps of the form (3) is also valid over an arbitrary
field.

Remark 1.2. Suppose q = d. If detD 6= 0, the condition C(f∞) = {u1ly1l = 0} implies that the
matrix C = (cji )i,j satisfies c1i + · · ·+ cpi ≥ 1 for every i = 1, . . . , r. It is easy to check that every
germ of the form (3) with C as above is a rigid germ.

If detD = 0, then every rigid germ can be written in the form (3), but not every germ of the
form (3) is a rigid germ. For example, let us consider f : (C2, 0)→ (C2, 0), given by

(y1, y2) 7→
(
y1y2(1 + y1), y1y2(1 + y2)

)
.
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Here

A = D =

(
1 1
1 1

)
,

hence detD = 0, while det df = y1y2(y1 + y2 + 3y1y2), hence f is not rigid.
When q < d, a germ of the form (3) needs to satisfy suitable additional conditions (depending

on C, k and g if detD = 0) to be rigid.

Starting from a germ of the form (3), we would like to kill θ (up to holomorphic conjugacy).
This is exactly the result of this section.

Theorem 1.3. Let f : (Cd, 0)→ (Cd, 0) be a contracting rigid germ. Then f is holomorphically
conjugated to

(u, y, t) 7→
(
αuB , βuCyD

(
1l + g(u, y, t)

)
, k(u, y, t)

)
, (4)

where

• u ∈ Cr, y ∈ Cp and t ∈ Cd−q;

• α ∈ (C∗)r and β ∈ (C∗)p;

• B ∈M(r × r,N) is a permutation matrix, C ∈M(r × p,N) and D ∈M(p× p,N);

• g : (Cd, 0)→ (Cp, 0), k : (Cd, 0)→ (Cd−q, 0);

• C(f∞) = {u1ly1l = 0}.

Before proving this theorem, we need an easy notation Lemma and a Proposition.

Lemma 1.4. Let f = (f1, . . . , fr) : (Cd, 0) → (Cr, 0) be an r-uple of formal power series, and
let D ∈M(r × s,Q). Then we have

log
(
fD
)

= (log f)D,

where log here means that we are taking the log coordinate by coordinate.

Proof. It easily follows from a direct computation.

Proposition 1.5. Let (fn)n be a sequence of r-uples of formal power series, and let (Dn)n be a
sequence of matrices in M(r × s,Q) (with s ≥ 1). Then∏

n

(
1l + fn

)Dn
converges if and only if ∑

n

fnDn

does.

Proof. It follows from Lemma 1.4 and the analogous result in dimension one, taking the log of
the absolute value.
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Proof of Theorem 1.3. We can suppose that f is of the form (3).

We would like to find a conjugacy between f and a germ f̃ : (Cd, 0)→ (Cd, 0) of the form (4)

(with g̃, k̃ replaced by some holomorphic maps g and k respectively).
Let us consider a local diffeomorphism of the form

Φ(u, y, t) =
(
u
(
1l + φ(u, y, t)

)
, y, t

)
,

where φ : (Cd, 0)→ (Cr, 0). Set

ΦN (u, y, t) =
(
u
(
1l + φN (u, y, t)

)
, y, t

)
,

with

1l + φN (w) =

N∏
n=1

(
1l + θ ◦ f◦n−1(w)

)
,

where w = (u, y, t). We have

u ◦ ΦN ◦ f = u ◦ f̃ ◦ ΦN+1.

Indeed

u ◦ ΦN ◦ f(w) = αu
(
1l + θ(w)

) N∏
n=1

(
1l + θ ◦ f◦n(w)

)
,

u ◦ f̃ ◦ ΦN+1(w) = αu

N+1∏
n=1

(
1l + θ ◦ f◦n−1(w)

)
,

which are equivalent expressions.
Let us prove that ΦN converges to a holomorphic germ Φ = Φ∞. Thanks to Proposition 1.5,

we just have to prove that
∞∑
n=0

θ ◦ f◦n

converges in a neighborhood of 0. Since θ(0) = 0, we have that there exists M > 0 such that
‖θ(w)‖ ≤M ‖w‖, while being f contracting, there exists 0 < Λ < 1 such that ‖f◦n(w)‖ ≤ Λn ‖w‖,
both estimates for ‖w‖ small enough. Then we have∥∥∥∥∥

∞∑
n=0

(
θ ◦ f◦n(w)

)∥∥∥∥∥ ≤
∞∑
n=0

‖θ ◦ f◦n(w)‖ ≤
∞∑
n=0

MΛn ‖w‖ =
M

1− Λ
‖w‖ < +∞,

and hence Φ : (Cd, 0) → (Cd, 0) is a holomorphic invertible map, that satisfies the conjugacy
relation

Φ ◦ f = f̃ ◦ Φ (5)

for the first coordinate u.
We can just define

1l + g̃(w) =

(
1l + g

(1l + φ)C

)
◦ Φ−1(w),

k̃(w) = k ◦ Φ−1(w),

to have (5) satisfied for all coordinates.

Remark 1.6. Observe the arguments of the proof of Theorem 1.3 are also valid over any complete
metrized field of characteristic 0.
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2 Primary Resonances

2.1 Resonance Relation

Considering the differential df0 at 0 for a map f : (Cd, 0)→ (Cd, 0) of the form (4), we get

df0 =

 Diag(α)BT 0 0
∗ 0 0

∗ ∗ ∂k
∂t

∣∣
0

 ,

where Diag(α) is the diagonal matrix of entries α = (α1, . . . , αr), and T denotes the transposition.
Some of the non-zero eigenvalues of df0 arise from the block Diag(α)BT , but they can arise

also from ∂k
∂t

∣∣
0
. We can change coordinates to have ∂k

∂t

∣∣
0

in Jordan normal form, and split the

coordinate t in (v, z), with v ∈ Ce and z ∈ Cd−(q+e), to have the diagonal part equal to (µ, 0),
where µ ∈ (D∗)e is the vector of non-zero eigenvalues of df0 that do not arise from Diag(α)BT .
With these new coordinates we can write f as follows:

(u, v, y, z) 7→
(
αuB , µv + ρ(u, v, y, z), βuCyD

(
1l + g(u, v, y, z)

)
, h(u, v, y, z)

)
, (6)

where

• u ∈ Cr, v ∈ Ce with e = s− r, y ∈ Cp and z ∈ Cd−(s+p);

• α ∈ (C∗)r, µ ∈ (D∗)e and β ∈ (C∗)p;

• B ∈M(r × r,N) is a permutation matrix, C ∈M(r × p,N) and D ∈M(p× p,N);

• ρ : (Cd, 0)→ (Ce, 0), g : (Cd, 0)→ (Cp, 0) and h : (Cd, 0)→ (Cd−(s+p), 0);

• C(f∞) = {u1ly1l = 0};

• µ ⊆ Spec(df0) \ {0};

• ρ|{u=y=z=0} and h|{u=v=y=0} have nilpotent linear part.

Remark 2.1. Over an arbitrary field K, this argument works as soon as all the eigenvalues of
df0 belong to K. In particular, it always works if K is algebraically closed.

We want now to kill as many coefficients of ρ (expanded in formal power series) as we can. As
in the case of attracting invertible germs, some formal obstructions appear. We shall call them
primary resonances to make a distinction with secondary resonances, that will be introduced in
Definition 3.2 (see also the introduction at page 2).

Definition 2.2. Let f : (Cd, 0) → (Cd, 0) be a contracting rigid germ as in (6), and let η ∈ N∗
be the order of B. A monomial unuvnv is called primary resonant with respect to the k-th
coordinate of v if it satisfies the Poincaré-Dulac resonance relation for f◦η, i.e., if

ξnuµηnv = (µk)η, (7)

where ξ ∈ (D∗)r is the vector of eigenvalues of
(
u 7→ αuB

)◦η
(counted with multiplicities), and

µ = (µ1, . . . , µe).
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Remark 2.3. If η = 1 in Definition 2.2 the resonance relation (7) becomes

λn = λr+k,

where λ = (λ1, . . . , λs) := (α, µ) ∈ (D∗)s is the vector of non-zero eigenvalues for df0, and
n = (nu, nv) ∈ Ns.

Remark 2.4. Let f : (Cd, 0)→ (Cd, 0) be a contracting rigid germ as in (6). Let us suppose for
example that W k = {uk = 0} for k = 1, . . . , χ form a cycle of order χ; i.e., the first χ coordinates
of f are of the form

(u1, . . . , uχ) 7→ (α1u2, . . . , αχ−1uχ, αχu1).

Taking the χ-th iterate, we get

(u1, . . . , uχ) 7→ (ξu1, . . . , ξuχ), with ξ =

χ∏
k=1

αk.

In particular all ∂
∂uk

∣∣
0

belong to the eigenspace of eigenvalue ξ for dfχ0 , and ξ will have multiplicity
(at least) χ.

The following lemma is a classical result for primary resonances in contracting germs (see,
e.g., [Ber06, p. 467]).

Lemma 2.5. Let f : (Cd, 0)→ (Cd, 0) be a contracting rigid germ written as in (6). Then there
are only finitely-many primary resonant monomials.

Remark 2.6. We notice that periodic non-fixed irreducible components of the generalized critical
set of a contracting rigid germ f : (Cd, 0) → (Cd, 0) can appear only for d ≥ 3, and primary
resonances for B 6= Id can appear only for d ≥ 4.

2.2 Main Theorem

Our next goal is to kill all coefficients of ρ in (6) except for primary resonant monomials.

Theorem 2.7. Let f : (Cd, 0) → (Cd, 0) be a contracting rigid germ. Then f is analytically
conjugated to

(u, v, y, z) 7→
(
αuB , µv + ρ(u, v), βuCyD

(
1l + g(u, v, y, z)

)
, h(u, v, y, z)

)
, (8)

where

• u ∈ Cr, v ∈ Ce, y ∈ Cp and z ∈ Cd−(s+p);

• α ∈ (C∗)r, µ ∈ (D∗)e and β ∈ (C∗)p;

• B ∈M(r × r,N) is a permutation matrix, C ∈M(r × p,N) and D ∈M(p× p,N);

• ρ : (Cs, 0)→ (Ce, 0), g : (Cd, 0)→ (Cp, 0) and h : (Cd, 0)→ (Cd−(s+p), 0);

• C(f∞) = {u1ly1l = 0};

• µ ⊆ Spec(df0) \ {0} and h|{u=v=y=0} has nilpotent linear part;

• ρ is a polynomial map with only primary resonant monomials.
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Remark 2.8. For a contracting rigid germ f : (Cd, 0)→ (Cd, 0) written as in (6), up to permuting
coordinates in v = (v1, . . . , ve), we can order µ1, . . . , µe such that

1 >
∣∣µ1
∣∣ ≥ . . . ≥ |µe| > 0. (9)

In this case a primary resonant monomial for the k-th coordinate is either of the form:

• unuvnv with nv = (nv1 , . . . , nve) such that nvl = 0 for l ≥ k,

• or vl for a suitable 1 ≤ l ≤ e.

We shall first take care of the linear part, and then of higher order terms, to get ρ = (ρ1, . . . , ρe)
(strictly) triangular, meaning precisely that ρk depends only on u and v1, . . . , vk−1 for every
k = 1, . . . , e.

Proof. We first prove in Step 1 the formal counterpart of this theorem, and then we will deal
with the convergence of the formal power series involved in Step 2.

(Step 1). First, we can suppose that f is of the form (6). Moreover we can suppose that
(ρ, h)|u=y=0 has lower triangular linear part, and that µ satisfies (9).

Then, up to linear conjugacy, we can suppose that the linear part of ρ has only resonant
monomials. Indeed, we can consider a linear map of the form L̂ : (u, v, y, z) 7→ (Lu, v, y, z) that

conjugates f with f̂ = L̂ ◦ f ◦ L̂−1 such that u ◦ f̂(u, v, y, z) = α̂u, where α̂ ∈ (D∗)r is a vector
of non-zero eigenvalues for df0. Then there is a linear change of coordinates M̂ that conjugates
f̂ with a map whose linear part is in Jordan normal form, and L̂−1 ◦ M̂ ◦ L̂ is the wanted linear
conjugacy.

Now we want to conjugate f with a map f̃ : (Cd, 0)→ (Cd, 0) of the form (8) (with g̃, ρ̃ and

h̃ instead of g, ρ and h respectively).
Set w = (u, v, y, z), and consider a local diffeomorphism Φ : (Cd, 0)→ (Cd, 0) of the form

Φ(w) =
(
u, φ(w), y, z

)
,

with φ : (Cd, 0)→ (Ce, 0) a formal map such that dΦ0 = Idd is tangent to the identity.

Considering the conjugacy relation Φ ◦ f = f̃ ◦ Φ for the coordinate v, we have to solve

φ ◦ f(w) = v ◦ Φ ◦ f(w) = v ◦ f̃ ◦ Φ(w) = (µv + ρ̃)
(
u, φ(w)

)
= µφ(w) + ρ̃

(
u, φ(w)

)
(10)

for suitable φ and ρ̃. Set

I(w) := φ ◦ f(w), II(w) := µφ(w) + ρ̃
(
u, φ(w)

)
.

We now expand in formal power series (10), and solve it by defining recursively the coefficients
of φ and ρ̃. Set

• v = (v1, . . . , ve);

• ρ = (ρ1, . . . , ρe) and µkvk + ρk(w) =
∑
n ρ

k
nw

n for 1 ≤ k ≤ e;

• ρ̃ = (ρ̃1, . . . , ρ̃e) and µkvk + ρ̃k(u, v) =
∑
nu,nv

ρ̃k(nu,nv)u
nuvnv for 1 ≤ k ≤ e;

• φ = (φ1, . . . , φe) and φk(w) =
∑
n φ

k
nw

n for 1 ≤ k ≤ e;

• I =
(
I1, . . . , Ie

)
and Ik(w) =

∑
n Iknwn for 1 ≤ k ≤ e, and analogously for II;

• g = (g1, . . . , gp) and 1 + gk(w) =
∑
n g

k
nw

n for 1 ≤ k ≤ p;

9



• h = (h1, . . . , hd−(s+p)) and hk(w) =
∑
n h

k
nw

n for 1 ≤ k ≤ d− (s+ p).

Remark 2.9. Multi-indices n ∈ Nd, although they are written as horizontal vectors, are meant
to be vertical vectors. We shall always omit the transposition on multi-indices, but we still use
subscripts to indicate their coordinates, instead of superscripts used for horizontal vectors (as in
the standard notation).

We shall use the notation n = (nu, nv, ny, nz), denoting by u the projection onto the co-
ordinate u and analogously for the other coordinates, so that nu ∈ Nr, nv ∈ Ne, ny ∈ Np and
nz ∈ Nd−(s+p).

In the following, we shall need some properties of formal power series and new notations to
keep the equations as compact as possible.

Remark 2.10. Let x = (x1, . . . xr) ∈ Cr, A ∈ M(a× b,N) and B ∈ M(b× c,N). By direct
computation we get (

xA
)B

= xAB .

Remark 2.11. Let ψ : (Cc, 0) → Cb be a formal map, and i ∈ Nb a multi-index. Pick w =
(w1, . . . , wc) some coordinates at 0 ∈ Cc. We shall need to write in formal power series expressions
of the form (

ψ(w)
)i ∈ C[[w]].

Set i = (i1, . . . , ib) and ψ = (ψ1, . . . , ψb) with ψk(w) =
∑
n ψ

k
nw

n for k = 1, . . . , b. Then

(
ψ(w)

)i
=

b∏
k=1

(
ψk(w)

)ik =

b∏
k=1

( ∑
nk∈Nc

ψknkw
nk

)ik
=

b∏
k=1

ik∏
l=1

( ∑
nk,l∈Nc

ψknk,lw
nk,l

)
.

Set

Nc(i) :=
{
N = (n1,1, . . . n1,i1 | · · · | nb,1, . . . nb,i

b

) s.t. nk,l ∈ Nc ∀k, l} ∼=M(c× |i| ,N).

and for N ∈ Nc(i) write

ψN :=

b∏
k=1

ik∏
l=1

ψknk,l ∈ C, |N | :=
b∑

k=1

ik∑
l=1

nk,l ∈ Nc.

Then we have (
ψ(w)

)i
=

∑
N∈Nc(i)

ψNw
|N |.

When c = d, we shall omit the subscript and write Nd(i) = N (i).

Coming back to the proof of Theorem 2.7, by direct computations we get

Ik =
∑
i∈Nd

[
φki
(
αuB

)iu (
µv + ρ(w)

)iv(
βuCyD

(
1l + g(w)

))iy(
h(w)

)iz]

=
∑
i∈Nd

φki α
iuuBiuβiyuCiyyDiy

 ∑
I∈N (iv)

ρIw
|I|

∑
J∈N (iy)

gJw
|J|

∑
K∈N (iz)

hKw
|K|

 (11)

IIk =
∑

j∈Nr+e
ρ̃kju

ju
(
φ(w)

)jv
=

∑
j∈Nr+e

ρ̃kju
ju

 ∑
H∈N (jv)

φHw
|H|

 , (12)

10



for k = 1, . . . , e.
Expressing explicitly the coefficients of Ik and IIk written in formal power series, from (11)

and (12) respectively we obtain:

Ikn =
∑
i∈Nd

I∈N (iv),J∈N (iy),K∈N (iz)
Cond1

φki α
iuβiyρIgJhK , IIkn =

∑
j∈Nr+e
H∈N (jv)

Cond2

ρ̃kjφH ,

for k = 1, . . . , e and n ∈ Nd; moreover

Cond1 =


Biu + Ciy + |I|u + |J |u + |K|u = nu
|I|v + |J |v + |K|v = nv
Diy + |I|y + |J |y + |K|y = ny
|I|z + |J |z + |K|z = nz

,

and

Cond2 =


ju + |H|u = nu
|H|v = nv
|H|y = ny
|H|z = nz

.

We want to solve the equation
Ekn := IIkn − Ikn = 0 (13)

for every k and n, where the unknowns are the coefficients φkn of φ and ρ̃kn of ρ̃.
To understand the combinatorics of (13), we need a partial order and a total order on indices

in Nd. Set n = (n1, . . . , nd) and m = (m1, . . . ,md).

Partial order �: we say that m � n iff we have mk ≤ nk for every k = 1, . . . , d.

Total order ≤: we say that m ≤ n iff (|m| ,m1, . . . ,md) ≤lex (|n| , n1, . . . , nd), where ≤lex is the
lexicographic order (on Nd+1).

For example, for d = 3 we have:

(0, 0, 0) <

(0, 0, 1) < (0, 1, 0) < (1, 0, 0) <

(0, 0, 2) < (0, 1, 1) < (0, 2, 0) < (1, 0, 1) < (1, 1, 0) < (2, 0, 0) <

(0, 0, 3) < (0, 1, 2) < · · · < (2, 1, 0) < (3, 0, 0) <

...

We notice that if m ≺ n then m < n. Moreover if m′ ≤ n′ and m′′ ≤ n′′ then m′+m′′ ≤ n′+n′′.

Lemma 2.12. Let ψ : (Cd, 0) → (Cb, 0), j ∈ Nb and H ∈ N (j). Take coordinates w =
(w1, . . . , wd) ∈ Cd, and set ψ = (ψ1, . . . , ψb) with ψk(w) =

∑
n ψ

k
nw

n for every k = 1, . . . , b.
For any k = 1, . . . , d, let ek ∈ Nd be the multi-index with 1 in the k-th coordinate and 0 in

all the others. Suppose there exists 0 ≤ c ≤ d − b − 1 such that ψkn = 0 for every n < ec+k,
k = 1, . . . , b.

Then ψH = 0 for |H| < (0c, j, 0d−c−b) (where 0c ∈ Nc and 0d−c−b ∈ Nd−c−b). Moreover:

(i) if ψkec+k = 0 for k = 1, . . . , b, then ψH = 0 for |H| ≤ (0c, j, 0d−c−b) if j 6= 0;

(ii) if ψk(w) = ζkwc+k + h. o. t. for k = 1, . . . , b, then ψH 6= 0 only if one of the following
conditions is satisfied:

11



• |H| = (0c, j, 0d−c−b), and in this case H is uniquely determined in N (j) and ψH = ζj,
where ζ = (ζ1, . . . , ζb);

• ||H|| > |j|, where ||H|| ∈ N denotes the sum of all elements of |H| ∈ Nd, and hence
the sum of all elements of H ∈M(d× |j| ,N).

Proof. Set j = (j1, . . . , jb), and write explicitly

H =
(
h1,1 · · ·h1,j1 h2,1 · · ·h2,j2 · · · hb,1 · · ·hb,jb

)
,

where hk,l ∈ Nd is a multi-index for every k = 1, . . . , b and l = 1, . . . , jk.
To have ψH 6= 0, we must have ψkhk,l 6= 0 for every k and l.
Thanks to our assumption, ψkhk,l 6= 0 only if hk,l ≥ ec+k. Then we have that φH 6= 0 only if

|H| =
b∑

k=1

jk∑
l=1

hk,l ≥
b∑

k=1

jk∑
l=1

ec+k =

b∑
k=1

jke
c+k = (0c, j, 0d−c−b). (14)

(i) Assume that ψkhk,l 6= 0 only if hk,l > ec+k. Since j 6= 0, the sums in (14) are not empty, and
the inequality is strict.

(ii) Since φk(w)− ζkwc+k is at least of order 2, ψkn 6= 0 only if n = ec+k or |n| ≥ 2.

• If hk,l = ec+k for every k, l, then

|H| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



0 · · · 0 0 · · · 0 · · · 0 · · · 0
...

...
...

...
0 · · · 0 0 · · · 0 · · · 0 · · · 0
1 · · · 1 0 · · · 0 · · · 0 · · · 0
0 · · · 0 1 · · · 1 · · · 0 · · · 0

...
...

...
...

0 · · · 0 0 · · · 0 · · · 1 · · · 1
0 · · · 0 0 · · · 0 · · · 0 · · · 0

...
...

...
...

0 · · · 0 0 · · · 0 · · · 0 · · · 0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=



0
...
0
j1
j2
...
jb
0
...
0



= (0c, j, 0d−c−b).

In this case,

φH =

b∏
k=1

jk∏
l=1

ψkec+k =

b∏
k=1

(ζk)jk = ζj .

• If there exist k and l such that
∣∣hk,l∣∣ ≥ 2, then to have φH 6= 0 we must have

||H|| =
e∑

k=1

jk∑
l=1

∣∣hk,l∣∣ > e∑
k=1

jk = |j| .

Recall that e is the number of components of v, and hence of I and II. We shall need a weight
on indices (k, n) ∈ {1, . . . , e} × Nd.
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Definition 2.13. Let k ∈ {1, . . . , e} be an integer and n be a multi-index (in Nd or Ns). We call
weight of (k, n) the value

weight(k, n) = weight(k, |n|) := |n|+ k

e
∈ N
e

.

Notice that for every W ∈ N/e, there are only finitely many (k, n) such that weight(k, n) ≤W .

Lemma 2.14. We have

IIkn = δ0
nyδ

0
nz ρ̃

k
(nu,nv) + µkφ

k
n +Qk,|n|(φ

l
m, ρ̃

l
(mu,mv)),

where δ denotes the Kronecker’s delta function, and Qk,|n| is a polynomial in the variables φlm
and ρ̃l(mu,mv) satisfying

weight(l,m) < weight(k, |n|).

In order to simplify notations, we shall simply write

IIkn = δ0
nyδ

0
nz ρ̃

k
(nu,nv) + µkφ

k
n + l. o. t.k,|n|(φ, ρ̃), (15)

where l. o. t.k,|n|(φ, ρ̃) stands for a suitable polynomial in the variables φlm and ρ̃l(mu,mv) satisfying

weight(l,m) < weight(k, |n|). We shall also omit ρ̃ when the polynomial does not depend on any
coefficient ρ̃l(mu,mv).

Proof. Set W := weight(k, |n|). From the first equation of Cond2, we get ju � nu, and in
particular |ju| ≤ |nu|. From Lemma 2.12.(ii) we can have two cases when φH 6= 0.

• Either jv = |H|v = nv, and in this case the term ρ̃kj with the biggest weight is given by
ju = nu. Its weight is ≤W , and the equality holds only if ny = 0 and nz = 0, when we get
the first term of (15).

• Or
|j| = |ju|+ |jv| < |ju|+ ||H|| = |ju|+ |n| − |ju| = |n| ,

and in this case the weight strictly less than W .

Still from Cond2, we get |H| ≺ n. It follows that the only way to have φH 6= 0 and with some
φlm with weight(l,m) ≥W is to have H made by just a column in position l ≥ k, given by n. In
this case we get jv = el, φH = φln, and from the first equation of Cond2 we get ju = 0. Since
ρ̃kel = 0 for l > k and ρ̃kek = µk, we get the second term of (15).

Lemma 2.15. We have

Ikn = δ0
nyδ

0
nzα

B−1nuµnvφk(B−1nu,nv,0,0) + l. o. t.k,|n|(φ). (16)

Proof. SetW := weight(k, |n|). Thanks to Lemma 2.12 we get that ρI 6= 0 only if |I| ≥ (0, iv, 0, 0).
Thanks to Lemma 2.12.(i) we get that hK 6= 0 only if |K| > (0, 0, 0, iz) when iz 6= 0.

From the first equation in Cond1 we get Biu � nu, hence iu � B−1nu and in particular
|iu| ≤ |nu|. Notice that the equality on modules holds only if iu = B−1nu. From the third
equation we get |iy| < |Diy| ≤ |ny| for iy 6= 0.

Then we get

|i| = |iu|+ |iv|+ |iy|+ |iz|
≤ |iu|+ ||I||+ |iy|+ ||K||
= |n| − ||J || − |Ciy| −

(
|Diy| − |iy|

)
≤ |n| ,
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where the equality can hold only if iy = 0 and iz = 0.
It follows that terms φki such that weight(k, i) ≥ W appear only when iy = ny = 0 and

iz = nz = 0. In this case, J = K = ∅, and g∅ = h∅ = 1. The third equation of Cond1 gives
|I|y = 0, while the fourth gives |I|z = 0. The second equation of Cond1 gives |I|v = nv. To

have a term φki of weight W , we need to have then iu = B−1nu, from which it follows |I|u = 0.
Then the second equation of Cond1 gives iv ≤ |I|v = nv. But Lemma 2.12 says that ρI = 0 for
|I|v > iv. Hence the only term that appears is for iv = nv. Following the computation of the
proof of Lemma 2.12.(ii), we get ρI = µnv , and the statement.

Thanks to Lemmas 2.14 and 2.15, Ekn = 0 becomes

µkφkn + δ0
nyδ

0
nz

(
ρ̃k(nu,nv) − α

B−1nuµnvφk(B−1nu,nv,0,0)

)
= l. o. t.k,|n|(φ, ρ̃). (17)

This affine equation, where the unknowns are φkn and ρ̃k(nu,nv), has always a solution. At this

point we conjugated f to a map f̃ as in (8), but with ρ̃ : (Cs, 0) → (Ce, 0) a (vector of) formal
power series. Next we show that we can solve the conjugacy relation (13) and get ρ̃ polynomial
with only primary resonant monomials.

We solve Ekn = 0 inductively on weight(k, n) as follows.

For weight(k, n) ≤ 2, i.e., if |n| ≤ 1, we set φkn := 1 if n = er+k and 0 otherwise, while ρ̃k(nu,nv) :=

ρk(nu,nv,0,0). An easy computation shows that Ekn = 0 holds for these values.

Set 2 < W ∈ N/e, and suppose that we have determined φlm and ρ̃l(mu,mv) for weight(l,m) < W

satisfying Elm = 0 when weight(l,m) < W . We want to solve (17) for weight(k, n) = W .
Notice that l. o. t.k,|n|(φ, ρ̃) is a polynomial that depend on φlm and ρ̃l(mu,mv) only for weights

strictly less than W . Hence thanks to the induction hypothesis, l. o. t.k,|n|(φ, ρ̃) is a known value
in C.

1) Suppose (ny, nz) 6= (0, 0). Then (17) becomes

µkφkn = l. o. t.k,|n|(φ, ρ̃),

and there exists a unique φkn that solves the equation.

2) Suppose (ny, nz) = (0, 0). Then (17) becomes

− µkφkn + αB
−1nuµnvφk(B−1nu,nv,0,0) = ρ̃k(nu,nv) + l. o. t.k,|n|(φ, ρ̃). (18)

2.1) Suppose that nu = B−1nu: we have two cases.

Suppose µk 6= αnuµnv , i.e., unuvnv is not primary resonant for the k-th coordinate. Then
we can put ρ̃k(nu,nv) = 0 and there exists a unique φkn that solves the equation.

Suppose µk = αnuµnv , i.e., unuvnv is primary resonant for the k-th coordinate. Then
(18) does not depend on φkn (we put it equal to 0), and there exists a unique ρ̃k(nu,nv)

that solves the equation.

2.2) In the general case, let η̃ be the smallest number in N∗ such that nu = Bη̃nu. Set

n
(l)
u := B−lnu for l = 0, . . . , η̃ − 1. We consider the equation (18) for nu, n

(1)
u , . . . , n

(1−η̃)
u

14



simultaneously (while we fix nv). In this case we get the following linear system:



φk(nu,nv,0,0)

φk
(n

(1)
u ,nv,0,0)

...

...
φk

(n
(η̃−1)
u ,nv,0,0)



T 

−µk 0 · · · 0 αnuµnv

αn
(1)
u µnv −µk

. . .
. . . 0

0 αn
(2)
u µnv

. . .
. . .

...
...

. . .
. . . −µk 0

0 · · · 0 αn
(η̃−1)
u µnv −µk


=



ρ̃k(nu,nv)

ρ̃k
(n

(1)
u ,nv)

...

...
ρ̃k

(n
(η̃−1)
u ,nv)



T

+l. o. t. ,

(19)
where

l. o. t. = l. o. t.k,|n|(φ, ρ̃).

for each coordinate, since weight(k, (n
(l)
u , nv, 0, 0)) = W for each l = 0, . . . , η̃ − 1.

By direct computation, the determinant of the matrix in (19) is given (up to sign) by(
η̃−1∏
l=0

αn
(l)
u

)
µη̃nv − (µk)η̃.

Recall that the η in the definition of primary resonances (7) is the order of B. In
particular, we have η̃ | η. It follows that the linear system (19) is invertible iff (nu, nv)

is not primary resonant. Notice also that (nu, nv) is primary resonant iff (n
(l)
u , nv) is for

every l = 0, . . . , η̃ − 1.

If (nu, nv) is not primary resonant, we can put ρ̃k
(n

(l)
u ,nv)

= 0 for every l = 0, . . . , η̃ − 1

and there exists a unique (φk
(n

(l)
u ,nv,0,0)

) for l = 0, . . . , η̃ − 1 that solves the linear system

(19).

If (nu, nv) is primary resonant, we can put φk
(n

(l)
u ,nv,0,0)

= 0 for every l = 0, . . . , η̃− 1 and

there exists a unique (ρ̃k
(n

(l)
u ,nv)

) for l = 0, . . . , η̃ − 1 that solves the linear system (19).

We have defined the conjugation Φ as an invertible formal map: we can then define g̃ and h̃ such
that the conjugacy relation holds for all coordinates.

(Step 2). The proof of the convergence of the conjugacy map is completely analogous to the
proof of the Poincaré-Dulac theorem (see, e.g., [Ste57], [RR88] or [Ber06, Chapter 4]).

Pick 0 < Λ < 1 such that Λ > specrad(df0) the spectral radius of the differential df0 of f at
0, and take N such that ΛN < |µk| for every k = 1, . . . , e.

For proving the formal result, we introduced a weight, and noticed that for every W ∈ N/e,
there are only finitely many (k, n) such that weight(k, n) ≤W . It follows that there exist M > 0
and a polynomial (hence holomorphic) change of coordinates that conjugates f with a map of
the form

(u, v, y, z) 7→
(
αuB , µv + ρ(u, v) +R(u, v, y, z), βuCyD

(
1l + g(u, v, y, z)

)
, h(u, v, y, z)

)
, (20)

with the same conditions as for (8), and R : (Cd, 0)→ (Ce, 0) such that

‖R(w)‖ ≤M ‖w‖N

for ‖w‖ small enough.
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Notice that there are no primary resonances unuvnv such that |nu| + |nv| ≥ N . Indeed,
suppose unuvnv is resonant for the k-th coordinate for a suitable 1 ≤ k ≤ e. Then from (7) we
would have ∣∣(µk)η

∣∣ = |ξnuµηnv | < ΛηN <
∣∣µk∣∣η ,

that gives a contradiction.
Set R = (R1, . . . , Re). We now proceed by induction on k = 1, . . . , e and prove that we can

conjugate f with a germ of the form (20), with Rl ≡ 0 for any l ≤ k. If k = 0, there is nothing
to prove. Suppose that f is of the form (20), with Rl ≡ 0 for l < k. The induction step will

consist in proving that we can conjugate f with f̃ : (Cd, 0) → (Cd, 0) of the form (20), with

R̃ = (R̃1, . . . , R̃e) instead of R such that R̃l ≡ 0 for l ≤ k.
Consider a local diffeomorphism Φ : (Cd, 0)→ (Cd, 0) of the form

Φ(w) = (u, v1, . . . , vk−1, vk + φk(w), vk+1, . . . , ve, y, z),

where φk : (Cd, 0)→ (C, 0) is of order at least 2.
Thanks to Remark 2.8 ρ is strictly triangular, i.e., ρk depends only on u and v1, . . . , vk−1.

Hence, considering the coordinate vk of the conjugacy relation Φ ◦ f = f̃ ◦ Φ, we get

vk ◦ Φ ◦ f(w) = µkvk + ρk(u, v1, . . . , vk−1) +Rk(w) + φk ◦ f(w)

vk ◦ f̃ ◦ Φ(u, y, v, z) = µkvk + µkφk(w) + ρk(u, v1, . . . , vk−1).

So we have to solve
Rk(w) + φk ◦ f(w) = µkφk(w).

It has an explicit solution, given by

φk(w) =

∞∑
n=1

(µk)−nRk ◦ f◦n−1(w).

Notice that for ‖w‖ small enough we have ‖f◦n(w)‖ ≤ Λn ‖w‖. Then we have∣∣φk(w)
∣∣ ≤ ∞∑

n=1

∣∣µk∣∣−n ∣∣Rk ◦ f◦n−1(w)
∣∣ ≤ ∞∑

n=0

MΛNn
∣∣µk∣∣−n−1 ‖w‖ ,

that converges since ΛN

|µk| < 1.

Remark 2.16. The arguments of the proof of Theorem 2.7 are also valid over any complete
metrized field K. Indeed, since (17) is a linear (affine) equation on φkn and ρ̃k(nu,nv), it can be
solved as well if K is not algebraically closed. Moreover, the estimates in Step 2 works as well
(or even better) in the non-archimedean case as in the complex case.

So Theorem 2.7 holds in general, provided that all eigenvalues of df0 belong to K (see Remark
2.1).

3 Secondary Resonances

3.1 Resonance Relation

Starting from a germ written as in (8), we can define x = (u, v), so that a contracting rigid germ
f : (Cd, 0)→ (Cd, 0) is holomorphically conjugated to a map of the form

(x, y, z) 7→
(
γxP + σ(x), βxEyD

(
1l + g(x, y, z)

)
, h(x, y, z)

)
, (21)
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where

• x ∈ Cs, y ∈ Cp, and z ∈ Cd−(s+p);

• γ ∈ (C∗)s and β ∈ (C∗)p;

• P ∈M(s× s,N) is a permutation matrix, E ∈M(s× p,N) and D ∈M(p× p,N);

• σ : (Cs, 0)→ (Cs, 0), g : (Cd, 0)→ (Cp, 0) and h : (Cd, 0)→ (Cd−(s+p), 0);

• {y1l = 0} ⊆ C(f∞) ⊆ {x1ly1l = 0};

• h|{x=y=0} has nilpotent linear part;

• σ is a polynomial map with only primary resonant monomials.

Remark 3.1. The relation between equations (8) and (21) is given by the identities:

P =

(
B 0
0 Ide

)
, E =

(
C 0

)
, γ = (α, µ) and σ = (0, ρ).

The aim of this section is to kill as many coefficients of g (expanded in formal power series)
as possible, under the assumption of detD 6= 0 (i.e., injective internal action). New formal
obstructions appear: secondary resonances.

Definition 3.2. Let f : (Cd, 0) → (Cd, 0) be a contracting rigid germ as in (21) with injective
internal action, and let η ∈ N∗ be the order of P . A monomial xn is called secondary resonant if

ληn ∈ Spec(Dη), (22)

where λ ∈ (D∗)s is the vector of non-zero eigenvalues of df0 (counted with multiplicities).

Remark 3.3. If f : (Cd, 0)→ (Cd, 0) is a contracting rigid germ as in (21), and all the periodic
irreducible components of C(f∞) are fixed, then η = 1 and this definition coincides with the
resonance relation given in the introduction.

Lemma 3.4. Let f : (Cd, 0) → (Cd, 0) be a contracting rigid germ written as in (21), with
injective internal action. Then there are only finitely-many secondary resonant monomials.

Proof. It follows since Dη has only a finite number of eigenvalues µ, and the secondary resonance
relation is perfectly analogous to the primary resonance relation (7).

Example 3.5. Let us see an example of how to compute secondary resonances. Let f : (C3, 0)→
(C3, 0) be a contracting rigid germ, with internal action A given by

A =

 1 1 2
0 2 1
0 1 0

 ,

where the splitting is according to the notations in (2). Here

D =

(
2 1
1 0

)
,

whose eigenvalues are 1±
√

2.
Set λ the non-zero eigenvalue for df0 and (x1, y1, y2) suitable coordinates in 0 ∈ C3. Then in

this case (x1)n is secondary resonant if

λn = 1−
√

2.

Notice that 1 +
√

2 > 1 gives no resonances, being |λ| < 1.
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Remark 3.6. We notice that secondary resonances for a contracting rigid germ f : (Cd, 0) →
(Cd, 0) can appear only for d ≥ 3; secondary resonances with periodic non-fixed irreducible
components for C(f∞), or equivalently for η ≥ 2 in (22), can appear only for d ≥ 4. Primary and
secondary resonances can appear in the same germ only for d ≥ 4, and with η ≥ 2 for d ≥ 5.

3.2 Main Theorem

Here we prove that we can kill all coefficients of g in (21) except for secondary resonant monomials.
This theorem is the generalization of Theorem A stated in the introduction.

Theorem 3.7. Let f : (Cd, 0) → (Cd, 0) be a contracting rigid germ with injective internal
action. Then f is analytically conjugated to

(x, y, z) 7→
(
γxP + σ(x), βxEyD

(
1l + g(x)

)
, h(x, y, z)

)
, (23)

where

• x ∈ Cs, y ∈ Cp, and z ∈ Cd−(s+p);

• γ ∈ (C∗)s and β ∈ (C∗)p;

• P ∈ M(s× s,N) is a permutation matrix, E ∈ M(s× p,N) and D ∈ M(p× p,N) with
detD 6= 0;

• σ : (Cs, 0)→ (Cs, 0), g : (Cs, 0)→ (Cp, 0) and h : (Cd, 0)→ (Cd−(s+p), 0);

• {y1l = 0} ⊆ C(f∞) ⊆ {x1ly1l = 0};

• h|{x=y=0} has nilpotent linear part;

• σ is a polynomial map with only primary resonant monomials,

• g is a polynomial map with only secondary resonant monomials.

Proof. We first prove in Step 1 the formal counterpart of this theorem, and then we will deal
with the convergence of the formal power series involved in Step 2.

(Step 1). First of all, we can suppose that f is of the form (21), with h|{x=y=0} that has a
nilpotent lower triangular linear part.

We want to conjugate f with a map f̃ : (Cd, 0) → (Cd, 0) of the form (23) (with g̃ and h̃
instead of g and h respectively).

Let us consider a local diffeomorphism Φ : (Cd, 0)→ (Cd, 0) of the form

Φ(x, y, z) =
(
x, y
(
1l + φ(x, y, z)

)
, z
)

,

with φ : (Cd, 0)→ (Cp, 0) a formal map.

Considering the conjugacy relation Φ ◦ f = f̃ ◦ Φ for the coordinate y, we get

y ◦ Φ ◦ f(x, y, z) = βxEyD
(
1l + g(x, y, z)

)(
1l + φ ◦ f(x, y, z)

)
y ◦ f̃ ◦ Φ(x, y, z) = βxEyD

(
1l + φ(x, y, z)

)D(
1l + g̃(x)

)
.

Hence we have to solve(
1l + g(x, y, z)

)(
1l + φ ◦ f(x, y, z)

)
=
(
1l + φ(x, y, z)

)D(
1l + g̃(x)

)
. (24)

Let us denote by I and II the left and right hand side of (24) respectively.
We want now to expand in formal power series (24) and to solve it defining (inductively) the

coefficients of φ and g̃. Set w = (x, y, z) and
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• x = (x1, . . . , xs);

• σ = (σ1, . . . , σs) and γkxk + σk(x) =
∑n

σknxx
nx for 1 ≤ k ≤ s;

• φ = (φ1, . . . , φp) and 1 + φk(w) =
∑
n φ

k
nw

n for 1 ≤ k ≤ p;

• I =
(
I1, . . . , Ip

)
and Ik(w) =

∑
n Iknwn for 1 ≤ k ≤ p, and analogously for II;

• g = (g1, . . . , gp) and 1 + gk(w) =
∑
n g

k
nw

n for 1 ≤ k ≤ p;

• g̃ = (g̃1, . . . , g̃p) and 1 + g̃k(x) =
∑
nx
g̃knxx

nx for 1 ≤ k ≤ p;

• h = (h1, . . . , hd−(s+p)) and hk(w) =
∑
n h

k
nw

n for 1 ≤ k ≤ d− (s+ p).

Again, we split multi-indices n = (nx, ny, nz) ∈ Nd, where x is the projection onto the
coordinate x, and similarly for other coordinates. In particular nx ∈ Ns, ny ∈ Np and nz ∈
Nd−(s+p).

By direct computations (see Remarks 2.10 and 2.11), we get

Ik =
(
1 + gk(w)

) ∑
i∈Nd

[
φki
(
γxP + σ(x)

)ix (
βxEyD

(
1l + g(w)

))iy
(h(w))

iz
]

=
∑
i∈Nd

φki β
iyxEiyyDiy

 ∑
I∈Ns(ix)

σIx
|I|

∑
J∈N (iy+ek)

gJw
|J|

∑
K∈N (iz)

hKw
|K|

 (25)

IIk =
(
1l + φ(w)

)Dek ∑
j∈Ns

g̃kj x
j =

∑
H∈N (Dek)

φHw
|H|
∑
j∈Ns

g̃kj x
j , (26)

for k = 1, . . . , p, where ek denotes the vector in Np with 1 in the k-th position, and 0 elsewhere.
Expressing explicitly the coefficients of Ik and IIk expanded in formal power series, from (25)

and (26) respectively we obtain:

Ikn =
∑
i∈Nd

I∈Ns(ix),J∈N (iy+ek),K∈N (iz)
Cond1

φki β
iyσIgJhK , IIkn =

∑
j∈Ns

H∈N (Dek)
Cond2

g̃kj φH ,

where

Cond1 =


Eiy + |I|+ |J |x + |K|x = nx
Diy + |J |y + |K|y = ny
|J |z + |K|z = nz

,

and

Cond2 =


j + |H|x = nx
|H|y = ny
|H|z = nz

.

We want to solve the equation
Ekn := IIkn − Ikn = 0 (27)

for every k and n, with respect to the coefficients φkn of φ and g̃knx of g̃.
We recall the partial order and the total order on indices in Nd that we need to make com-

putations. Set n = (n1, . . . , nd) and m = (m1, . . . ,md).
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Partial order �: we say that m � n iff we have mk ≤ nk for every k = 1, . . . , d.

Total order ≤: we say that m ≤ n iff (|m| ,m1, . . . ,md) ≤lex (|n| , n1, . . . , nd), where ≤lex is the
lexicographic order (on Nd+1).

Definition 3.8. Let k ∈ {1, . . . , p} be an integer and n be a multi-index (in Nd or Ns). We call
weight of (k, n) the value

weight(k, n) := |n| ∈ N.

As in Step 1 of the proof of Theorem 2.7, the notation

l. o. t.|n|(φ, g̃)

stands for a suitable polynomial in φlm and g̃lmx satisfying

weight(l,m) < |n|.

We shall also omit g̃ when the polynomial does not depend on any coefficient g̃lmx .

Notice that the definition of weight here is slightly different from the one given by Defini-
tion 2.13. Still, we have that for every W ∈ N, there are only finitely many (k, n) such that
weight(k, n) ≤W .

Lemma 3.9. For every k = 1, . . . , p and n 6= 0 we have

IIkn = δ0
nyδ

0
nz g̃

k
nx +

p∑
l=1

dkl φ
l
n + l. o. t.|n|(φ, g̃), (28)

where δ denotes the Kronecker’s delta function and D = (dkl ).

Proof. Set W = |n|. From the first equation of Cond2 we have j � nx. Hence the only term of
the form g̃kj whose weight is ≥ W is given by j = nx, when ny = 0 and nz = 0. In this case,

|H| = 0, and φH = 1 (being φk0 = 1 for k = 1, . . . p). This gives the first term of (28).
Since |H| � n, the only terms φlm with weight(l,m) ≥W that appear are when m = n, and

H =
(

0, . . . , 0︸ ︷︷ ︸
dk1

| · · · | 0, . . . , 0, n, 0, . . . , 0︸ ︷︷ ︸
dkl

| · · · | 0, . . . , 0︸ ︷︷ ︸
dkp

)
.

Since we have dkl choices for where to put n, (28) follows.

Lemma 3.10. For every k = 1, . . . , p and n 6= 0 we have

Ikn = δ0
nyδ

0
nzγ

P−1nxφk(P−1nx,0,0) + l. o. t.|n|(φ). (29)

Proof. Thanks to Lemma 2.12, we get that σI 6= 0 only if |I| ≥ ix. Lemma 2.12.(i) says that
hK 6= 0 only if |K| > (0, 0, iz) when iz 6= 0. Moreover, we have |iy| < |Diy| if iy 6= 0. Then we
have

|i| = |ix|+ |iy|+ |iz| ≤ ||I||+ |iy|+ ||K|| = |n| − ||J || − |Eiy| − |Diy|+ |iy| ≤ |n| ,

where the equality can hold only when iy = 0 and ||J || = 0. Suppose this is the case; then J is
made by just one column (in position k) made by 0’s, and hence gJ = gk0 = 1. From the first
equation of Cond1 we also get that ix ≤ |I| � nx. It follows that the only terms φki whose weight
is ≥ |n| appear when |ix| = |nx|, |I| = nx and ny = 0.
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In this case (iy = ny = 0, J = 0 ∈ N (ek) and |I| = nx), Cond1 becomes
|K|x = 0
|K|y = 0

|K|z = nz

.

From Lemma 2.12.(i), being |K| = (0, 0, |K|z), it follows that the only term with weight ≥ |n|
appear when in addition iz = nz = 0. In this case K = ∅ and h∅ = 1.

We shall show now that the conditions |I| = nx and σI 6= 0 are satisfied by a unique I ∈ Ns(ix),

and in this case σI = γP
−1nx .

Let us split again x = (u, v), σ = (0, ρ), P = Diag(B, Id) and γ = (α, µ) as in Remark 3.1.
The condition |I| = nx becomes {

Biu = nu
|I|v = nv

and σI = αiuρIv . Then iu = B−1nu, and thanks to Lemma 2.12.(ii) we get ρIv = µnv .
Writing again with the previous notations, we get the statement.

Set En := (E1
n, . . . ,Epn), φn := (φ1

n, . . . , φ
p
n) and g̃nx := (g̃1

nx , . . . , g̃
p
nx). Thanks to Lemmas 3.9

and 3.10, En = 0 becomes

φnD + δ0
nyδ

0
nz

(
g̃nx − γnxφn

)
= l. o. t.|n|(φ, g̃). (30)

This affine equation, where the unknowns are φn and g̃nx , has always a solution. At this point

we conjugated f to a map f̃ as in (23), but with g̃ : (Cs, 0)→ (Cp, 0) a (vector of) formal power
series. Next we show that we can solve (30) and get g̃ polynomial with only secondary resonant
monomials.

We solve En = 0 inductively on |n| as follows.

If |n| = 0, i.e., if n = 0, we set φ0 := 1l and g̃0x = 1l.

Set 0 < W ∈ N, and suppose that φm and g̃mx are known for |m| < W . We want to solve (30)
for |n| = W .

Notice that l. o. t.|n|(φ, g̃) is a polynomial that depend on φlm and g̃lmx only for weights strictly
less than W . Hence thanks to the induction hypothesis, l. o. t.|n|(φ, g̃) is a known value in Cp.

Suppose (ny, nz) 6= (0, 0). Then (30) becomes

φnD = l. o. t.|n|(φ, g̃).

and being detD 6= 0, there exists a unique φn ∈ Cp that solves the equation.

Suppose (ny, nz) = (0, 0). Then (30) becomes

− φnD + γP
−1nxφ(P−1nx,0,0) = g̃nx + l. o. t.|n|(φ, g̃). (31)

Suppose that nu = P−1nu: we have two cases.
Suppose D−γnxId is invertible, i.e., xnx is not secondary resonant. Then we can put g̃nx = 0

and there exists a unique φn ∈ Cp that solves the equation.
Suppose D− γnxId is not invertible, i.e., xnx is secondary resonant. Then we can put φn = 0

and there exists a unique g̃nx ∈ Cp that solves the equation.

In the general case, let η̃ be the smallest number in N∗ such that nx = P η̃nx. Set n
(l)
x := P−lnx

for l = 0, . . . , η̃ − 1. We consider the equation (31) for nx, n
(1)
x , . . . , n

(η̃−1)
x simultaneously.

21



We get the following (block) linear system:

φ(nx,0,0)

φ
(n

(1)
x ,0,0)

...

...
φ

(n
(η̃−1)
x ,0,0)



T


−D 0 · · · 0 γnx Idp

γn
(1)
x Idp −D 0

. . . 0

0 γn
(2)
x Idp

. . .
. . .

...
...

. . .
. . . −D 0

0 · · · 0 γn
(η̃−1)
x Idp −D


=



g̃nx
g̃
n
(1)
x

...

...
g̃
n
(η̃−1)
x



T

+ l. o. t. , (32)

where
l. o. t. = l. o. t.|n|(φ, g̃).

for each coordinate.
Let us consider the linear combination of the columns (numbered from 1 to η̃) of the linear

system (32), where the l-th column is multiplied by

∆l :=

(
l−1∏
h=1

γn
(h)
x

)
Dη̃−l.

Then we get (
−Dη̃ +

η̃−1∏
l=0

γn
(l)
x Idp

)
φ(nx,0,0) =

η̃∑
l=1

∆lg̃n(l−1)
x

+ l. o. t. .

Since detD 6= 0, it follows that the linear system (32) is invertible iff nx is not secondary resonant.
In this case we can put g̃

n
(l)
x

= 0 for every l = 0, . . . , η̃−1, and there exist (unique) φ
(n

(l)
x ,0,0)

∈
Cp for l = 0, . . . , η̃ − 1 that satisfy (32).

If nx is secondary resonant we can still set any value for φ
(n

(l)
x ,0,0)

(for example, all equal to

0), and find unique g̃
n
(l)
x
∈ Cp for every l = 0, . . . , η̃ − 1 that satisfy (32).

As in the proof of Theorem 2.7, we have defined the conjugation Φ as an invertible formal
map so we can then define h̃ such that the conjugacy relation (24) holds for all coordinates.

(Step 2). The following estimations are quite standard. Pick 0 < Λ < 1 such that Λ >
specrad(df0) the spectral radius of the differential df0 of f at 0, and take N big enough such that∣∣D−1

∣∣ΛN < 1 and no secondary resonances xn appear for |n| ≥ N .
For proving the formal result, we introduced a weight, and noticed that for every W ∈ N,

there are only finitely many (k, n) such that weight(k, n) ≤W . It follows that there exist M > 0
and a polynomial (hence holomorphic) change of coordinates that conjugates f with a map of
the form

(x, y, z) 7→
(
γxP + σ(x), βxEyD

(
1l + g(x) +R(x, y, z)

)
, h(x, y, z)

)
, (33)

with the same conditions as for (23) and R : (Cd, 0)→ (Cp, 0) such that

‖R(w)‖ ≤M ‖w‖N

for a suitable M > 0 and ‖w‖ small enough, where w = (x, y, z).
We can hence suppose that f is of the form (33), and try to kill the map R: we look for a

conjugacy between f and a map f̃ of the form (23) (with h̃ instead of h).
Let us consider then a local diffeomorphism of the form

Φ(x, y, z) =
(
x, y
(
1l + φ(x, y, z)

)
, z
)

.
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Looking at the conjugacy relation Φ ◦ f = f̃ ◦ Φ at the coordinate y, we get

y ◦ Φ ◦ f(x, y, z) = βxEyD
(
1l + g(x) +R(x, y, z)

)(
1l + φ ◦ f(x, y, z)

)
y ◦ f̃ ◦ Φ(x, y, z) = βxEyD

(
1l + φ(x, y, z)

)D(
1l + g(x)

)
.

Hence we have to solve (
1l + φ(w)

)D
=
(
1l + φ ◦ f(w)

)(
1l + e(w)

)
, (34)

where w = (x, y, z) and

e(x, y, z) =
R(x, y, z)

1l + g(x)
.

In particular we have
‖e(w)‖ ≤ K ‖w‖N

for K > 0 big enough and ‖w‖ small enough.
Equation (34) has an explicit solution, given by

1l + φ(w) =

∞∏
n=1

(
1l + e ◦ f◦n−1(w)

)D−n

;

let us show that this product is convergent.
Thanks to Proposition 1.5, we just need to prove that

∞∑
n=1

(
e ◦ f◦n−1(w)

)
D−n

converges for ‖w‖ small enough.
Notice that for ‖w‖ small enough we have ‖f◦n(w)‖ ≤ Λn ‖w‖.
Then we have∥∥∥∥∥
∞∑
n=1

(
e ◦ f◦n−1(w)

)
D−n

∥∥∥∥∥ ≤
∞∑
n=1

∣∣D−n∣∣ ∥∥e ◦ f◦n−1(w)
∥∥ ≤ ∞∑

n=1

∣∣D−1
∣∣nKΛ(n−1)N ‖w‖N ,

that converges being
∣∣D−1

∣∣ΛN < 1.

Remark 3.11. Let us take a rigid germ that has a non-injective internal action: we can write it
in the form (21), with detD = 0 (suppose also P = Id for simplicity). We can try to kill, at least
formally, as many coefficients of g as possible, as we did in the case of injective internal action.
Proceeding as in the proof of Theorem 3.7, we get an equation to solve of the form (30). When
ny or nz are different from 0, the linear system becomes

φnD = l. o. t.|n|(φ, g̃),

that is not invertible, being detD 6= 0. So in general, besides the secondary resonances already
described, some other resonances of the form xnxynyznz with (ny, nz) 6= (0, 0) will appear.

Remark 3.12. Theorem 3.7 holds over any complete metrized field K of characteristic 0 (pro-
vided that all eigenvalues of df0 belong to K). The reasons are the same as for Theorem 2.7 (see
Remark 2.16). The theorem fails, already for d = p = 1, over a field of positive characteristic.
In fact, although D is invertible as a matrix with integer (rational) coefficients, it could not be
invertible when seen as a matrix with coefficients in K. If this is the case, equation (30) could
not be solved in general.
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4 Rigid Germs with s+ p = d− 1

Theorem 3.7 gives in particular the complete classification of contracting rigid germs with injective
internal action such that s + p = d, where as before s is the number of non-zero eigenvalues of
df0, and p is the number of non-periodic components of C(f∞).

In this section we shall deal with the case of a contracting rigid germ with injective internal
action such that s+ p = d− 1. Thanks to Theorem 3.7 we can holomorphically conjugate f with
a map of the form (23), with h : (Cd, 0)→ (C, 0) and z ∈ C.

In this case we can say more, and get a similar result of what happens in the 2-dimensional
case (see [Fav00, pp. 491–494]).

Theorem 4.1. Let f : (Cd, 0) → (Cd, 0) be a contracting rigid germ with injective internal
action, and such that s+ p = d− 1, where s is the number of non-zero eigenvalues of df0, and p
is the number of non-periodic components of C(f∞). Then f is analytically conjugated to a map
of the form

(x, y, z) 7→
(
γxP + σ(x), βxEyD

(
1l + g(x)

)
, νxlymz + ω(x, y)

)
, (35)

where

• x ∈ Cs, y ∈ Cp and z ∈ C;

• γ ∈ (C∗)s, β ∈ (C∗)p and ν ∈ C∗;

• P ∈M(s× s,N) is a permutation matrix, E ∈M(s× p,N), D ∈M(p× p,N) and (l,m) ∈
Ns × Np \ {(0, 0)};

• σ : (Cs, 0)→ (Cs, 0), g : (Cs, 0)→ (Cp, 0) and ω : (Cd−1, 0)→ (C, 0);

• {y1l = 0} ⊆ C(f∞) ⊆ {x1ly1l = 0};

• σ is a polynomial map with only primary resonant monomials;

• g is a polynomial map with only secondary resonant monomials;

• ω is analytic.

For d ≥ 3 we cannot get in general ω polynomial (see Remark 4.4).

Remark 4.2. Let us suppose that f : (Cd, 0) → (Cd, 0) is a contracting rigid germ as in (23)
and satisfying the hypotheses of Theorem 4.1.

Let us split again x = (u, v) (see Remark 3.1), with u ∈ Cr and v ∈ Ce: then f is of the form

(u, v, y, z) 7→
(
αuB , µv + ρ(u, v), βuCyD

(
1l + g(u, v)

)
, h(u, v, y, z)

)
. (36)

If we compute det df , we get

det df = uayb
∂h

∂z
U(w),

for suitable a ∈ Nr, b ∈ Np and a holomorphic map U : Cd → C with U(0) 6= 0, where
w = (u, v, y, z).

Since C(f∞) = {u1ly1l = 0}, we get

∂h

∂z
= uluymV (w),
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with lu ∈ Nr, m ∈ Np and V (0) 6= 0. Integrating, we obtain

h(u, v, y, z) = νuluymz
(
1 + ε(u, v, y, z)

)
+ ω(u, v, y),

with ν ∈ C∗, ε : (Cd, 0)→ (C, 0) and ω : (Cd−1, 0)→ (C, 0) (and (lu,m) 6= 0).
As in Remark 3.1, to simplify notations we use x instead of (u, v); summing up, we can

suppose that f is of the form

(x, y, z) 7→
(
γxP + σ(x), βxEyD

(
1l + g(x)

)
, νxlymz

(
1 + ε(x, y, z)

)
+ ω(x, y)

)
, (37)

with the same conditions as in Theorem 4.1 and ε : (Cd, 0)→ (C, 0).
Theorem 4.1 says exactly then that we can kill ε.

Proof. Thanks to Remark 4.2, we can suppose that f is of the form (37). We want to conjugate

f with a map f̃ : (Cd, 0)→ (Cd, 0) of the form (35) (with ω̃ instead of ω).
We shall consider a local diffeomorphism of the form

Φ(w) =
(
x, y, z

(
1 + φ(w)

))
,

where w = (x, y, z), and φ : (Cd, 0)→ (C, 0).

Considering the conjugacy relation Φ ◦ f = f̃ ◦ Φ for the last coordinate z, we get

z ◦ Φ ◦ f(w) = νxlymz
(
1 + ε(w)

)(
1 + φ ◦ f(w)

)
+ ω(x, y)

(
1 + φ ◦ f(w)

)
(38)

z ◦ f̃ ◦ Φ(w) = νxlymz
(
1 + φ(w)

)
+ ω̃(x, y).

We want now to split (38) in two parts, one divisible by z, and the other that depends only on
(x, y). Using the equivalence∫ 1

0

d

dτ

(
φ ◦ f(x, y, τz)

)
= φ

(
f(x, y, z)

)
− φ

(
f(x, y, 0)

)
(39)

and by direct computation we get

νxlymz

((
1 + ε(w)

)(
1 + φ ◦ f(w)

)
+ ω(x, y)

∫ 1

0

∂φ

∂z

(
f(x, y, τz)

)(
1 + ζ(x, y, τz)

)
dτ

)
+ ω(x, y)

(
1 + φ ◦ f(x, y, 0)

)
,

where ζ : (Cd, 0)→ (C, 0) is given by

ζ(w) := ε(w) + z
∂ε

∂z
(w).

The conjugacy relation then gives two equations to solve (comparing the part divisible by z and
the one that does not depend on z), with respect to φ and ω̃:

ε(w) + Tφ(w) = φ(w), (40)

ω(x, y)
(
1 + φ ◦ f(x, y, 0)

)
= ω̃(x, y), (41)

where ψ 7→ Tψ is the functional given by

(Tψ)(w) :=
(
1 + ε(w)

)
ψ ◦ f(w) + ω(x, y)

∫ 1

0

∂ψ

∂z

(
f(x, y, τz)

)(
1 + ζ(x, y, τz)

)
dτ . (42)
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Equation (40) has a solution given by

φ(w) =

∞∑
n=0

T ◦nε(w),

we refer to the proof in [Fav00] in the 2-dimensional case for convergence estimates, that rely on
Cauchy’s estimates. Once that φ is defined as a holomorphic germ that satisfies (40), we can use
(41) to define ω̃, and we are done.

Remark 4.3. Theorem 4.1 tells us that, given a rigid germ f : (Cd, 0) → (Cd, 0) of the form
(37), we can change coordinates holomorphically in order to have that the last coordinate of f is
an affine function on z (with coefficients that depend on the other coordinates x, y).

Remark 4.4. While studying rigid germs under the hypothesis of Theorem 4.1, following the
argument used in the classification of 2-dimensional contracting rigid germs (see [Fav00, pp.
494–498]), we should consider change of coordinates of the form

Φ(x, y, z) =
(
x, y, z + φ(x, y)

)
(43)

(we are using the notations of Theorem 4.1). In dimension 2, one can obtain (holomorphically)
that ω is a polynomial map in (x, y) = w1. This is no longer true in general, not even formally,
in higher dimensions. Indeed, by computing the coefficients in the conjugacy relation, one can
show that there can be infinitely many coefficients of ω that cannot be killed up to a change of
coordinates of the form (43). It can be also shown that, in order to maintain the normal form as
in (35), one can (basically) consider only change of coordinates such as (43).

Remark 4.5. Theorem 4.1 holds over any complete metrized field K of characteristic 0 (provided
as always that all eigenvalues of df0 belong to K, see Remark 2.1). Indeed, in the whole proof we
never take roots of polynomials, so the argument works also for non-algebraically closed fields.

In the proof of 4.1, we define and estimate an operator T given by (42). To define T we
use integrals, so convergence could fail for the presence of (big) integers as denominators of the
coefficients of the formal power series involved. But thanks to (39), we can write the integral ap-
pearing in (42) as a difference of convergent formal power series. Moreover, to prove convergence
we use Cauchy’s estimates, that are even stronger in the non-archimedean setting. It follows that
the argument works also for non-archimedean fields.

5 Rigid Germs in Dimension 3

With Table 1 we summarize the normal forms obtained for a contracting rigid germ f : (C3, 0)→
(C3, 0), with the assumption of injective internal action. We set q the number of irreducible
components of C(f∞), r the number of periodic components, s the number of non-zero eigenvalues
of df0, η ∈ N∗ the order of (the matrix associated to) the periodic components of C(f∞). We
shall denote by m = 〈x, y, z〉 the maximal ideal of C[[x, y, z]]. We shall also denote by λ1, λ2, λ3

the eigenvalues of df0 ordered as following:∣∣λ1
∣∣ ≥ ∣∣λ2

∣∣ ≥ ∣∣λ3
∣∣ .

Remark 5.1. By performing another change of coordinates of the form (x, y, z) 7→ (κ1x, κ2y, κ3z),
with κ1, κ2, κ3 ∈ C∗, we can say a little more on coefficients that arise in the normal forms.
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Table 1: Contracting rigid germs for d = 3.

q r s C(f∞) Normal form

0 0 3 ∅
(
λ1x, λ2y + ρ1(x), λ3z + ρ2(x, y)

)
, the Poincaré-Dulac normal form.

1 0 0 {x = 0}
(
βxd, ?, ?

)
, d ≥ 2, β ∈ C∗.

1 {y = 0}
(
λ1x, yd, νymz + ω(x, y)

)
, d ≥ 2, m ≥ 1, ν ∈ C∗, ω(x, y) − εy ∈ m2

for a suitable ε ∈ {0, 1}.
2 {z = 0}

(
λ1x, λ2y+ρxn, zd

)
, ρ ∈ {0, 1} if (λ1)n = λ2, ρ = 0 otherwise; d ≥ 2.

1 1 {x = 0}
(
λ1x, ?, ?

)
.

2 {x = 0}
(
λ1x, λ2y + ρxn, xlz + ω(x, y)

)
, ρ ∈ {0, 1} if (λ1)n = λ2, ρ = 0

otherwise;

{y = 0}
(
λ1x, λ2y, ylz + ω(x, y)

)
;

in both cases, l ≥ 1, ω ∈ m2.

2 0 0 {xy = 0}
(
β1xd

1
1yd

1
2 , β2xd

2
1yd

2
2 , νxlymz + ω(x, y)

)
, β1, β2 ∈ C∗, d1

1d
2
2 6= d2

1d
1
2,

d2
1 + d2

2 ≥ 2, max{d1
1 − 1, d1

2} ≥ 1, ν ∈ C∗, l +m ≥ 1, ω ∈ m2.

1 {yz = 0}

(
λ1x, β1yd

1
1zd

1
2(1 + gxn), β2yd

2
1zd

2
2

)
, β1, β2 ∈ C∗, d1

1d
2
2 6= d2

1d
1
2,

max{d1
1 − 1, d1

2} ≥ 1, g ∈ {0, 1} if
(
(λ1)n − d1

1

)(
(λ1)n − d2

2

)
= d2

1d
1
2,

g = 0 otherwise.

1 1 {xy = 0}
(
λ1x, xcyd, νxlymz + ω(x, y)

)
, c+ d ≥ 2, l +m ≥ 1, c+ l ≥ 1, d ≥ 1,

d+m ≥ 2, ν ∈ C∗, ω(x, y)− εy ∈ m2 for a suitable ε ∈ {0, 1}.
2 {xz = 0}

(
λ1x, λ2y + ρxn, xczd

)
, ρ ∈ {0, 1} if (λ1)n = λ2, ρ = 0 otherwise;

{yz = 0}
(
λ1x, λ2y, yczd

)
;

in both cases, c ≥ 1, d ≥ 2.

2 2 {xy = 0}
η = 1:

(
λ1x, λ2y, xlymz + ω(x, y)

)
;

η = 2:
(
α1y, α2x, xlymz + ω(x, y)

)
, α1α2 = −λ1λ2;

in both cases, l,m ≥ 1, ω ∈ m2.

3 0 0 {xyz = 0}
(
β1xd

1
1yd

1
2zd

1
3 , β2xd

2
1yd

2
2zd

2
3 , β3xd

3
1yd

3
2zd

3
3

)
, β1, β2, β3 ∈ C∗, D := (dji )

such that detD 6= 0, dj1 + dj2 + dj3 ≥ 2 for j = 1, 2, 3.

1 1 {xyz = 0}

(
λ1x, β1xc1yd

1
1zd

1
2(1 + gxn), β2xc2yd

2
1zd

2
2

)
, β1, β2 ∈ C∗, d1

1d
2
2 6= d2

1d
1
2,

c1 +c2 ≥ 1, dj1 +dj2 ≥ 2 for j = 1, 2, g ∈ {0, 1} if
(
(λ1)n−d1

1

)(
(λ1)n−

d2
2

)
= d2

1d
1
2, g = 0 otherwise.

2 2 {xyz = 0}
η = 1:

(
λ1x, λ2y, xc1yc2zd

)
;

η = 2:
(
α1y, α2x, xc1yc2zd

)
, α1α2 = −λ1λ2;

in both cases, c1, c2 ≥ 1, d ≥ 2.
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• for q = 2, r = s = 0, we can put 2 coefficients among β1, β2, ν equal to 1 if the matrix(
d1

1 − 1 d2
1 l

d1
2 d2

2 − 1 m

)
has rank 2 (the ones associated to a 2× 2 invertible submatrix), otherwise we can just put
one of them equal to 1 (for example ν = 1).

• for q = 2, r = s = 1, we can put ν = 1 if

det

(
c l

d− 1 m

)
6= 0.

• for q = 2, r = 0, s = 1, or q = 3, r = s = 0, 1, if we put D = (dji ), then we can put βj = 1
for as many j as the rank of D − Id.

In this classification, two cases are not completely understood: q = 1 and r = s = 0, 1,
i.e., when p + s = 1. If we consider the action of f on C(f∞) = {x = 0}, we can have two
behaviors: either f({x = 0}) = 0, or f({x = 0}) is a (not necessarily smooth) curve in {x = 0}.
The following example will show that this second case can happen for every irreducible curve in
{x = 0}.

Example 5.2. Let Ψ : (C, 0)→ (C2, 0) be the parametrization of a curve C, of the form

Ψ(t) =
(
tm, ψ(t)

)
,

where ψ : (C, 0)→ (C, 0) is a holomorphic map with multiplicity m(ψ) ≥ m at 0.
Consider the map f : (C3, 0)→ (C3, 0) given by

(x, y, z) 7→
(
λxa, xy + zm, xz + xyξ(z) + ψ(z)

)
,

where a ≥ 1, λ ∈ C∗ (and |λ| < 1 if a = 1 to have a contracting germ), and ξ : (C, 0) → C is
given by

ξ(z) :=
ψ′(z)

mzm−1
.

Computing the Jacobian, we get

det df = λaxa+1
(
1 + yξ′(z)

)
,

and hence f is a contracting rigid germ such that f({x = 0}) = C.

Example 5.2 shows how, to study the classification of the missing cases, we have to take care
of the geometry of the images of C(f∞), and maybe make some additional assumptions to get
some classification results.

With the next example, we shall show another phenomenon that can appear.

Example 5.3. Consider the map f : (C3, 0)→ (C3, 0) given by

(x, y, z) 7→
(
λxa, x(1 + y2), xyz2

)
,

where a ≥ 1 and λ ∈ C∗ (and |λ| < 1 if a = 1 to have a contracting germ).
Then C(f∞) = {xyz = 0}, while

f(0, y, z) = (0, 0, 0),

f(x, 0, z) = (λxa, x, 0),

f(x, y, 0) =
(
λxa, x(1 + y2), 0

)
,

28



hence f(C(f∞)) ⊆ {z = 0} ⊂ C(f∞), and f is rigid.
But by direct computation we get that f◦n({y = 0}) =: Cn form a sequence of distinct curves

in {z = 0} ∼= (C2, 0).
The geometry of

⋃
n Cn, or rather of ∆ \

⋃
n Cn where ∆ is a small polydisc centered in 0,

should be taken into account to find a classification up to holomorphic (or even formal) change
of coordinates.
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