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An introduction to
irrationality and transcendence methods.
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Lecture 5 11

Most part of this section if from [27].

5 Conjectures and open problems

We already met a number of open problems in these notes, in particular in
§ 1.1.1. We collect further conjectures in this field, but this is only a very
partial list of questions which deserve to be investigated further.

Part of this section if from [W 2004], especially § 3.
When K is a field and k a subfield, we denote by trdegkK the transcendence

degree of the extension K/k. In the case k = Q we write simply trdegK (see
[La 1993] Chap. VIII, § 1).

5.1 Schanuel’s Conjecture and some consequences

Schanuel’s Conjecture is a simple but far-reaching statement – see the historical
note to Chap. III of [La 1966].

Conjecture 5.1 (Schanuel). Let x1, . . . , xn be Q-linearly independent complex
numbers. Then the transcendence degree over Q of the field

Q
(
x1, . . . , xn, e

x1 , . . . , exn
)

is at least n.

The special case where x1, . . . , xn are all algebraic is just Theorem 2.41. This
is almost the single case where the conjecture is known to be true.

According to S. Lang ([La 1966] p. 31): “From this statement, one would
obtain most statements about algebraic independence of values of et and log t
which one feels to be true”. See also [La 1971] p. 638–639.

A detailed discussion of consequences of Schanuel’s Conjecture is given by
P. Ribenboim in [Ri 2000], Chap 10 What kind of Number is 2

√
2?, § 10.7

Transcendental Numbers, § 10.7.G The conjecture of Schanuel.
11 http://www.math.jussieu.fr/∼miw/articles/pdf/AWSLecture5.pdf
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Exercise 5.2. 1) Deduce from Schanuel’s Conjecture that the following numbers
are algebraically independent

e, π, eπ, log π, ee, πe, ππ, log 2, 2π, 2e, 2i, ei, πi, log 3, (log 2)log 3, 2
√

2.

2) Define K0 to be the field of algebraic numbers. Inductively, for n ≥ 1, define
Kn as the algebraic closure of the field generated over Kn−1 by the numbers ex,
where x ranges over Kn−1. Let Ω be the union of Kn, n ≥ 0. Deduce from
Schanuel’s Conjecture that the numbers

π, log π, log log π, log log log π, . . .

are algebraically independent over Ω.
(See [La 1966]).
3) Get a (conjectural) generalisation of question 2) involving the field Ω− defined
as follows. Let E0 = Q. Inductively, for n ≥ 1, define Ln as the algebraic closure
of the field generated over Ln−1 by the numbers y, where y ranges over the set of
complex numbers such that ey ∈ Ln−1. Define Ω− as the union of Ln, n ≥ 0.‘

The following statements [Ge 1934] are consequences of Conjecture 5.1.

Question 5.3. Let β1, . . . , βn be Q-linearly independent algebraic numbers and
let logα1, . . . , logαm be Q-linearly independent logarithms of algebraic numbers.
Then the numbers

eβ1 , . . . , eβn , logα1, . . . , logαm

are algebraically independent over Q.

Question 5.4. Let β1, . . . , βn be algebraic numbers with β1 6= 0 and let logα1, . . . , logαm
be logarithms of algebraic numbers with logα1 6= 0 and logα2 6= 0. Then the
numbers

eβ1e
β2e

. ..βn−1e
βn

and α
α

. ..αm
2

1

are transcendental, and there is no nontrivial algebraic relation between such
numbers.

A quantitative refinement of Conjecture 5.1 is suggested in [W 1999b] Conjecture
1.4 and reproduced below (Conjecture 5.48).

A quite interesting approach to Schanuel’s Conjecture is given in [Ro 2001a]
where D. Roy states the next conjecture which he shows to be equivalent to
Schanuel’s one. Let D denote the derivation

D =
∂

∂X0
+X1

∂

∂X1

over the ring C[X0, X1]. The height of a polynomial P ∈ C[X0, X1] is defined
as the maximum of the absolute values of its coefficients.
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Conjecture 5.5 (Roy). Let k be a positive integer, y1, . . . , yk complex numbers
which are linearly independent over Q, α1, . . . , αk non-zero complex numbers
and s0, s1, t0, t1, u positive real numbers satisfying

max{1, t0, 2t1} < min{s0, 2s1} and max{s0, s1 + t1} < u <
1
2

(1 + t0 + t1).

Assume that, for any sufficiently large positive integer N , there exists a non-
zero polynomial PN ∈ Z[X0, X1] with partial degree ≤ N t0 in X0, partial degree
≤ N t1 in X1 and height ≤ eN which satisfies∣∣∣∣∣(DkPN)(

k∑
j=1

mjyj ,

k∏
j=1

α
mj
j

)∣∣∣∣∣ ≤ exp(−Nu)

for any non-negative integers k, m1, . . . ,mk with k ≤ Ns0 and max{m1, . . . ,mk} ≤
Ns1 . Then

trdegQ(y1, . . . , yk, α1, . . . , αk) ≥ k.

This work of Roy’s also provides an interesting connection with other open
problems related to the Schwarz Lemma for complex functions of several vari-
ables (see [Ro 2002] Conjectures 6.1 and 6.3).

The most important special case of Schanuel’s Conjecture is the Conjecture
of algebraic independence of logarithms of algebraic numbers.

Conjecture 5.6 (Algebraic Independence of Logarithms of Algebraic Num-
bers). Let λ1, . . . , λn be Q-linearly independent complex numbers. Assume that
the numbers eλ1 , . . . , eλn are algebraic. Then the numbers λ1, . . . , λn are alge-
braically independent over Q.

We are very far from this conjecture. Indeed, it is not yet even known
that there exist at least two algebraically independent logarithms of algebraic
numbers!

An interesting reformulation of Conjecture 5.6 is due to D. Roy [Ro 1995].
Recall that L denotes the Q-vector subspace of λ ∈ C for which eλ is alge-
braic. Instead of looking, for a fixed tuple (λ1, . . . , λn) ∈ Ln, to the condition
P (λ1, . . . , λn) = 0 for some P ∈ Z[X1, . . . , Xn], we fix P ∈ Z[X1, . . . , Xn] and
we consider the set of zeros of P in Ln.

Roy’s statement is:

Conjecture 5.7. For any algebraic subvariety V of Cn defined over the field
Q of algebraic numbers, the set V ∩ Ln is the union of the sets E ∩ Ln, where
E ranges over the set of vector subspaces of Cn which are contained in V .

Such a statement is reminiscent of several of Lang’s conjectures in Diophantine
geometry (e.g., [La 1991] Chap. I, § 6, Conjectures 6.1 and 6.3).

Not much is known about the algebraic independence of logarithms of alge-
braic numbers, apart from the work of D. Roy on the rank of matrices whose
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entries are either logarithms of algebraic numbers, or more generally linear com-
binations of logarithms of algebraic numbers. We refer to [W 2000b] for a de-
tailed study of this question as well as related ones.

Conjecture 5.6 has many consequences. The next three ones are suggested
by the work of D. Roy ([Ro 1989] and [Ro 1990]) on matrices whose entries
are linear combinations of logarithms of algebraic numbers (see also [W 2000b]
Conjecture 11.17, § 12.4.3 and Exercise 12.12).

Consider the Q-vector space L̃ spanned by 1 and L. In other words L̃ is the
set of complex numbers which can be written

β0 + β1 logα1 + · · ·+ βn logαn,

where β0, β1, . . . , βn are algebraic numbers, α1, . . . , αn are non-zero algebraic
numbers, and finally logα1, . . . , logαn are logarithms of α1, . . . , αn respectively.

Conjecture 5.8 (Strong Four Exponentials Conjecture). Let x1, x2 be two Q-
linearly independent complex numbers and y1, y2 be also two Q-linearly indepen-
dent complex numbers. Then at least one of the four numbers x1y1, x1y2, x2y1,
x2y2 does not belong to L̃.

The following special case is also open.

Conjecture 5.9 (Strong Five Exponentials Conjecture). Let x1, x2 be two Q-
linearly independent complex numbers, and y1, y2 be also two Q-linearly inde-
pendent complex numbers. Further, let βij (i = 1, 2, j = 1, 2), γ1 and γ2 be six
algebraic numbers with γ1 6= 0. Assume that the five numbers

ex1y1−β11 , ex1y2−β12 , ex2y1−β21 , ex2y2−β22 , e(γ1x1/x2)−γ2

are algebraic. Then all five exponents vanish,

xiyj = βij (i = 1, 2, j = 1, 2) and γ1x1 = γ2x2.

.

A consequence of Conjecture 5.9 is the solution of the open problem of the
transcendence of the number eπ

2
, and more generally of αlogα = eλ

2
when α is

a non-zero algebraic number and λ = logα a non-zero logarithm of α.
The next conjecture is proposed in [Ro 1995].

Conjecture 5.10 (Roy). For any 4× 4 skew-symmetric matrix M with entries
in L and rank ≤ 2, either the rows of M are linearly dependent over Q, or the
column space of M contains a non-zero element of Q4.

Finally a special case of Conjecture 5.10 is the well known Four Exponentials
Conjecture (see 2.48) due to Schneider ([Schn 1957] Chap. V, end of § 4, Problem
1), S. Lang ([La 1966] Chap. II, § 1; [La 1971] p. 638) and K. Ramachandra
([R 1968 II], § 4).
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Conjecture 5.11 (Four Exponentials Conjecture). Let x1, x2 be two Q-linearly
independent complex numbers and y1, y2 also be two Q-linearly independent com-
plex numbers. Then at least one of the four numbers

exp(xiyj) (i = 1, 2, j = 1, 2)

is transcendental.

We refer to [W 2000b] for a detailed discussion of this topic, including the
notion of structural rank of a matrix and the result, due to D. Roy, that Con-
jecture 5.6 is equivalent to a conjecture on the rank of matrices whose entries
are logarithms of algebraic numbers.

A classical problem on algebraic independence of algebraic powers of alge-
braic numbers has been raised by A. O. Gel’fond [Ge 1949] and Th. Schneider
[Schn 1957] Chap. V, end of § 4, Problem 7. The data are an irrational alge-
braic number β of degree d, and a non-zero algebraic number α with a non-zero
logarithm logα. We write αz in place of exp{z logα}. Gel’fond’s problem is

Conjecture 5.12 (Gel’fond). The two numbers

logα and αβ

are algebraically independent over Q.

Schneider’s question is

Conjecture 5.13 (Schneider). The d− 1 numbers

αβ , αβ
2
, . . . , αβ

d−1

are algebraically independent over Q.

Exercise 5.14. Let α be a non-zero algebraic number and let ` be any non–zero
number such that e` = α. For z ∈ C define αz as exp{z`} (which is the same
as ez`). Show that the following statements are equivalent.
(i) For any irrational algebraic complex number β, the transcendence degree over
Q of the field

Q
{
αβ

i

; i ≥ 1
}

is d− 1 where d is the degree of β.
(ii) For any algebraic numbers β1, . . . , βm such that the numbers 1, β1, . . . , βm
are Q-linearly independent, the numbers αβ1 , . . . , αβm are algebraically indepen-
dent.

The first partial results towards a proof of Conjecture 5.13 are due to
A. O. Gel’fond [Ge 1952]. For the more recent ones, see [NeP 2001], Chap. 13
and 14.

Combining both questions 5.12 and 5.13 yields a stronger conjecture.
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Conjecture 5.15 (Gel’fond-Schneider). The d numbers

logα, αβ , αβ
2
, . . . , αβ

d−1

are algebraically independent over Q.

Partial results are known (see § 2.3.5 and 3.3.3). Large transcendence degree
results deal, more generally, with the values of the usual exponential function at
products xiyj , when x1, . . . , xd and y1, . . . , y` are Q-linearly independent com-
plex (or p-adic) numbers. The six exponentials Theorem states that, in these
circumstances, the d` numbers exiyj (1 ≤ i ≤ d, 1 ≤ j ≤ `) cannot all be
algebraic if d` > d + `. Assuming stronger conditions on d and `, namely
d` ≥ 2(d+ `), one deduces that two at least of these d` numbers exiyj are alge-
braically independent over Q. Other results are available involving, in addition
to exiyj , either the numbers x1, . . . , xd themselves, or y1, . . . , y`, or both. But an
interesting point is that, if we wish to obtain a higher transcendence degree, say
to obtain that three at least of the numbers exiyj are algebraically independent
over Q, one needs a further assumption, which is a measure of linear indepen-
dence over Q for the tuple x1, . . . , xd as well as for the tuple y1, . . . , y`. To
remove this so-called technical hypothesis does not seem to be an easy challenge
(see [NeP 2001] Chap. 14, § 2.2 and § 2.3).

The need for such a technical hypothesis seems to be connected with the
fact that the actual transcendence methods produce not only a qualititative
statement (lower bound for the transcendence degree), but also quantitative
statements (transcendence measures and measures of algebraic independence).

Several complex results have not yet been established in the ultrametric
situation. Two noticeable instances are

Conjecture 5.16 (p-adic analogue of Lindemann-Weierstrass’s Theorem). Let
β1, . . . , βn be p-adic algebraic numbers in the domain of convergence of the p-
adic exponential function expp. Then the n numbers expp β1, . . . , expp βn are
algebraically independent over Q.

Conjecture 5.17 (p-adic analogue of an algebraic independence result of Gel’fond).
Let α be a non-zero algebraic number in the domain of convergence of the p-adic
logarithm logp, and let β be a p-adic cubic algebraic number, such that β logp α
is in the domain of convergence of the p-adic exponential function expp. Then

αβ = expp(β logp α) and αβ
2

= expp(β
2 logp α)

are algebraically independent over Q.

The p-adic analogue of Conjecture 5.6 would solve Leopoldt’s Conjecture
on the p-adic rank of the units of an algebraic number field [Le 1962] (see also
[N 1990] and [Gra 2002]), by proving the nonvanishing of the p-adic regulator.

Algebraic independence results for the values of the exponential function (or
more generally for analytic subgroups of algebraic groups) in several variables
have already been established, but they are not yet satisfactory. The conjectures

110



stated p. 292–293 of [W 1986] as well as those of [NeP 2001] Chap. 14, § 2 are
not yet proved. One of the main obstacles is the above-mentioned open problem
with the technical hypothesis.

The problem of extending the Lindemann-Weierstrass Theorem to commu-
tative algebraic groups is not yet completely solved (see conjectures by P. Philip-
pon in [P 1987]).

Algebraic independence proofs use elimination theory. Several methods are
available; one of them, developed by Masser, Wüstholz and Brownawell, relies
on the Hilbert Nulstellensatz. In this context we quote the following conjecture
of Blum, Cucker, Shub and Smale (see [Sm 1998] and [NeP 2001] Chap. 16,
§ 6.2), related to the open problem “P = NP ?” [J 2000].

Conjecture 5.18 (Blum, Cucker, Shub and Smale). Given an absolute constant
c and polynomials P1, . . . , Pm with a total of N coefficients and no common
complex zeros, there is no program to find, in at most N c step, the coefficients
of polynomials Ai satisfying Bézout’s relation,

A1P1 + · · ·+AmPm = 1.

In connection with complexity in theoretical computer science, W. D. Brow-
nawell suggests investigating Diophantine approximation from a new point of
view in [NeP 2001] Chap. 16, § 6.3.

Complexity theory may be related to a question raised by M. Kontsevich
and D. Zagier in [KZ 2000]. They defined a period as a complex number whose
real and imaginary part are values of absolutely convergent integrals of rational
functions with rational coefficients over domains of Rn given by polynomial
(in)equalities with rational coefficients. Problem 3 in [KZ 2000] is to produce
at least one number which is not a period. This is the analogue for periods of
Liouville’s Theorem for algebraic numbers. A more difficult question is to prove
that specific numbers like

e, 1/π, γ

(where γ is Euler’s constant) are not periods. Since every algebraic number is
a period, a number which is not a period is transcendental.

Another important tool missing for transcendence proofs in higher dimension
is a Schwarz Lemma in several variables. The following conjecture is suggested
in [W 1976], § 5. For a finite subset Σ of Cn and a positive integer t, denote by
ωt(Σ) the least total degree of a non-zero polynomial P in C[z1, . . . , zn] which
vanishes on Σ with multiplicity at least t,(

∂

∂z1

)τ1
· · ·
(

∂

∂zn

)τn
P (z) = 0,

for any z ∈ Σ and τ = (τ1, . . . , τn) ∈ Nn with τ1 + · · ·+ τn < t.

Further, when f is an analytic function in an open neighborhood of a closed
polydisc |zi| ≤ r (1 ≤ i ≤ n) in Cn, denote by Θf (r) the average mass of the
set of zeroes of f in that polydisc (see [BoL 1970]).
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Conjecture 5.19. Let Σ be a finite subset of Cn, and ε be a positive number.
There exists a positive number r0(Σ, ε) such that, for any positive integer t and
any entire function f in Cn which vanishes on Σ with multiplicity ≥ t,

Θf (r) ≥ ωt(Σ)− tε for r ≥ r0(Σ, ε).

The next question is to compute r0(Σ, ε). One may expect that for Σ a
chunk of a finitely generated subgroup of Cn, say

Σ =
{
s1y1 + · · ·+ s`y` ; (s1, . . . , s`) ∈ Z`, |sj | ≤ S (1 ≤ j ≤ `)

}
⊂ Cn,

an admissible value for the number r0(Σ, ε) will depend only on ε, y1, . . . , y`,
but not on S. This would have interesting applications, especially in the special
case ` = n+ 1.

Finally we refer to [Chu 1980] for a connection between the numbers ωt(S)
and Nagata’s work on Hilbert’s 14th Problem.

5.2 Multiple Zeta Values

Many recent papers (see for instance [C 2001, T 2002, W 2000c, Zu 2003]) are
devoted to the study of algebraic relations among “multiple zeta values”,∑

n1>···>nk≥1

n−s11 · · ·n−skk ,

where (s1, . . . , sk) is a k-tuple of positive integers with s1 ≥ 2. The main
Diophantine conjecture, suggested by the work of D. Zagier, A. B. Goncharov,
M. Kontsevich, M. Petitot, Minh Hoang Ngoc, K. Ihara, M. Kaneko and others
(see [Z 1994], [C 2001] and [Zu 2003]), is that all such relations can be deduced
from the linear and quadratic ones arising in the shuffle and stuffle products
(including the relations arising from the study of divergent series – see [W 2000c]
for instance). For p ≥ 2, let Zp denote the Q-vector subspace of R spanned by
the real numbers ζ(s) satisfying s = (s1, . . . , sk) and s1 + · · · + sk = p. Set
Z0 = Q and Z1 = {0}. Then the Q-subspace Z spanned by all Zp, p ≥ 0 is a
subalgebra of R, and part of the Diophantine conjecture states

Conjecture 5.20 (Goncharov). As a Q-algebra, Z is the direct sum of Zp for
p ≥ 0.

In other terms, all algebraic relations should be consequences of homoge-
neous ones, involving values ζ(s) with different s but with the same weight
s1 + · · ·+ sk.

Assuming Conjecture 5.20, the question of algebraic independence of the
numbers ζ(s) is reduced to the question of linear independence of the same
numbers. The conjectural situation is described by the next conjecture of Zagier
[Z 1994] on the dimension dp of the Q-vector space Zp.
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Conjecture 5.21 (Zagier). For p ≥ 3,

dp = dp−2 + dp−3,

with d0 = 1, d1 = 0, d2 = 1.

That the actual dimensions of the spaces Zp are bounded above by the in-
tegers which are defined inductively in Conjecture 5.21 has been proved by
T. Terasoma in [T 2002], who expresses multiple zeta values as periods of rel-
ative cohomologies and uses mixed Tate Hodge structures (see also the work
of A.G. Goncharov referred to in [T 2002]). The first values of dp are d2 =
d3 = d4 = 1. There is no single d for which the lower bound d ≥ 2 is known.
The irrationality of ζ(2)ζ(3)/ζ(5) is equivalent to d5 = 2, the irrationality of
(ζ(3)/π3)2 is equivalent to d6 = 2.

Further work on Conjectures 5.20 and 5.21 is due to J. Écalle. In case k = 1
(values of the Riemann zeta function) the conjecture is

Conjecture 5.22. The numbers π, ζ(3), ζ(5), . . . , ζ(2n+1), . . . are algebraically
independent over Q.

So far the only known results on this topic [Fis 2002] are:
• ζ(2n) is transcendental for n ≥ 1 (because π is transcendental and ζ(2n)π−2n ∈

Q),
• ζ(3) is irrational (Apéry, 1978),

and
• For any ε > 0 the Q-vector space spanned by the n+ 1 numbers

1, ζ(3), ζ(5), . . . , ζ(2n+ 1)

has dimension
≥ 1− ε

1 + log 2
log n

for n ≥ n0(ε) (see [Riv 2000] and [BalR 2001]). For instance infinitely many of
these numbers ζ(2n+ 1) (n ≥ 1) are irrational. W. Zudilin proved that at least
one of the four numbers ζ(5), ζ(7), ζ(9), ζ(11) is irrational.
Further, more recent results are due to T. Rivoal and W. Zudilin. For instance,
in a joint paper they have proved that infinitely many numbers among∑

n≥1

(−1)n

(2n+ 1)2s
(s ∈ Z, s ≥ 1)

are irrational, but, as pointed out in § 1.1.1, the irrationality of Catalan’s con-
stant G (1.5) is still an open problem.

It may turn out to be more efficient to work with a larger set of numbers,
including special values of multiple polylogarithms,∑

n1>···>nk≥1

zn1
1 · · · z

nk
k

ns11 · · ·n
sk
k

·
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An interesting set of points z = (z1, . . . , zk) to consider is the set of k-tuples
consisting of roots of unity. The function of a single variable,

Lis(z) =
∑

n1>···>nk≥1

zn1

ns11 · · ·n
sk
k

,

is worth of study from a Diophantine point of view. For instance, Catalan’s
constant (1.5) is the imaginary part of Li2(i),

Li2(i) =
∑
n≥1

in

n2
= −1

8
ζ(2) + iG.

Also no proof for the irrationality of the numbers

ζ(4, 2) =
∑

n>k≥1

1
n4k2

= ζ(3)2 − 4π6

2835
,

Li2(1/2) =
∑
n≥1

1
n22n

=
π2

12
− 1

2
(log 2)2

and

(Ramanujan) Li2,1(1/2) =
∑

n≥k≥1

1
2nn2k

= ζ(3)− 1
12
π2 log 2,

is known so far.
According to P. Bundschuh [Bun 1979], the transcendence of the numbers

∞∑
n=2

1
ns − 1

for even s ≥ 4 is a consequence of Schanuel’s Conjecture 5.1. For s = 2 the sum
is 3/4, and for s = 4 the value is (7/8)− (π/4) cothπ, which is a transcendental
number since π and eπ are algebraically independent over Q (Yu. V. Nesterenko
[NeP 2001]).

Nothing is known about the arithmetic nature of the values of the Riemann
zeta function at rational or algebraic points which are not integers.

5.3 Gamma, Elliptic, Modular, G and E-Functions

The transcendence problem of the values of the Euler Beta function at rational
points was solved as early as 1940, by Th. Schneider. For any rational numbers
a and b which are not integers and such that a+ b is not an integer, the number

V(a, b) =
Γ(a)Γ(b)
Γ(a+ b)
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is transcendental. Transcendence results for the values of the gamma function
itself are not so precise: apart from G. V. Chudnovsky’s results, which imply
the transcendence of Γ(1/3) and Γ(1/4) (and Lindemann’s result on the tran-
scendence of π which implies that Γ(1/2) =

√
π is also transcendental), not

much is known. For instance, as we said earlier, there is no proof so far that
Γ(1/5) is transcendental. This is because the Fermat curve of exponent 5, viz.
x5 + y5 = 1, has genus 2. Its Jacobian is an Abelian surface, and the algebraic
independence results known for elliptic curves like x3 + y3 = 1 and x4 + y4 = 1
which were sufficient for dealing with Γ(1/3) and Γ(1/4), are not yet known for
Abelian varieties (see [Grin 2002]).

Among many open problems (we already quoted Schneider’s second problem
3.18 on the transcendence of the values of the modular function and we intro-
duced a number of conjectures at the end of § 3.3.5; see also for instance 3.35),
we mention

Conjecture 5.23. The three numbers π, Γ(1/3), Γ(1/4) are algebraically in-
dependent.
The four numbers e, π, eπ and Γ(1/4) are algebraically independent.

One might expect that Nesterenko’s results (see [NeP 2001], Chap. 3) on
the algebraic independence of π, Γ(1/4), eπ and of π, Γ(1/3), eπ

√
3 should be

extended as follows.

Conjecture 5.24. At least three of the four numbers

π, Γ(1/5), Γ(2/5), eπ
√

5

are algebraically independent over Q.

So the challenge is to extend Nesterenko’s results on modular functions in
one variable (and elliptic curves) to several variables (and Abelian varieties).

This may be one of the easiest questions to answer on this topic (but it is
still open). But one may ask for a general statement which would produce all
algebraic relations between gamma values at rational points. Here is a conjecture
of Rohrlich [La 1978a] (see also Conjecture 3.8 in § 3). Define

G(z) =
1√
2π

Γ(z).

According to the multiplication theorem of Gauss and Legendre [WhW 1927],
§ 12.15, for each positive integer N and for each complex number x such that
Nx 6≡ 0 (mod Z),

N−1∏
i=0

G

(
x+

i

N

)
= N (1/2)−NxG(Nx).

The gamma function has no zero and defines a map from C\Z to C×. We restrict
that function to Q\Z and we compose it with the canonical map C× → C×/Q×
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- which amounts to considering its values modulo the algebraic numbers. The
composite map has period 1, and the resulting mapping,

G :
Q
Z
\ {0} → C×

Q×
,

is an odd distribution on (Q/Z) \ {0},

N−1∏
i=0

G

(
x+

i

N

)
= G(Nx) for x ∈ Q

Z
\ {0} and G(−x) = G(x)−1.

Rohrlich’s Conjecture ([La 1978a], [La 1978c] Chap. II, Appendix, p. 66) asserts
that

Conjecture 5.25 (Rohrlich). G is a universal odd distribution with values in
groups where multiplication by 2 is invertible.

In other terms, any multiplicative relation between gamma values at rational
points

πb/2
∏
a∈Q

Γ(a)ma ∈ Q

with b and ma in Z can be derived for the standard relations satisfied by the
gamma function. This leads to the question whether the distribution relations,
the oddness relation and the functional equations of the gamma function gen-
erate the ideal over Q of all algebraic relations among the values of G(x) for
x ∈ Q.

In [NeP 2001] (Chap. 3, § 1, Conjecture 1.11) Yu. V. Nesterenko proposed
another conjectural extension of his algebraic independence result on Eisenstein
series of weight 2, 4 and 6:

P (q) = 1− 24
∞∑
n=1

nqn

1− qn
= 1− 24

∞∑
n=1

σ1(n)qn,

Q(q) = 1 + 240
∞∑
n=1

n3qn

1− qn
= 1 + 240

∞∑
n=1

σ3(n)qn,

R(q) = 1− 504
∞∑
n=1

n5qn

1− qn
= 1− 504

∞∑
n=1

σ5(n)qn.

Conjecture 5.26 (Nesterenko). Let τ ∈ C have positive imaginary part. As-
sume that τ is not quadratic. Set q = e2iπτ . Then at least 4 of the 5 numbers

τ, q, P (q), Q(q), R(q)

are algebraically independent.

Finally we remark that essentially nothing is known about the arithmetic
nature of the values of either the beta or the gamma function at algebraic
irrational points.
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A wide range of open problems in transcendental number theory, including
not only Schanuel’s Conjecture 5.1 and Rohrlich’s Conjecture 5.25 on the values
of the gamma function, but also a conjecture of Grothendieck on the periods of
an algebraic variety (see [La 1966] Chap. IV, Historical Note; [La 1971] p. 650;
[And 1989] p. 6 and [Ch 2001], § 3), are special cases of very general conjectures
due to Y. André [And 1997], which deal with periods of mixed motives. A
discussion of André’s conjectures for certain 1-motives related to the products
of elliptic curves and their connections with elliptic and modular functions is
given in [Ber 2002]. Here is a special case of the elliptico-toric Conjecture in
[Ber 2002].

Conjecture 5.27 (Bertolin). Let E1, . . . , En be pairwise non isogeneous elliptic
curves with modular invariants j(Eh). For h = 1, . . . , n, let ω1h, ω2h be a pair of
fundamental periods of ℘h where η1h, η2h are the associated quasi-periods, Pih
points on Eh(C) and pih (resp. dih) elliptic integrals of the first (resp. second)
kind associated to Pih. Define κh = [kh : Q] and let dh be the dimension
of the kh-subspace of C/(khω1h + khω2h) spanned by p1h, . . . , prhh. Then the
transcendence degree of the field

Q
({
j(Eh), ω1h, ω2h, η1h, η2h, Pih, pih, dih

}
1≤i≤rh 1

≤h≤n

)
is at least

2
n∑
h=1

dh + 4
n∑
h=1

κ−1
h − n+ 1.

A new approach to Grothendieck’s Conjecture via Siegel’s G-functions was
introduced in [And 1989] Chap. IX. A development of this method led Y. André
to his conjecture on the special points on Shimura varieties [And 1989] Chap. X,
§ 4, which gave rise to the André–Oort Conjecture [Oo 1997] (for a discussion of
this topic, including a precise definition of “Hodge type”, together with relevant
references, see [Co 2003]).

Conjecture 5.28 (André–Oort). Let Ag(C) denote the moduli space of princi-
pally polarized complex Abelian varieties of dimension g. Let Z be an irreducible
algebraic subvariety of Ag(C) such that the complex multiplication points on Z
are dense for the Zariski topology. Then Z is a subvariety of Ag(C) of Hodge
type.

Conjecture 5.28 is a far-reaching generalization of Schneider’s Theorem on
the transcendence of j(τ), where j is the modular invariant and τ an algebraic
point in the Poincaré upper half plane H, which is not imaginary quadratic
([Schn 1957] Chap. II, § 4, Th. 17). We also mention a related conjecture of
D. Bertrand (see [NeP 2001] Chap. 1, § 4 Conjecture 4.3) which may be viewed
as a nonholomorphic analogue of Schneider’s result and which would answer the
following question raised by N. Katz.

Question 5.29. Assume that a lattice L = Zω1 + Zω2 in C has algebraic
invariants g2(L) and g3(L) and no complex multiplication. Does this implies
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that the number
G∗2(L) = lim

s→0

∑
ω∈L\{0}

ω−2|ω|−s

is transcendental?

Many open transcendence problems dealing with elliptic functions are conse-
quences of André’s conjectures (see [Ber 2002]), most of which are likely to be
very hard. Some of them are Conjectures 3.35, 3.42, 3.43, 3.44, 3.45. The next
one, which is still open, may be easier, since a number of partial results are
already known, as a result of the work of G. V. Chudnovsky and others (see
[Grin 2002]).

Conjecture 5.30. Given an elliptic curve with Weierstrass equation y2 = 4x3−
g2x− g3, a non-zero period ω, the associated quasi-period η of the zeta function
and a complex number u which is not a pole of ℘,

trdegQ
(
g2, g3, π/ω, ℘(u), ζ(u)− (η/ω)u

)
≥ 2.

Given a lattice L = Zω1 + Zω2 in C with invariants g2(L) and g3(L), de-
note by ηi = ζL(z + ωi) − ζL(z) (i = 1, 2) the corresponding fundamental
quasi-periods of the Weierstrass zeta function. Conjecture 5.30 implies that
the transcendence degree over Q of the field Q

(
g2(L), g3(L), ω1, ω2, η1, η2

)
is at

least 2.This would be optimal in the CM case, while in the non CM case, we
expect it to be ≥ 4. These lower bounds are given by the period conjecture of
Grothendieck applied to an elliptic curve.

According to [Di 2000] conjectures 1 and 2, p. 187, the following special
case of Conjecture 5.30 can be stated in two equivalent ways: either in terms of
values of elliptic functions, or in terms of values of Eisenstein series E2, E4 and
E6 (which are P , Q and R in Ramanujan’s notation).

Conjecture 5.31. For any lattice L in C without complex multiplication and
for any non-zero period ω of L,

trdegQ
(
g2(L), g3(L), ω/

√
π, η/

√
π
)
≥ 2.

Conjecture 5.32. For any τ ∈ H which is not imaginary quadratic,

trdegQ
(
πE2(τ), π2E4(τ), π3E6(τ)

)
≥ 2.

Moreover, each of these two statements implies the following one, which is
stronger than one of Lang’s conjectures ([La 1971] p. 652).

Conjecture 5.33. For any τ ∈ H which is not imaginary quadratic,

trdegQ
(
j(τ), j′(τ), j′′(τ)

)
≥ 2.

Further related open problems are proposed by G. Diaz in [Di 1997] and [Di 2000],
in connection with conjectures due to D. Bertrand on the values of the modular
function J(q), where j(τ) = J(e2iπτ ) (see [Bert 1997b] as well as [NeP 2001]
Chap. 1, § 4 and Chap. 2, § 4).
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Conjecture 5.34 (Bertrand). Let q1, . . . , qn be non-zero algebraic numbers in
the unit open disc such that the 3n numbers

J(qi), DJ(qi), D2J(qi) (i = 1, . . . , n)

are algebraically dependent over Q. Then there exist two indices i 6= j (1 ≤ i ≤
n, 1 ≤ j ≤ n) such that qi and qj are multiplicatively dependent.

Conjecture 5.35 (Bertrand). Let q1 and q2 be two non-zero algebraic numbers
in the unit open disc. Suppose that there is an irreducible element P ∈ Q[X,Y ]
such that

P
(
J(q1), J(q2)

)
= 0.

Then there exist a constant c and a positive integer s such that P = cΦs, where
Φs is the modular polynomial of level s. Moreover q1 and q2 are multiplicatively
dependent.

Among Siegel’sG-functions are the algebraic functions. Transcendence meth-
ods produce some information, in particular in connection with Hilbert’s Irre-
ducibility Theorem. Let f ∈ Z[X,Y ] be a polynomial which is irreducible in
Q(X)[Y ]. According to Hilbert’s Irreducibility Theorem, the set of positive in-
tegers n such that P (n, Y ) is irreducible in Q[Y ] is infinite. Effective upper
bounds for an admissible value for n have been studied (especially by M. Fried,
P. Dèbes and U. Zannier), but do not yet answer the next question.

Question 5.36. Is there such a bound depending polynomially on the degree
and height of P?

Such questions are also related to the Galois inverse Problem [Se 1989].
Also the polylogarithms

Lis(z) =
∑
n≥1

zm

ns
,

where s is a positive integer, are G-functions; unfortunately no way has yet
been found to use the Siegel-Shidlovskii method to prove the irrationality of the
values of the Riemann zeta function ([FeN 1998] Chap. 5, § 7, p. 247).

WithG-functions, the other class of analytic functions introduced by C. L. Siegel
in 1929 is the class of E-functions, which includes the hypergeometric ones. One
main open question is the arithmetic nature of the values at algebraic points of
hypergeometric functions with algebraic parameters,

2F1

(
α , β
γ

∣∣∣z) =
∑
n≥0

(α)n(β)n
(γ)n

· z
n

n!
,

defined for |z| < 1 and γ 6∈ {0,−1,−2, . . .}.
In 1949, C. L. Siegel ([Si 1949] Chap. 2, § 9, p. 54 and 58; see also [FeS 1967]

p. 62 and [FeN 1998] Chap. 5, § 1.2) asked whether any E-function satisfying

119



a linear differential equation with coefficients in C(z) can be expressed as a
polynomial in z and a finite number of hypergeometric E-functions or functions
obtained from them by a change of variables of the form z 7→ γz with algebraic
γ’s?

Finally, we quote from [W 1999b]: a folklore conjecture is that the zeroes
of the Riemann zeta function (say their imaginary parts, assuming it > 0)
are algebraically independent. As suggested by J-P. Serre, one might also be
tempted to consider
•The eigenvalues of the zeroes of the hyperbolic Laplacian in the upper half

plane modulo SL2(Z) (i.e., to study the algebraic independence of the zeroes of
the Selberg zeta function).
•The eigenvalues of the Hecke operators acting on the corresponding eigen-

functions (Maass forms).

5.4 Fibonacci and Miscellanea

Many further open problems arise in transcendental number theory. An intrigu-
ing question is to study the arithmetic nature of real numbers given in terms of
power series involving the Fibonacci sequence

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1.

Several results are due to P. Erdős, R. André-Jeannin, C. Badea, J. Sándor,
P. Bundschuh, A. Pethő, P.G. Becker, T. Töpfer, D. Duverney, Ku. et Ke. Nish-
ioka, I. Shiokawa and T. Tanaka. It is known that the number

∞∑
n=1

1
FnFn+2

= 1

is rational, while

∞∑
n=0

1
F2n

=
7−
√

5
2

,
∞∑
n=1

(−1)n

FnFn+1
=

1−
√

5
2

and
∞∑
n=1

1
F2n−1 + 1

=
√

5
2

are irrational algebraic numbers. Each of the numbers

∞∑
n=1

1
Fn

,
∞∑
n=1

1
Fn + Fn+2

and
∑
n≥1

1
F1F2 · · ·Fn
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is irrational, but it is not known whether they are algebraic or transcendental.
The numbers

∞∑
n=1

1
F2n−1

,
∞∑
n=1

1
F 2
n

,
∞∑
n=1

(−1)n

F 2
n

,
∞∑
n=1

n

F2n

,

∞∑
n=1

1
F2n−1 + F2n+1

and
∞∑
n=1

1
F2n+1

are all transcendental (further results of algebraic independence are known).
The first challenge here is to formulate a conjectural statement which would
give a satisfactory description of the situation.

There is a similar situation for infinite sums
∑
n f(n) where f is a rational

function [Ti 2000]. While
∞∑
n=1

1
n(n+ 1)

= 1

and
∞∑
n=0

(
1

4n+ 1
− 3

4n+ 2
+

1
4n+ 3

+
1

4n+ 4

)
= 0

are rational numbers, the sums
∞∑
n=0

1
(2n+ 1)(2n+ 2)

= log 2,
∞∑
n=0

1
(n+ 1)(2n+ 1)(4n+ 1)

=
π

3
,

∞∑
n=1

1
n2

=
π2

6
,

∞∑
n=0

1
n2 + 1

=
1
2

+
π

2
· e

π + e−π

eπ − e−π
,

∞∑
n=0

(−1)n

n2 + 1
=

2π
eπ − e−π

and
∞∑
n=0

1
(6n+ 1)(6n+ 2)(6n+ 3)(6n+ 4)(6n+ 5)(6n+ 6)

=

1
4320

(192 log 2− 81 log 3− 7π
√

3)

are transcendental. The simplest example of the Euler sums
∑
n n
−s (see § 3.2)

illustrates the difficulty of the question. Here again, even a sufficiently gen-
eral conjecture is missing. One may remark that there is no known algebraic
irrational number of the form ∑

n≥0Q( n)6=0

P (n)
Q(n)

,

where P andQ are non-zero polynomials having rational coefficients and degQ ≥
2 + degP .

The arithmetic study of the values of power series suggests many open prob-
lems. We shall only mention a few of them.

The next question is due to K. Mahler [M 1984].
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Question 5.37 (Mahler). Are there entire transcendental functions f(z) such
that if x is a Liouville number then so is f(x)?

The study of integral valued entire functions gives rise to several open prob-
lems; we quote only one of them which arose in the work of D. W. Masser and
F. Gramain on entire functions f of one complex variable which map the ring
of Gaussian integers Z[i] into itself. The initial question (namely to derive an
analogue of Pólya’s Theorem in this setting) has been solved by F. Gramain in
[Gr 1981] (following previous work of Fukasawa, Gel’fond, Gruman and Masser).
If f is not a polynomial, then

lim sup
r→∞

1
r2

log |f |r ≥
π

2e
·

Here,
|f |r = max

|z|=r
|f(z)|.

Preliminary works on this estimate gave rise to the following problem, which is
still unsolved. For each integer k ≥ 2, let Ak be the minimal area of a closed
disk in R2 containing at least k points of Z2, and for n ≥ 2 define

δn = − log n+
n∑
k=2

1
Ak
·

The limit δ = limn→∞ δn exists (it is an analogue in dimension 2 of the Euler
constant), and the best known estimates for it are [GrW 1985]

1.811 · · · < δ < 1.897 . . .

(see also [Fi 2003]). F. Gramain conjectures that

δ = 1 +
4
π

(
γL(1) + L′(1)

)
,

where γ is Euler’s constant and

L(s) =
∑
n≥0

(−1)n(2n+ 1)−s

is the L function of the quadratic field Q(i) (Dirichlet beta function). Since
L(1) = π/4 and

L′(1) =
∑
n≥0

(−1)n+1 · log(2n+ 1)
2n+ 1

=
π

4
(
3 log π + 2 log 2 + γ − 4 log Γ(1/4)

)
,

Gramain’s conjecture is equivalent to

δ = 1 + 3 log π + 2 log 2 + 2γ − 4 log Γ(1/4) = 1.822825 . . .

Other problems related to the lattice Z[i] are described in the section “On the
borders of geometry and arithmetic” of [Sie 1964].
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5.5 Diophantine Approximation

One of the main open problems in Diophantine approximation is to produce an
effective version of the Thue-Siegel-Roth Theorem 2.34. In connexion with the
negative answer to Hilbert’s 10th Problem by Yu. Matiyasevich, it has been sug-
gested by M. Mignotte that an effective version of Schmidt’s Subspace Theorem
2.39.

5.6 The abc Conjecture

For a positive integer n, we denote by

R(n) =
∏
p|n

p

the radical or square free part of n.
The abc Conjecture resulted from a discussion between D. W. Masser and

J. Œsterlé ([Œ 1988] p. 169; see also [Mas 1990], as well as [La 1990], [La 1991]
Chap. II § 1; [La 1993] Ch. IV § 7; [Guy 1994] B19; [Bro 1999]; [Ri 2000], § 9.4.E;
[V 2000], [Maz 2000] and [Ni].

Conjecture 5.38. [abc Conjecture] For each ε > 0 there exists a positive num-
ber κ(ε) which has the following property: if a, b and c are three positive rational
integers which are relatively prime and satisfy a+ b = c, then

c < κ(ε)R(abc)1+ε.

M. Langevin noticed that the abc Conjecture yields a stronger inequality than
Roth’s, ∣∣∣∣α− p

q

∣∣∣∣ > C(ε)
R(pq)qε

·

Connexions between the abc Conjecture and measures of linear independence
of logarithms of algebraic numbers have been pointed out by A. Baker [B 1998]
and P. Philippon [P 1999a] (see also [W 2000b] exercise 1.11). We reproduce
here the main conjecture of the addendum of [P 1999a]. For a rational num-
ber a/b with relatively prime integers a, b, we denote by h(a/b) the number
log max{|a|, |b|}.

Conjecture 5.39. [Philippon] There exist real numbers ε, α and β with 0 <
ε < 1/2, α ≥ 1 and β ≥ 0, and a positive integer B, such that for any non-zero
rational numbers x, y satisfying xyB 6= 1, if S denotes the set of prime numbers
for which |xyB + 1|p < 1, then

−
∑
p∈S

log |xyB + 1|p ≤ B
(
αh(x) + εh(y) +

(
αB + ε

)(
β +

∑
p∈S

log p
))
.
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The conclusion is a lower bound for the p-adic distance between −xyB and
1; the main point is that several p’s are involved. Conjecture 5.39 is telling us
something about the prime decomposition of all numbers xyB+1 for some fixed
but unspecified value of B – and it implies the abc Conjecture.

Examples of optimistic Archimedean estimates related to measures of linear
independence of logarithms of algebraic numbers are the Lang-Waldschmidt
Conjectures in [La 1978b] (introduction to Chap. X and XI, p. 212–217). Here
is a simple example.

Conjecture 5.40. [Lang-Waldschmidt] For any ε > 0, there exists a constant
C(ε) > 0 such that, for any non-zero rational integers a1, . . . , am, b1, . . . , bm
with ab11 · · · abmm 6= 1,∣∣∣ab11 · · · abmm − 1

∣∣∣ ≥ C(ε)mB
(|b1| · · · |bm| · |a1| · · · |am|)1+ε

,

where B = max1≤i≤m |bi|.

Similar questions related to Diophantine approximation on tori are discussed
in [La 1991] Chap. IX, § 7.

Conjecture 5.40 deals with rational integers; a more general setting involving
algebraic numbers is considered in [W 2004].

5.7 Irrationality and linear independence measures

As we mentioned in § 1.1.1, the class of “interesting” real numbers which are
known to be irrational is not as large as one would expect [KZ 2000]. For in-
stance no proof of irrationality has been given so far for numbers like Euler’s con-
stant, Catalan’s constant (1.5), Γ(1/5), e+ π, ζ(5), ζ(3)/π3, eγ = 1.781072 . . .
and ∑

n≥1

σk(n)
n!

(k = 1, 2) where σk(n) =
∑
d|n

dk

(see [Guy 1994] B14).
Here is another irrationality question raised by P. Erdős and E. Straus in

1975 (see [E 1988] and [Guy 1994] E24). Define an irrationality sequence as
an increasing sequence (nk)k≥1 of positive integers such that, for any sequence
(tk)k≥1 of positive integers, the real number∑

k≥1

1
nktk

is irrational. On the one hand, it has been proved by Erdős that (22k)k≥1 is an
irrationality sequence. On the other hand, the sequence (k!)k≥1 is not, since∑

k≥1

1
k!(k + 2)

=
1
2
·
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An open question is whether an irrationality sequence must increase very rapidly.
No irrationality sequence (nk)k≥1 is known for which n1/2k

k tends to 1 as k tends
to infinity.

Many further open irrationality questions are raised in [E 1988].

Assume now that the first step has been completed and that we know our
number θ is irrational. Then there are (at least) two directions for further
investigation.
•(1) Considering several real numbers θ1, . . . , θn, a fundamental question

is to decide whether or not they are linearly independent over Q. One main
example is to start with the successive powers of one number, 1, θ, θ2, . . . , θn−1.
The goal is to decide whether θ is algebraic of degree < n. If n is not fixed, the
question is whether θ is transcendental. This question, which is relevant also for
complex numbers, will be considered in the next section. Observe also that the
problem of algebraic independence is included here. It amounts to the linear
independence of monomials.
•(2) Another direction of research is to consider a quantitative refinement of

the irrationality statement, namely an irrationality measure. We wish to bound
from below the non-zero number |θ − (p/q)| when p/q is any rational number;
this lower bound will depend on θ as well as the denominator q of the rational
approximation. In case where a statement weaker than an irrationality result is
known, namely if one can prove only that at least one of n numbers θ1, . . . , θn
is irrational, then a quantitative refinement will be a lower bound (in terms of
q) for

max
{∣∣∣∣θ1 −

p1

q

∣∣∣∣ , . . . , ∣∣∣∣θn − pn
q

∣∣∣∣} ,
when p1/q, . . . , pn/q are n rational numbers and q > 0 a common denominator.
On the one hand, the study of rational approximation of real numbers is achieved
in a satisfactory way for numbers whose regular continued fraction expansion
is known. This is the case for rational numbers (!), for quadratic numbers, as
well as for a small set of transcendental numbers, like (1.6). On the other hand,
even for a real number x for which an irregular continued fraction expansion is
known, like

log 2 =
1|
|1

+
1|
|1

+
4|
|1

+
9|
|1

+ · · ·
n2|
| 1

+ · · ·

or
π

4
=

1|
|1

+
9|
|2

+
25|
| 2

+
49|
| 2

+ · · ·
(2n+ 1)2|
| 2

+ · · ·

one does not know how well x can be approximated by rational numbers. No
regular pattern has been observed or can be expected from the regular continued
fraction of π,

π = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1, 1, 15, 3, 13, . . . ],

nor from any number ”easily” related to π.
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One expects that for any ε > 0 there are constants C(ε) > 0 and C ′(ε) > 0
such that ∣∣∣∣log 2− p

q

∣∣∣∣ > C(ε)
q2+ε

and
∣∣∣∣π − p

q

∣∣∣∣ > C ′(ε)
q2+ε

hold for any p/q ∈ Q, but this is known only with larger exponents, namely
3.8913 . . . and 8, 0161 . . . respectively (Rukhadze and Hata). The sharpest
known exponent for an irrationality measure of

ζ(3) =
∑
n≥1

1
n3

= 1.202056 . . .

is 5.513891 . . . , while for π2 (or for ζ(2) = π2/6) it is 5.441243 . . . (both results
due to Rhin and Viola). For a number like Γ(1/4), the existence of absolute
positive constants C and κ for which∣∣∣∣Γ(1/4)− p

q

∣∣∣∣ > C

qκ

has been proved only recently [P 1999b]. The similar problem for eπ is not yet
solved. In other terms there is no proof so far that eπ is not a Liouville number.

Earlier we distinguished two directions for research once we know the irra-
tionality of some given numbers. Either, on the qualitative side, one studies
the linear dependence relations, or else, on the quantitative side, one studies
the quality of rational approximation. One can combine both. A quantitative
version of a result of Q-linear independence of n real numbers θ1, . . . , θn, is a
lower bound, in terms of max{|p1|, . . . , |pn|}, for∣∣p1θ1 + · · ·+ pnθn

∣∣
when (p1, . . . , pn) is in Zn \ {0}.

For some specific classes of transcendental numbers, A. I. Galochkin [G 1983],
A. N. Korobov (Th. 1.22 of [FeN 1998] Chap. 1 § 7) and more recently P. Ivankov
proved extremely sharp measures of linear independence (see [FeN 1998] Chap. 2
§ 6.2 and § 6.3).

A general and important problem is to improve the known measures of linear
independence for logarithms of algebraic numbers, as well as elliptic logarithms,
Abelian logarithms, and more generally logarithms of algebraic points on com-
mutative algebraic groups. For instance the conjecture that eπ is not a Liouville
number should follow from improvements of known linear independence mea-
sures for logarithms of algebraic numbers.

The next step, which is to obtain sharp measures of algebraic independence
for transcendental numbers, will be considered later (see § 4.2 and § 4.3).

The so-called Mahler Problem (see [W 2001] § 4.1) is related to linear com-
bination of logarithms |b− log a|.
Conjecture 5.41. [Mahler] There exists an absolute constant c > 0 such that

‖ log a‖ > a−c

for all integers a ≥ 2.
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Equivalently,
|a− eb| > a−c

for some absolute constant c > 0 for all integers a, b > 1.
A stronger conjecture is suggested in [W 2001] (4.1)12

‖ log a‖ > a−1(log a)−c

for some absolute constant c > 0 for all integers a ≥ 3, or equivalently

|a− eb| > b−c

for some absolute constant c > 0 for all integers a, b > 1. So far the best known
estimate is

|a− eb| > e−c(log a)(log b),

so the problem is to replace the product (log a)(log b) in the exponent by the
sum log a+ log b.

Such explicit lower bounds have interest in theoretical computer science
[MüT 1996]. The sharpest known estimate on Mahler’s problem is

|eb − a| > b−20b.

In a joint work with Yu.V. Nesterenko [NeW-1996] in 1996, we considered an
extension of this question when a and b are rational numbers. A refinement of
our estimate has been obtained by S. Khemira in 2005 and is currently being
sharpened in a joint work of S. Khemira and P. Voutier.

Define H(p/q) = max{|p|, q}. Then for a and b in Q with b 6= 0, the estimate
is

|eb − a| ≥ exp{−1, 3 · 105(logA)(logB)}

where A = max{H(a), A0}, B = max{H(b), 2}. The numerical value of the
absolute constant A0 is explicitly computed.

5.8 Expansions of irrational algebraic numbers

A reference for this section is [W 2008].
The digits of the expansion (in any basis ≥ 2) of an irrational, real, alge-

braic number should be equidistributed – in particular any digit should appear
infinitely often. But even the following special case is unknown.

Conjecture 5.42. [Mahler]. Let (εn)n≥0 be a sequence of elements in {0, 1}.
Assume that the real number ∑

n≥0

εn3−n

is irrational, then it is transcendental.
12As pointed out to me by Iam Ho (Ho Chi Minh), in [W 2004] p. 266 the factor a−1 is

missing.
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In two papers, the first one published in 1909 [Bor 1909] and the second
one in 1950 [Bor 1950], É. Borel studied the g–ary expansion of real numbers,
where g ≥ 2 is a positive integer. In his second paper he suggested that this
expansion for an algebraic irrational real number should satisfy some of the laws
shared by almost all numbers (for Lebesgue’s measure). More precisely, for a
positive integer g ≥ 2, a normal number in base g is a real number such that
the sequence (xgn)n≥1 is equidistributed modulo 1. Almost all real numbers
for Lebesgue measure are normal (i.e., normal in basis g for any g > 1), but
it is not known whether any irrational real algebraic number is normal to any
integer basis.

Conjecture 5.43 (É. Borel, 1950). Let x be an irrational algebraic real number
and g ≥ 2 a positive integer. Then x is normal in base g.

Also it is not known whether there is an integer g for which any number like
e, π, ζ(3), Γ(1/4), γ, G, e+ π, eγ is normal in basis g (see [Ra 1976]).

Few results are known on the expansion in a basis g of irrational algebraic
numbers, essentially nothing is known about the continued fraction expansion
of a real algebraic number of degree ≥ 3; one does not know the answer to any
of the following two questions.

Question 5.44. Does there exist a real algebraic number of degree ≥ 3 with
bounded partial quotients?

Question 5.45. Does there exist a real algebraic number of degree ≥ 3 with
unbounded partial quotients?

It is usually expected is that the continued fraction expansion of a real algebraic
number of degree at least 3 always has unbounded partial quotients.

5.9 Logarithms of algebraic numbers

We have already suggested several questions related to linear independence mea-
sures over the field of rational numbers for logarithms of rational numbers (see
Conjectures 5.39, 5.40 and 5.41). Now that we have a notion of height for alge-
braic numbers at our disposal, we can extend our study to linear independence
measures over the field of algebraic numbers for the logarithms of algebraic
numbers.

The next statement is Conjecture 14.25 of [W 2000b].

Conjecture 5.46. There exist two positive absolute constants c1 and c2 with
the following property. Let λ1, . . . , λm be logarithms of algebraic numbers with
αi = eλi (1 ≤ i ≤ m), let β0, . . . , βm be algebraic numbers, D the degree of the
number field

Q(α1, . . . , αm, β0, . . . , βm),
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and, finally, let h ≥ 1/D satisfy

h ≥ max
1≤i≤m

h(αi), h ≥ 1
D

max
1≤i≤m

|λi| and h ≥ max
0≤j≤m

h(βj).

(1) Assume that the number

Λ = β0 + β1λ1 + · · ·+ βmλm

is non-zero. Then
|Λ| ≥ exp

{
−c1mD2h

}
.

(2) Assume that λ1, . . . , λm are linearly independent over Q. Then

m∑
i=1

|λi − βi| ≥ exp
{
−c2mD1+(1/m)h

}
.

Connection between Conjecture 5.46 and Conjecture 5.1 are described in
[W 2000a] and [W 2000b] Chap. 15; see [W 2004]).

Conjecture 5.47. There exists a positive absolute constant C with the following
property. Let α1, . . . , αn be non-zero algebraic numbers and logα1, . . . , logαn
logarithms of α1, . . . , αn respectively. Assume that the numbers logα1, . . . , logαn
are Q-linearly independent. Let β0, β1, . . . , βn be algebraic numbers, not all of
which are zero. Denote by D the degree of the number field

Q(α1, . . . , αn, β0, β1, . . . , βn)

over Q. Further, let A1, . . . , An and B be positive real numbers, each ≥ e, such
that

logAj ≥ max
{

h(αj),
| logαj |
D

, 1
D

}
(1 ≤ j ≤ n),

B ≥ max
1≤j≤n−1

h(βj).

Then the number

Λ = β0 + β1 logα1 + · · ·+ βn logαn

satisfies

|Λ| > exp{−CnDn+2(logA1) · · · (logAn)(logB + logD)(logD)}.

One is rather close to such an estimate (see [W 2001], § 5 and § 6, as well
as [Matv 2000]). The result is proved now in the so-called rational case, where

β0 = 0 and βi ∈ Q for 1 ≤ i ≤ n.

In the general case, one needs a further condition, namely

B ≥ max
1≤i≤n

logAi.
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Removing this extra condition would enable one to prove that numbers like eπ

or 2
√

2 are not Liouville numbers.
These questions are the first and simplest ones concerning transcendence

measures,measures of Diophantine approximation, measures of linear indepen-
dence and measures of algebraic independence. One may ask many further
questions on this topic, including an effective version of Schanuel’s conjecture.
It is interesting to notice that in this case a “technical condition” cannot be
omitted ([W 1999b] Conjecture 1.4).

Recall that the rank of a prime ideal P ⊂ Q[T1, . . . , Tm] is the largest integer
r ≥ 0 such that there exists an increasing chain of prime ideals

(0) = P0 ⊂ P1 ⊂ · · · ⊂ Pr = P.

The rank of an ideal I ⊂ Q[T1, . . . , Tm] is the minimum rank of a prime ideal
containing I.

Conjecture 5.48. (Quantitative Refinement of Schanuel’s Conjecture). Let
x1, . . . , xn be Q-linearly independent complex numbers. Assume that for any
ε > 0, there exists a positive number H0 such that, for any H ≥ H0 and n-tuple
(h1, . . . , hn) of rational integers satisfying 0 < max{|h1|, . . . , |hn|} ≤ H, the
inequality

|h1x1 + · · ·+ hnxn| ≥ exp
{
−Hε

}
is valid. Let d be a positive integer. Then there exists a positive number C =
C(x1, . . . , xn, d) with the following property: for any integer H ≥ 2 and any n+1
tuple P1, . . . , Pn+1 of polynomials in Z[X1, . . . , Xn, Y1, . . . , Yn] with degrees ≤ d
and usual heights ≤ H, which generate an ideal of Q[X1, . . . , Xn, Y1, . . . , Yn] of
rank n+ 1,

n+1∑
j=1

∣∣Pj(x1, . . . , xn, e
x1 , . . . , exn)

∣∣ ≥ H−C .
A consequence of Conjecture 5.48 is a quantitative refinement to Conjecture

5.6 on the algebraic independence of logarithms of algebraic numbers [W 1999b].

Conjecture 5.49. If logα1, . . . , logαn are Q-linearly independent logarithms
of algebraic numbers and d a positive integer, there exists a constant C > 0 such
that, for any non-zero polynomial P ∈ Z[X1, . . . , Xn] of degree ≤ d and height
≤ H, with H ≥ 2,

|P (logα1, . . . , logαn)| ≥ H−C .

Further open questions are related to a question by B. Mazur on density of
points on a variety (see [Maz 1992,Maz 1994,Maz 1995] and [W 2004]).
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Sém. Bourbaki, 55e année, 2002-2003, N◦ 910, 35 p.

[Ge 1934] Gel’fond, A. O. – Sur quelques résultats nouveaux dans la théorie
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Delange-Pisot-Poitou, 19e année: 1977/78, Théorie des nombres,
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ory (Montréal, Qué., 1985), CMS Conf. Proc., 7, Amer. Math.
Soc., Providence, RI, (1987), 279–284.

[R 1968] Ramachandra, K. – Contributions to the theory of transcendental
numbers. I, II. Acta Arith. 14 (1967/68), 65-72 and 73–88.

[Ri 2000] Ribenboim, P. – My numbers, my friends. Popular Lectures on
Number Theory. Springer-Verlag, Berlin-Heidelberg, 2000.

[Riv 2000] Rivoal, T. – La fonction zêta de Riemann prend une infinité de
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81, Birkhäuser Boston, Boston, MA, (1990), 273–281.

[Ro 1995] Roy, D. – Points whose coordinates are logarithms of algebraic
numbers on algebraic varieties. Acta Math. 175 N◦ 1 (1995),
49–73.

[Ro 2001a] Roy, D. – An arithmetic criterion for the values of the exponential
function. Acta Arith., 97 N◦ 2 (2001), 183-194.

[Ro 2002] Roy, D. – Interpolation formulas and auxiliary functions. J. Number
Theory 94 (2002), N◦ 2, 248–285.
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