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Defintion

Let f be an entire function. We define an exceptional set for f to
be

Sf = {α ∈ Q|f (α) ∈ Q}.
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Arbitrary finite subsets of algebraic numbers are easily seen to be
exceptional. For instance, if

g(z) = e(z−α1)···(z−αk ),

then Sg = {α1, . . . , αk}.
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Set up

We can also look at the Taylor series centered at a point in Sf and
require that the coefficients lie in Q. We conjectured that every
subset of Q is an exceptional set in this more restrictive sense. We
generalized this statement to the following theorem.
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The Big Theorem

Fix A ⊂ C with A countable. For each integer s ≥ 0 and each
α ∈ A, fix a dense subset Eα,s ⊂ C. Then we can find an entire
function f such that f (s)(α) ∈ Eα,s .

We will show that this theorem holds for infinite subsets A, but a
similar proof will show that it holds for finite A as well.
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First we enumerate A ⊂ {α1, α2, . . .}. We construct a sequence of
polynomials as follows.

P0(z) = 1

P1(z) = (z − α1)

P2(z) = (z − α1)(z − α2)

P3(z) = (z − α1)
2(z − α2)

P4(z) = (z − α1)
2(z − α2)(z − α3)

P5(z) = (z − α1)
2(z − α2)

2(z − α3)

P6(z) = (z − α1)
3(z − α2)

2(z − α3)

P7(z) = (z − α1)
3(z − α2)

2(z − α3)(z − α4)
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Proof (cont.)

The pattern can be seen by following the arrows and picking up
the corresponding term at each node:
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Now we define f (z) =
∑∞

n=0 anPn(z) where we will define the an’s
recursively in order to satisfy these two conditions:

1. The an’s must decrease sufficiently fast for the function to
converge.

2. The an must be constructed to ensure the desired conditions
on f .
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First we will place restrictions on an to make f entire. f will
converge absolutely when

lim sup
n→∞

|an+1||Pn+1(z)|
|an||Pn(z)|

< 1.

Note that from the construction of Pn(z), we have that
Pn+1(z)
Pn(z) = z − αm(n) where m(n) < n.
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Define

rn = min

(
1

n
,

1

2 maxm≤n |αm|

)
If |an+1|

|an| < rn, then

|an+1|
|an|

|z − αm(n)| ≤ |an+1|
|an|

|z |+ |an+1|
|an|

max
m≤n

|αm|

≤ 1

n
|z |+ 1

2
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Then

lim sup
n→∞

|an+1|
|an|

|z − αm(n)| ≤
1

2

Thus, if |an+1|
|an| < rn, then f will converge absolutely.
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Now we will fix the ai ’s recursively. To this end, we will adopt the
following notation:

f (α1) = β0, f (α2) = β1, f
′(α1) = β2, f (α3) = β3, f

′(α2) = β4, . . . , and

Eα1,0 = E0,Eα2,0 = E1,Eα1,1 = E2,Eα3,0 = E3,Eα2,1 = E4, . . .

We will fix the ai ’s so that βk ∈ Ek .
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First, β0 = f (α1) = a0, so we pick a0 to be any nonzero element
of E0. Now

β1 = f (α2) = a0 + a1(α2 − α1).

To ensure convergence, we need |a1| < r0|a0|. This forces us to

pick a1 in the open ball centered at a0 with radius r0|a0|
α2−α1

. Since E1

is dense, we can pick such a a1 6= 0 with β1 ∈ E1.
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As a slightly less trivial example, we will look at the how to
compute a5. We have that

f (z) = a0 + a1(z − α1) + a2(z − α1)(z − α2)

+ a3(z − α1)
2(z − α2) + a4(z − α1)

2(z − α2)(z − α3)

+ a5(z − α1)
2(z − α2)

2(z − α3) + (z − α1)
3g(x)

Direct computation shows us that

f ′′(α1) = 2a2 + 2a3(α1 − α2) + 2a4(α1 − α2)(α1 − α3)

+ 2a5(α1 − α2)
2(α1 − α3) + 0.

We have already picked a2, a3, and a4. We determine the open
subset that must contain a5 (based on convergence requirements,
and then we pick a5 in this subset so that
β5 = f ′′(α1) ∈ E5 = Eα1,3 (which is dense).
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In general, βk = P(αi − α1, . . . , αi − αm(k)) (with coefficients only
depending on a0, . . . , ak). We have already picked a0, . . . , ak−1.
Since Ek is dense in C, we can pick ak 6= 0, so that βk ∈ Ek and
ak is small enough to ensure convergence.
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Now suppose that B ⊂ A = Q (with B and A\B both infinite), we
can enumerate Q = {α1, α2, . . .} where α2n+1 ∈ B and
α2n+2 6∈ B. Now from our theorem, we can construct an entire
function f with Eα2n+1,s = Q and Eα2n+2,s = C\Q for all n, s ≥ 0.
Thus, all derivatives of f at α2n+1 are algebraic, and hence we
have the Taylor series

f (z) =
∞∑

k=0

ck(z − α2n+1)
k

where ck ∈ Q, and Sf = B.
This shows that any infinite subset of Q is exceptional.
Furthermore, the same construction would work if we took the
coefficients to be in Q(i)!

Jing Jing Huang, Brian Dietel, Chaungxun Chang, Jonathan Mason, Holly Krieger, Robert Wilson, Mathilde Herblot, Martin MerebExceptional Sets and Such



Outline
Introduction

The Big Theorem
Applications to Exceptional Sets

Acknowledgements

We would like to express our extreme gratitude to Professor
Waldschmidt and Dr. Racinet for their help and encouragement
this week. We would also like to thank the University of Arizona
and all of the organizers that made this week possible.

Jing Jing Huang, Brian Dietel, Chaungxun Chang, Jonathan Mason, Holly Krieger, Robert Wilson, Mathilde Herblot, Martin MerebExceptional Sets and Such


	Outline
	Introduction
	Defintion
	Examples

	The Big Theorem
	Statement
	The Proof

	Applications to Exceptional Sets

