Exceptional Sets and Such

Jing Jing Huang, Brian Dietel, Chaungxun Chang, Jonathan Mason, Holly Krieger, Robert Wilson, Mathilde Herblot, Martin Mereb

March 19, 2008

イロト イヨト イヨト イヨト

Introduction Defintion

Examples

The Big Theorem

Statement The Proof

Applications to Exceptional Sets

Jing Jing Huang, Brian Dietel, Chaungxun Chang, Jonathan M Exceptional Sets and Such

æ

Defintion Examples

Defintion

Let f be an entire function. We define an exceptional set for f to be

$$S_f = \{ \alpha \in \overline{\mathbb{Q}} | f(\alpha) \in \overline{\mathbb{Q}} \}.$$

イロン イヨン イヨン イヨン

æ

Defintion Examples

Examples

Arbitrary finite subsets of algebraic numbers are easily seen to be exceptional. For instance, if

$$g(z) = e^{(z-\alpha_1)\cdots(z-\alpha_k)},$$

・ロン ・回と ・ヨン・

æ

then $S_g = \{\alpha_1, \ldots, \alpha_k\}.$

Defintion Examples

We can also look at the Taylor series centered at a point in S_f and require that the coefficients lie in $\overline{\mathbb{Q}}$. We conjectured that every subset of $\overline{\mathbb{Q}}$ is an exceptional set in this more restrictive sense. We generalized this statement to the following theorem.

イロト イポト イヨト イヨト

Statement The Proof

The Big Theorem

Fix $A \subset \mathbb{C}$ with A countable. For each integer $s \geq 0$ and each $\alpha \in A$, fix a dense subset $E_{\alpha,s} \subset \mathbb{C}$. Then we can find an entire function f such that $f^{(s)}(\alpha) \in E_{\alpha,s}$.

We will show that this theorem holds for infinite subsets A, but a similar proof will show that it holds for finite A as well.

イロト イヨト イヨト イヨト

Statement The Proof

Proof

First we enumerate $A \subset \{\alpha_1, \alpha_2, \ldots\}$. We construct a sequence of polynomials as follows.

$$P_{0}(z) = 1$$

$$P_{1}(z) = (z - \alpha_{1})$$

$$P_{2}(z) = (z - \alpha_{1})(z - \alpha_{2})$$

$$P_{3}(z) = (z - \alpha_{1})^{2}(z - \alpha_{2})$$

$$P_{4}(z) = (z - \alpha_{1})^{2}(z - \alpha_{2})(z - \alpha_{3})$$

$$P_{5}(z) = (z - \alpha_{1})^{2}(z - \alpha_{2})^{2}(z - \alpha_{3})$$

$$P_{6}(z) = (z - \alpha_{1})^{3}(z - \alpha_{2})^{2}(z - \alpha_{3})$$

$$P_{7}(z) = (z - \alpha_{1})^{3}(z - \alpha_{2})^{2}(z - \alpha_{3})(z - \alpha_{4})$$

・ロト ・日本 ・モト ・モト

æ

Statement The Proof

Proof (cont.)

The pattern can be seen by following the arrows and picking up the corresponding term at each node:

$$(z - \alpha_1) \rightarrow (z - \alpha_2) \qquad (z - \alpha_3) \qquad (z - \alpha_4)$$
$$(z - \alpha_1) \qquad (z - \alpha_2) \qquad (z - \alpha_3) \qquad (z - \alpha_4)$$
$$(z - \alpha_1) \qquad (z - \alpha_2) \qquad (z - \alpha_3) \qquad (z - \alpha_4)$$
$$(z - \alpha_1) \qquad (z - \alpha_2) \qquad (z - \alpha_3) \qquad (z - \alpha_4)$$

Statement The Proof

Proof (cont.)

Now we define $f(z) = \sum_{n=0}^{\infty} a_n P_n(z)$ where we will define the a_n 's recursively in order to satisfy these two conditions:

- 1. The *a_n*'s must decrease sufficiently fast for the function to converge.
- 2. The a_n must be constructed to ensure the desired conditions on f.

<ロ> (日) (日) (日) (日) (日)

Statement The Proof

Proof (cont.)

First we will place restrictions on a_n to make f entire. f will converge absolutely when

$$\limsup_{n\to\infty}\frac{|a_{n+1}||P_{n+1}(z)|}{|a_n||P_n(z)|}<1.$$

・ロト ・回ト ・ヨト ・ヨト

Note that from the construction of $P_n(z)$, we have that $\frac{P_{n+1}(z)}{P_n(z)} = z - \alpha_{m(n)}$ where m(n) < n.

Statement The Proof

(ロ) (同) (E) (E) (E)

Proof (cont.)

Define $r_n = \min\left(\frac{1}{n}, \frac{1}{2\max_{m \le n} |\alpha_m|}\right)$ If $\frac{|a_{n+1}|}{|a_n|} < r_n$, then $\frac{|a_{n+1}|}{|a_n|}|z - \alpha_{m(n)}| \le \frac{|a_{n+1}|}{|a_n|}|z| + \frac{|a_{n+1}|}{|a_n|}\max_{m \le n} |\alpha_m|$ $\le \frac{1}{n}|z| + \frac{1}{2}$

Statement The Proof

・ロト ・回ト ・ヨト ・ヨト

æ

Proof (cont.)

Then

$$\limsup_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} |z - \alpha_{m(n)}| \le \frac{1}{2}$$

Thus, if $\frac{|a_{n+1}|}{|a_n|} < r_n$, then f will converge absolutely.

Statement The Proof

Proof (cont.)

Now we will fix the a_i 's recursively. To this end, we will adopt the following notation:

$$f(\alpha_1) = \beta_0, f(\alpha_2) = \beta_1, f'(\alpha_1) = \beta_2, f(\alpha_3) = \beta_3, f'(\alpha_2) = \beta_4, \dots, \text{and}$$

 $E_{\alpha_1,0} = E_0, E_{\alpha_2,0} = E_1, E_{\alpha_1,1} = E_2, E_{\alpha_3,0} = E_3, E_{\alpha_2,1} = E_4, \dots$
We will fix the a_i 's so that $\beta_k \in E_k$.

・ロト ・日本 ・モト ・モト

æ

Statement The Proof

Proof (cont.)

First, $\beta_0 = f(\alpha_1) = a_0$, so we pick a_0 to be any nonzero element of E_0 . Now

$$\beta_1 = f(\alpha_2) = a_0 + a_1(\alpha_2 - \alpha_1).$$

To ensure convergence, we need $|a_1| < r_0|a_0|$. This forces us to pick a_1 in the open ball centered at a_0 with radius $\frac{r_0|a_0|}{\alpha_2 - \alpha_1}$. Since E_1 is dense, we can pick such a $a_1 \neq 0$ with $\beta_1 \in E_1$.

イロン イヨン イヨン イヨン

Statement The Proof

Proof (cont.)

As a slightly less trivial example, we will look at the how to compute a_5 . We have that

$$f(z) = a_0 + a_1(z - \alpha_1) + a_2(z - \alpha_1)(z - \alpha_2) + a_3(z - \alpha_1)^2(z - \alpha_2) + a_4(z - \alpha_1)^2(z - \alpha_2)(z - \alpha_3) + a_5(z - \alpha_1)^2(z - \alpha_2)^2(z - \alpha_3) + (z - \alpha_1)^3g(x)$$

Direct computation shows us that

$$f''(\alpha_1) = 2a_2 + 2a_3(\alpha_1 - \alpha_2) + 2a_4(\alpha_1 - \alpha_2)(\alpha_1 - \alpha_3) + 2a_5(\alpha_1 - \alpha_2)^2(\alpha_1 - \alpha_3) + 0.$$

We have already picked a_2 , a_3 , and a_4 . We determine the open subset that must contain a_5 (based on convergence requirements, and then we pick a_5 in this subset so that $\beta_5 = f''(\alpha_1) \in E_5 = E_{\alpha_1,3}$ (which is dense).

Statement The Proof

Proof (cont.)

In general, $\beta_k = P(\alpha_i - \alpha_1, \dots, \alpha_i - \alpha_{m(k)})$ (with coefficients only depending on a_0, \dots, a_k). We have already picked a_0, \dots, a_{k-1} . Since E_k is dense in \mathbb{C} , we can pick $a_k \neq 0$, so that $\beta_k \in E_k$ and a_k is small enough to ensure convergence.

イロト イヨト イヨト イヨト

Exceptional sets

Now suppose that $B \subset A = \overline{\mathbb{Q}}$ (with B and $A \setminus B$ both infinite), we can enumerate $\overline{\mathbb{Q}} = \{\alpha_1, \alpha_2, \ldots\}$ where $\alpha_{2n+1} \in B$ and $\alpha_{2n+2} \notin B$. Now from our theorem, we can construct an entire function f with $E_{\alpha_{2n+1},s} = \overline{\mathbb{Q}}$ and $E_{\alpha_{2n+2},s} = \mathbb{C} \setminus \overline{\mathbb{Q}}$ for all $n, s \ge 0$. Thus, all derivatives of f at α_{2n+1} are algebraic, and hence we have the Taylor series

$$f(z) = \sum_{k=0}^{\infty} c_k (z - \alpha_{2n+1})^k$$

where $c_k \in \overline{\mathbb{Q}}$, and $S_f = B$. This shows that any infinite subset of $\overline{\mathbb{Q}}$ is exceptional. Furthermore, the same construction would work if we took the coefficients to be in $\mathbb{Q}(i)$!

Acknowledgements

We would like to express our extreme gratitude to Professor Waldschmidt and Dr. Racinet for their help and encouragement this week. We would also like to thank the University of Arizona and all of the organizers that made this week possible.

A B K A B K