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Conjecture (Schanuel): Let x1, . . . , xn be Q-linearly independent
complex numbers. Then the transcendence degree over Q of the
field Q(x1, . . . , xn, e

x1 , . . . , exn) is at least n.

Corollaries:
Algebraic independence of π and e over Q.
π, log π, log log π, . . . are algebraically independent over Q.
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Set up
Related consequences of Schanuel’s Conjecture

Definitions

I Define E0 to be the set of algebraic numbers E0 = Q.

I Inductively, for n ≥ 1, define En = En−1(ex : x ∈ En−1).

I E =
⋃

n≥0 En.

I Similarly define L0 = Q.

I Inductively, for n ≥ 1, define Ln = Ln−1(log(x) : x ∈ Ln−1).

I L =
⋃

n≥0 Ln.

Some Consequences of Schanuel’s Conjecture



Outline
The Conjecture
The Problems
Main Problem

Set up
Related consequences of Schanuel’s Conjecture

Definitions

I Define E0 to be the set of algebraic numbers E0 = Q.

I Inductively, for n ≥ 1, define En = En−1(ex : x ∈ En−1).

I E =
⋃

n≥0 En.

I Similarly define L0 = Q.

I Inductively, for n ≥ 1, define Ln = Ln−1(log(x) : x ∈ Ln−1).

I L =
⋃

n≥0 Ln.

Some Consequences of Schanuel’s Conjecture



Outline
The Conjecture
The Problems
Main Problem

Set up
Related consequences of Schanuel’s Conjecture

Definitions

I Define E0 to be the set of algebraic numbers E0 = Q.

I Inductively, for n ≥ 1, define En = En−1(ex : x ∈ En−1).

I E =
⋃

n≥0 En.

I Similarly define L0 = Q.

I Inductively, for n ≥ 1, define Ln = Ln−1(log(x) : x ∈ Ln−1).

I L =
⋃

n≥0 Ln.

Some Consequences of Schanuel’s Conjecture



Outline
The Conjecture
The Problems
Main Problem

Set up
Related consequences of Schanuel’s Conjecture

Definitions

I Define E0 to be the set of algebraic numbers E0 = Q.

I Inductively, for n ≥ 1, define En = En−1(ex : x ∈ En−1).

I E =
⋃

n≥0 En.

I Similarly define L0 = Q.

I Inductively, for n ≥ 1, define Ln = Ln−1(log(x) : x ∈ Ln−1).

I L =
⋃

n≥0 Ln.

Some Consequences of Schanuel’s Conjecture



Outline
The Conjecture
The Problems
Main Problem

Set up
Related consequences of Schanuel’s Conjecture

Definitions

I Define E0 to be the set of algebraic numbers E0 = Q.

I Inductively, for n ≥ 1, define En = En−1(ex : x ∈ En−1).

I E =
⋃

n≥0 En.

I Similarly define L0 = Q.

I Inductively, for n ≥ 1, define Ln = Ln−1(log(x) : x ∈ Ln−1).

I L =
⋃

n≥0 Ln.

Some Consequences of Schanuel’s Conjecture



Outline
The Conjecture
The Problems
Main Problem

Set up
Related consequences of Schanuel’s Conjecture

Definitions

I Define E0 to be the set of algebraic numbers E0 = Q.

I Inductively, for n ≥ 1, define En = En−1(ex : x ∈ En−1).

I E =
⋃

n≥0 En.

I Similarly define L0 = Q.

I Inductively, for n ≥ 1, define Ln = Ln−1(log(x) : x ∈ Ln−1).

I L =
⋃

n≥0 Ln.

Some Consequences of Schanuel’s Conjecture



Outline
The Conjecture
The Problems
Main Problem

Set up
Related consequences of Schanuel’s Conjecture

Some Consequences

I π 6∈ E .

I π, log π, log log π, . . . are algebraically independent over E .

I e 6∈ L.

I e, ee , eee
, . . . are algebraically independent over L.

More generally:

E and L are linearly disjoint over Q.
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An enlightening example

Proposition: Schanuel’s Conjecture implies π 6∈ E .

Proof: by induction on n, π 6∈ En.

Base case: π 6∈ E0 = Q is clear.

Some Consequences of Schanuel’s Conjecture



Outline
The Conjecture
The Problems
Main Problem

Set up
Related consequences of Schanuel’s Conjecture

An enlightening example

Proposition: Schanuel’s Conjecture implies π 6∈ E .

Proof: by induction on n, π 6∈ En.

Base case: π 6∈ E0 = Q is clear.

Some Consequences of Schanuel’s Conjecture



Outline
The Conjecture
The Problems
Main Problem

Set up
Related consequences of Schanuel’s Conjecture

An enlightening example

Proposition: Schanuel’s Conjecture implies π 6∈ E .

Proof: by induction on n, π 6∈ En.

Base case: π 6∈ E0 = Q is clear.

Some Consequences of Schanuel’s Conjecture



Outline
The Conjecture
The Problems
Main Problem

Set up
Related consequences of Schanuel’s Conjecture

Key Construction

Induction step:

I π is algebraic over En−1(ex : x ∈ En−1).

I π is algebraic over En−2(ex : x ∈ En−2)(ex : x ∈ En−1).

I π is algebraic over En−2(ex : x ∈ En−2)(ex : x ∈ En−1).

I π is algebraic over En−2(ex : x ∈ En−1).
...

I π is algebraic over Q(ex : x ∈ En−1).

Therefore π is algebraic over Q(exp(An−1)) for some finite
An−1 ⊆ En−1.
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Key Construction

Following similarly:

I An−1 is algebraic over Q(exp(An−2)) for some finite
An−2 ⊆ En−2.

I An−2 is algebraic over Q(exp(An−3)) for some finite
An−3 ⊆ En−3.

...

I A1 is algebraic over Q(exp(A0)) for some finite A0 ⊆ E0 = Q.
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End of proof

I Set A =
⋃

m≤n−1 Am .

I Take B ⊆ A such that exp(B) is a transcendence basis of
Q(exp(A)).

I {iπ} ∪ B are Q-linearly independent.

I By Schanuel’s Conjecture trdegQQ(iπ,B, exp(B)) ≥ |B|+ 1.

I But trdegQQ(iπ,B, exp(B)) = trdegQQ(iπ,B, exp(A)) =
trdegQQ(exp(A)) = trdegQQ(exp(B)) ≤ |B|.
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Main result

We say K1 and K2 are linearly disjoint over k iff:

{x1, . . . , xn} ⊆ K1 linearly independent over k ⇒ linearly
independent over K2.

Theorem: Schanuel’s Conjecture implies E and L are linearly
disjoint over Q.
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Corollaries:

I E ∩ L = Q.

I π, log π, log log π, . . . are algebraically independent over E .

I e, ee , eee
, . . . are algebraically independent over L.
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The Proof

Let’s prove Em and Ln are linearly disjoint.
Take {li} ⊆ Ln linearly independent over Q and {ei} ⊆ Em such
that

∑
liei = 0.

Proceeding as before:
∃ finite A ⊆ Em−1 such that A ∪ {ei} algebraic over Q(exp(A)).
∃ finite C ⊆ Ln finite such that exp(C ) ∪ {li} algebraic over Q(C ).

Take B ⊆ A such that exp(B) is a transcendence basis of
Q(exp(A)).
Take D ⊆ C such that D is a transcendence basis of Q(C ).
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The Proof

We have B ∪ D linearly independent over Q.

By Schanuel’s Conjecture
trdegQQ(B,D, exp(B), exp(D)) ≥ |B|+ |D|.

However

trdegQQ(B,D, exp(B), exp(D)) = trdegQQ(exp(B),D) ≤ |B|+|D|.
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The Proof

Therefore Q(exp(B)) and Q(D) are free over Q, and the same is
true for Q(exp(B)) and Q(D).

Since Q is algebraically closed, Q(exp(B)) and Q(D) are linearly
independent over Q (see Lang’s Algebra).
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