Some Consequences of Schanuel's Conjecture

March 19, 2008

The Conjecture Conjecture and Corollaries

The Problems
Set up
Related consequences of Schanuel's Conjecture

Main Problem
Main Result
Corollaries
The Proof

Conjecture and Corollaries

Conjecture (Schanuel): Let x_{1}, \ldots, x_{n} be \mathbb{Q}-linearly independent complex numbers. Then the transcendence degree over \mathbb{Q} of the field $\mathbb{Q}\left(x_{1}, \ldots, x_{n}, e^{x_{1}}, \ldots, e^{x_{n}}\right)$ is at least n.

Conjecture and Corollaries

Conjecture (Schanuel): Let x_{1}, \ldots, x_{n} be \mathbb{Q}-linearly independent complex numbers. Then the transcendence degree over \mathbb{Q} of the field $\mathbb{Q}\left(x_{1}, \ldots, x_{n}, e^{x_{1}}, \ldots, e^{x_{n}}\right)$ is at least n.

Corollaries:

Algebraic independence of π and e over \mathbb{Q}.
$\pi, \log \pi, \log \log \pi, \ldots$ are algebraically independent over $\overline{\mathbb{Q}}$.

Definitions

- Define E_{0} to be the set of algebraic numbers $E_{0}=\overline{\mathbb{Q}}$.

Definitions

- Define E_{0} to be the set of algebraic numbers $E_{0}=\overline{\mathbb{Q}}$.
- Inductively, for $n \geq 1$, define $E_{n}=\overline{E_{n-1}\left(e^{x}: x \in E_{n-1}\right)}$.

Definitions

- Define E_{0} to be the set of algebraic numbers $E_{0}=\overline{\mathbb{Q}}$.
- Inductively, for $n \geq 1$, define $E_{n}=\overline{E_{n-1}\left(e^{x}: x \in E_{n-1}\right)}$.
- $E=\bigcup_{n \geq 0} E_{n}$.

Definitions

- Define E_{0} to be the set of algebraic numbers $E_{0}=\overline{\mathbb{Q}}$.
- Inductively, for $n \geq 1$, define $E_{n}=\overline{E_{n-1}\left(e^{x}: x \in E_{n-1}\right)}$.
- $E=\bigcup_{n \geq 0} E_{n}$.
- Similarly define $L_{0}=\overline{\mathbb{Q}}$.

Definitions

- Define E_{0} to be the set of algebraic numbers $E_{0}=\overline{\mathbb{Q}}$.
- Inductively, for $n \geq 1$, define $E_{n}=\overline{E_{n-1}\left(e^{x}: x \in E_{n-1}\right)}$.
- $E=\bigcup_{n \geq 0} E_{n}$.
- Similarly define $L_{0}=\overline{\mathbb{Q}}$.
- Inductively, for $n \geq 1$, define $L_{n}=\overline{L_{n-1}\left(\log (x): x \in L_{n-1}\right)}$.

Definitions

- Define E_{0} to be the set of algebraic numbers $E_{0}=\overline{\mathbb{Q}}$.
- Inductively, for $n \geq 1$, define $E_{n}=\overline{E_{n-1}\left(e^{x}: x \in E_{n-1}\right)}$.
- $E=\bigcup_{n \geq 0} E_{n}$.
- Similarly define $L_{0}=\overline{\mathbb{Q}}$.
- Inductively, for $n \geq 1$, define $L_{n}=\overline{L_{n-1}\left(\log (x): x \in L_{n-1}\right)}$.
- $L=\bigcup_{n \geq 0} L_{n}$.

Some Consequences

- $\pi \notin E$.

Some Consequences

- $\pi \notin E$.
- $\pi, \log \pi, \log \log \pi, \ldots$ are algebraically independent over E.

Some Consequences

- $\pi \notin E$.
- $\pi, \log \pi, \log \log \pi, \ldots$ are algebraically independent over E.
- $e \notin L$.

Some Consequences

- $\pi \notin E$.
- $\pi, \log \pi, \log \log \pi, \ldots$ are algebraically independent over E.
- $e \notin L$.
$-e, e^{e}, e^{e^{e}}, \ldots$ are algebraically independent over L.

Some Consequences

- $\pi \notin E$.
- $\pi, \log \pi, \log \log \pi, \ldots$ are algebraically independent over E.
- $e \notin L$.
$-e, e^{e}, e^{e^{e}}, \ldots$ are algebraically independent over L.
More generally:

$$
E \text { and } L \text { are linearly disjoint over } \overline{\mathbb{Q}} .
$$

An enlightening example

Proposition: Schanuel's Conjecture implies $\pi \notin E$.

An enlightening example

Proposition: Schanuel's Conjecture implies $\pi \notin E$.

Proof: by induction on $n, \pi \notin E_{n}$.

An enlightening example

Proposition: Schanuel's Conjecture implies $\pi \notin E$.

Proof: by induction on $n, \pi \notin E_{n}$.

Base case: $\pi \notin E_{0}=\overline{\mathbb{Q}}$ is clear.

Key Construction

Induction step:

- π is algebraic over $E_{n-1}\left(e^{x}: x \in E_{n-1}\right)$.

Key Construction

Induction step:

- π is algebraic over $E_{n-1}\left(e^{x}: x \in E_{n-1}\right)$.
- π is algebraic over $\overline{E_{n-2}\left(e^{x}: x \in E_{n-2}\right)}\left(e^{x}: x \in E_{n-1}\right)$.

Key Construction

Induction step:

- π is algebraic over $E_{n-1}\left(e^{x}: x \in E_{n-1}\right)$.
- π is algebraic over $\overline{E_{n-2}\left(e^{x}: x \in E_{n-2}\right)}\left(e^{x}: x \in E_{n-1}\right)$.
- π is algebraic over $E_{n-2}\left(e^{x}: x \in E_{n-2}\right)\left(e^{x}: x \in E_{n-1}\right)$.

Key Construction

Induction step:

- π is algebraic over $E_{n-1}\left(e^{x}: x \in E_{n-1}\right)$.
- π is algebraic over $\overline{E_{n-2}\left(e^{x}: x \in E_{n-2}\right)}\left(e^{x}: x \in E_{n-1}\right)$.
- π is algebraic over $E_{n-2}\left(e^{x}: x \in E_{n-2}\right)\left(e^{x}: x \in E_{n-1}\right)$.
- π is algebraic over $E_{n-2}\left(e^{x}: x \in E_{n-1}\right)$.

Key Construction

Induction step:

- π is algebraic over $E_{n-1}\left(e^{x}: x \in E_{n-1}\right)$.
- π is algebraic over $\overline{E_{n-2}\left(e^{x}: x \in E_{n-2}\right)}\left(e^{x}: x \in E_{n-1}\right)$.
- π is algebraic over $E_{n-2}\left(e^{x}: x \in E_{n-2}\right)\left(e^{x}: x \in E_{n-1}\right)$.
- π is algebraic over $E_{n-2}\left(e^{x}: x \in E_{n-1}\right)$.
- π is algebraic over $\mathbb{Q}\left(e^{x}: x \in E_{n-1}\right)$.

Key Construction

Induction step:

- π is algebraic over $E_{n-1}\left(e^{x}: x \in E_{n-1}\right)$.
- π is algebraic over $\overline{E_{n-2}\left(e^{x}: x \in E_{n-2}\right)}\left(e^{x}: x \in E_{n-1}\right)$.
- π is algebraic over $E_{n-2}\left(e^{x}: x \in E_{n-2}\right)\left(e^{x}: x \in E_{n-1}\right)$.
- π is algebraic over $E_{n-2}\left(e^{x}: x \in E_{n-1}\right)$.
- π is algebraic over $\mathbb{Q}\left(e^{x}: x \in E_{n-1}\right)$.

Therefore π is algebraic over $\mathbb{Q}\left(\exp \left(A_{n-1}\right)\right)$ for some finite $A_{n-1} \subseteq E_{n-1}$.

Key Construction

Following similarly:

- A_{n-1} is algebraic over $\mathbb{Q}\left(\exp \left(A_{n-2}\right)\right)$ for some finite $A_{n-2} \subseteq E_{n-2}$.

Key Construction

Following similarly:

- A_{n-1} is algebraic over $\mathbb{Q}\left(\exp \left(A_{n-2}\right)\right)$ for some finite $A_{n-2} \subseteq E_{n-2}$.
- A_{n-2} is algebraic over $\mathbb{Q}\left(\exp \left(A_{n-3}\right)\right)$ for some finite $A_{n-3} \subseteq E_{n-3}$.

Key Construction

Following similarly:

- A_{n-1} is algebraic over $\mathbb{Q}\left(\exp \left(A_{n-2}\right)\right)$ for some finite $A_{n-2} \subseteq E_{n-2}$.
- A_{n-2} is algebraic over $\mathbb{Q}\left(\exp \left(A_{n-3}\right)\right)$ for some finite $A_{n-3} \subseteq E_{n-3}$.
- A_{1} is algebraic over $\mathbb{Q}\left(\exp \left(A_{0}\right)\right)$ for some finite $A_{0} \subseteq E_{0}=\overline{\mathbb{Q}}$.

End of proof

- Set $A=\bigcup_{m \leq n-1} A_{m}$.

End of proof

- Set $A=\bigcup_{m \leq n-1} A_{m}$.
- Take $B \subseteq A$ such that $\exp (B)$ is a transcendence basis of $\mathbb{Q}(\exp (A))$.

End of proof

- Set $A=\bigcup_{m \leq n-1} A_{m}$.
- Take $B \subseteq A$ such that $\exp (B)$ is a transcendence basis of $\mathbb{Q}(\exp (A))$.
- $\{i \pi\} \cup B$ are \mathbb{Q}-linearly independent.

End of proof

- Set $A=\bigcup_{m \leq n-1} A_{m}$.
- Take $B \subseteq A$ such that $\exp (B)$ is a transcendence basis of $\mathbb{Q}(\exp (A))$.
- $\{i \pi\} \cup B$ are \mathbb{Q}-linearly independent.
- By Schanuel's Conjecture $\operatorname{trdeg}_{\mathbb{Q}} \mathbb{Q}(i \pi, B, \exp (B)) \geq|B|+1$.

End of proof

- Set $A=\bigcup_{m \leq n-1} A_{m}$.
- Take $B \subseteq A$ such that $\exp (B)$ is a transcendence basis of $\mathbb{Q}(\exp (A))$.
- $\{i \pi\} \cup B$ are \mathbb{Q}-linearly independent.
- By Schanuel's Conjecture $\operatorname{trdeg}_{\mathbb{Q}} \mathbb{Q}(i \pi, B, \exp (B)) \geq|B|+1$.
- But $\operatorname{trdeg}_{\mathbb{Q}} \mathbb{Q}(i \pi, B, \exp (B))=\operatorname{trdeg}_{\mathbb{Q}} \mathbb{Q}(i \pi, B, \exp (A))=$ $t^{\prime} \operatorname{leg}_{\mathbb{Q}} \mathbb{Q}(\exp (A))=\operatorname{trdeg}_{\mathbb{Q}} \mathbb{Q}(\exp (B)) \leq|B|$.

Main result

We say K_{1} and K_{2} are linearly disjoint over k iff:
$\left\{x_{1}, \ldots, x_{n}\right\} \subseteq K_{1}$ linearly independent over $k \Rightarrow$ linearly independent over K_{2}.

Theorem: Schanuel's Conjecture implies E and L are linearly disjoint over $\overline{\mathbb{Q}}$.

Corollaries:

- $E \cap L=\overline{\mathbb{Q}}$.

Corollaries:

- $E \cap L=\overline{\mathbb{Q}}$.
- $\pi, \log \pi, \log \log \pi, \ldots$ are algebraically independent over E.

Corollaries:

- $E \cap L=\overline{\mathbb{Q}}$.
- $\pi, \log \pi, \log \log \pi, \ldots$ are algebraically independent over E.
$-e, e^{e}, e^{e^{e}}, \ldots$ are algebraically independent over L.

The Proof

Let's prove E_{m} and L_{n} are linearly disjoint.
Take $\left\{I_{i}\right\} \subseteq L_{n}$ linearly independent over $\overline{\mathbb{Q}}$ and $\left\{e_{i}\right\} \subseteq E_{m}$ such that $\sum l_{i} e_{i}=0$.

The Proof

Let's prove E_{m} and L_{n} are linearly disjoint.
Take $\left\{I_{i}\right\} \subseteq L_{n}$ linearly independent over $\overline{\mathbb{Q}}$ and $\left\{e_{i}\right\} \subseteq E_{m}$ such that $\sum l_{i} e_{i}=0$.

Proceeding as before:
\exists finite $A \subseteq E_{m-1}$ such that $A \cup\left\{e_{i}\right\}$ algebraic over $\mathbb{Q}(\exp (A))$.
\exists finite $C \subseteq L_{n}$ finite such that $\exp (C) \cup\left\{l_{i}\right\}$ algebraic over $\mathbb{Q}(C)$.

The Proof

Let's prove E_{m} and L_{n} are linearly disjoint.
Take $\left\{I_{i}\right\} \subseteq L_{n}$ linearly independent over $\overline{\mathbb{Q}}$ and $\left\{e_{i}\right\} \subseteq E_{m}$ such that $\sum l_{i} e_{i}=0$.

Proceeding as before:
\exists finite $A \subseteq E_{m-1}$ such that $A \cup\left\{e_{i}\right\}$ algebraic over $\mathbb{Q}(\exp (A))$.
\exists finite $C \subseteq L_{n}$ finite such that $\exp (C) \cup\left\{l_{i}\right\}$ algebraic over $\mathbb{Q}(C)$.
Take $B \subseteq A$ such that $\exp (B)$ is a transcendence basis of $\mathbb{Q}(\exp (A))$.
Take $D \subseteq C$ such that D is a transcendence basis of $\mathbb{Q}(C)$.

The Proof

We have $B \cup D$ linearly independent over \mathbb{Q}.

The Proof

We have $B \cup D$ linearly independent over \mathbb{Q}.
By Schanuel's Conjecture $\operatorname{trdeg}_{\mathbb{Q}} \mathbb{Q}(B, D, \exp (B), \exp (D)) \geq|B|+|D|$.

The Proof

We have $B \cup D$ linearly independent over \mathbb{Q}.
By Schanuel's Conjecture $\operatorname{trdeg}_{\mathbb{Q}} \mathbb{Q}(B, D, \exp (B), \exp (D)) \geq|B|+|D|$.

However
$\operatorname{trdeg}_{\mathbb{Q}} \mathbb{Q}(B, D, \exp (B), \exp (D))=\operatorname{trdeg}_{\mathbb{Q}} \mathbb{Q}(\exp (B), D) \leq|B|+|D|$.

The Proof

Therefore $\mathbb{Q}(\exp (B))$ and $\mathbb{Q}(D)$ are free over $\overline{\mathbb{Q}}$, and the same is true for $\overline{\mathbb{Q}(\exp (B))}$ and $\overline{\mathbb{Q}(D)}$.

Since $\overline{\mathbb{Q}}$ is algebraically closed, $\overline{\mathbb{Q}(\exp (B))}$ and $\overline{\mathbb{Q}(D)}$ are linearly independent over $\overline{\mathbb{Q}}$ (see Lang's Algebra).

References

1. S. Lang, Algebra, Addison Wesley 1995.
2. Michel Waldschmidt, An introduction to irrationality and transcendence methods, Lecture Notes AWS 2008.
