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Hopf algebras (commutative, cocommutative, of finite type)
Algebraic groups (commutative, linear, over Q)

Exponential polynomials

Transcendence of values of exponential polynomials

Algebra of multizeta values
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Algebras (over k = C or k = Q)

A k-algebra (A, m,n) is a k-vector space A with a product
m: A A — Aandaunit n:k— A which are k-linear maps
such that the following diagrams commute:

A9 AR A 29 AxA
(Associativity) 1d@m | L m
AR A — A

m

koA B8 A904 2 Ask

(Unit) ! I m !
A A A
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Commutative algebras

A k-algebra is commutative if the diagram

ARA 5 AR A

m | L m
A A

commutes. Here 71(z ® y) =y ® .
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Coalgebras

A k-coalgebra (A, A, ¢) is a k-vector space A with a coproduct
A:A— A® A and a counit ¢ : A — k which are k-linear
maps such that the following diagrams commute:

A 2 ApA
(Coassociativity) Al | A®Id
ARA — ARARA
Id®A
A — A — A
(Counit) ! I A !

kA +— ARA — AREk
e®Id IdRe
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Commutative coalgebras

A k-coalgebra is commutative if the diagram

A — A

A | A
ARA — ARA

commutes.
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Bialgebras

A bialgebra (A, m,n,A,¢) is a k-algebra (A, m,n) together
with a coalgebra structure (A, A, ¢) which is compatible: A and
€ are algebra morphisms

Azy) = Ax)Ay),  e(zy) = e(z)e(y).
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Hopf Algebras

A Hopf algebra (H,m,n,A,¢,5) is a bialgebra (H,m,n, A, €)
with an antipode S : H — H which is a k-linear map such that
the following diagram commutes:

HoH & H 2 HeoH

1d®S | noe | | s®1d
HH — H «— HQH
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In a Hopf Algebra the primitive elements
Alx) =z 1+1®0x

satisfy €(x) = 0 and S(z) = —x; they form a Lie algebra for the
bracket

z,y] = zy — yz.
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In a Hopf Algebra the primitive elements
Alx)=zR1+1Rx

satisfy e(z) = 0 and S(z) = —x; they form a Lie algebra for the
bracket

z,y] = 2y —yu.
The group-like elements

Alz) =2z, =#0

are invertible, they satisfy e(z) = 1, S(x) = 2~ ! and form a
multiplicative group.
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Example 1.

Let G be a finite multiplicative group, kG the algebra of G over
k which is a k vector-space with basis G. The mapping

m: kG RX kG — kG

extends the product
(z,y) — zy
of GG by linearity. The unit

n:k— kG

maps 1 to 14.
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Define a coproduct and a counit
A:kG— kKGR EG and €: kG — k
by extending
Alx)=xz®x and €(x) =1 for x € G
by linearity. The antipode
S kG — kG

Is defined by
S(z)=z""' for x€G.
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Since A(z) = x ® ¢ for € G this Hopf algebra kG is
cocommutative.

It is a commutative algebra if and only if G is commutative.

The set of group like elements is GG: one recovers G from kG.
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Example 2.

Again let GG be a finite multiplicative group. Consider the k-
algebra k& of mappings G — k, with basis §, (g € G), where

1 for ¢ =g,
59(9/):{0 for ¢" # g.

Define m by

m(dg ® dy7) = 040,
Hence m is commutative and m(d, ® d,) = 9o, for g € G.
The unit 1 : k — k“ maps 1 to > gec 0g:

Academia Sinica, Taipei, October 30, 2003 14



Define a coproduct A : k¢ — k% @ k% and a counit € : k¥ — k
by
Z 5 1 X 5 » and 6(5g) = (Sg(l(;)

//_g
The coproduct A Is cocommutative if and only if the group G is

commutative.

Define an antipode S by

Remark. One may identify £ ® k¢ and £“*& with
0g ® g1 = 0g, g/
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Duality of Hopf Algebras

The Hopf algebras kG from example 1 and £“ from example 2
are dual from each other:

kG x kK¢ — k
(917592) — 592(91)

The basis G of kG is dual to the basis (J,),cq of kC.
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Example 3.

Let G be a topological compact group over C. Denote by
R(G) the set of continuous functions f : G — C such that the
translates f; : © — f(tx), for t € GG, span a finite dimensional

vector space.

Define a coproduct A, a counit € and an antipode S on R(G) by
Af(z,y) = f(zy), e(f)=fQ1), Sf(x)=f(z"")
for z, y € G.

Hence R((G) is a commutative Hopf algebra.
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Example 4.

Let g be a Lie algebra, i(g) its universal envelopping algebra,
namely T(g)/J where T(g) is the tensor algebra of g and J the
two sided ideal generated by XY — Y X — [ X, Y.

Define a coproduct A, a counit € and an antipode S on (g) by
Alx)=z1+1®z, €z)=0, Sk&) =—x

for x € g.
Hence iU(g) is a cocommutative Hopf algebra.

The set of primitive elements is g: one recovers g from (g).
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Duality of Hopf Algebras (again)

Let G be a compact connected Lie group with Lie algebra g.
Then the two Hopf algebras 93(G) and 4i(g) are dual from each
other.

Academia Sinica, Taipei, October 30, 2003 19



Bicommutative Hopf algebras of finite type
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Bicommutative Hopf algebras of finite type

k[X]@k[X]Ek[Tl,TQ], X®1—1T7, 1 X1

AP(X)=P(Ti+Ty), eP(X)=P(0), SP(X)=P(-X).
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Bicommutative Hopf algebras of finite type

X QKX ~klT),T3], X®1—1T;, 10X —T;
AP(X)=P(Ty +1T), eP(X)=P(0), SPX)=P(—X).

Gu(K) = Homg(k[X], K), Kk[Gd] = k[X]

k|G,] is a bicommutative Hopf algebra of finite type.
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Bicommutative Hopf algebras of finite type

2.

H=k[Y,Y™ Y, AY)=YQY, «Y)=1 SY)=Y"L
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Bicommutative Hopf algebras of finite type

2.
H=k[Y,Y™ Y, AY)=YQY, «Y)=1 SY)=Y"L

HoH~ET, T, 1, Ty, Y®1—T, 10Y — T,

AP(Y) = P(T\T,), €P(Y)=P(1), SPY)=PY™1.
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Bicommutative Hopf algebras of finite type

2.
H=kY, Y'Y, AY)=Y®Y, Y)=1 SY)=Y"1L

HoH~ET, T, 1, Ty, Y®1l—T, 1Y — T,
AP(Y) = P(I'Ty), eP(Y)=P(1), SPY)=PXY™ 1.
G, (K) = Homy(k[Y,Y Y, K), K[G,,]=kK[Y,Y 1],

k|G,,] is a bicommutative Hopf algebra of finite type.

Academia Sinica, Taipei, October 30, 2003 25



Bicommutative Hopf algebras of finite type

Primitive elements: k-space kX + --- 4+ kX,
dimension d.

Group-like elements: multiplicative group (Yi,...,Yq,),
rank d;.

G =G% x GY
k|G| =H, G(K)=Homg(H,K).
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Bicommutative Hopf algebras of finite type

The category of commutative linear algebraic groups over k
G = G% x GU s anti-equivalent to the category of Hopf
algebras of finite type which are bicommutative (commutative
and cocomutative)

H = k|G].
The vector space of primitive elements has dimension dy while
the rank of the group-like elements is d;.
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Other examples

If W is a k-vector space of dimension /¢y, Sym(W) is a

bicommutative Hopf algebra of finite type, anti-isomorphic to
k[G:

For a basis 01,...,0,, of W, Sym(W) ~ k|01, ..., 0.
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Other examples

If W is a k-vector space of dimension /¢y, Sym(W) is a

bicommutative Hopf algebra of finite type, anti-isomorphic to
k[G].

If I' is a torsion free finitely generated Z-module of rank /1, then
the group algebra kI' is again a bicommutative Hopf algebra of
finite type, anti-isomorphic to k[G'!]:

For a basis v1,...,7,, of I', kI' ~ k[y1,7 ', ... levW_ll]-
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Other examples

If W is a k-vector space of dimension /¢y, Sym(W) is a

bicommutative Hopf algebra of finite type, anti-isomorphic to
k[Gto].

If I' is a torsion free finitely generated Z-module of rank /1, then
the group algebra kI' is again a bicommutative Hopf algebra of
finite type, anti-isomorphic to k[G'1].

The category of bicommutative Hopf algebras of finite type is
equivalent to the category of pairs (W,T') where W is a k-vector
space and I' is a finitely generated Zi-module:

H = Sym(W) ® kI.
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Commutative linear algebraic groups over Q

G:GgOXG% d:do+d1

G(Q) =Q" x (@)™

(617 SR 7ﬁd07a17° . 705d1)

Academia Sinica, Taipei, October 30, 2003

31



Commutative linear algebraic groups over Q

G:GgOXG% d:do+d1
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Commutative linear algebraic groups over Q

G=Ghx Gl  d=dy+d

expgs : T.(G) = C? — G(C) = C% x (C*)%
(Zl7 sy Zd) = (Zl, <oy R e~do+l ,ezd)

For a;; and [3; in Q,

expa(Bi, .-, Bay,logai, ..., logag,) € G(Q)
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Baker’s Theorem. I[f
Bo + Prlogag + -+ Brlog oy, = 0

with algebraic B; and o, then
1. Bp =0
2. If (B1,...,0n) # (0,...,0), then logaq,...,loga, are Q-

linearly dependent.

3. If (logaq,...,logay) # (0,...,0), then B1,...,0, are Q-
linearly dependent.
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Example: (3 —2v/5)log3 + v/5log9 — log 27 = 0.
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Example: (3 —2v/5)log3 + v/5log9 — log 27 = 0.
Corollaries.

1. Hermaite-Lindemann (n = 1): transcendence of

e, m, log2, eV2,
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Example: (3 —2v/5)log3 + v/5log9 — log 27 = 0.
Corollaries.

1. Hermaite-Lindemann (n = 1): transcendence of
e, m, log2, eV2,

2. Gel’fond-Schneider (n =2, 3o = 0): transcendence of

2‘/5, log2/log3, e”.
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Example: (3 —2v/5)log3 + v/5log9 — log 27 = 0.
Corollaries.
1. Hermite-Lindemann (n = 1): transcendence of
e, m, log2, eV2,
2. Gel’fond-Schneider (n =2, 3o = 0): transcendence of
2‘/5, log2/log3, e".

3. Example with n = 2, By # 0: transcendence of
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Values of exponential polynomials

Proof of Baker’s Theorem. Assume

60 + 51 log a1+ -+ Bn—l lOg Ap—1 = lOg 879

(B1) (Gel'fond—Baker's Method)

Functions: 2y, e*l, ..., e*n—1, ePozotfizit +0n-12n—1

Points: Z(1,logaq,...,loga,, 1) € C”

Derivatives: 0/0z;, (0 <1 <n —1).

Academia Sinica, Taipei, October 30, 2003

39



Values of exponential polynomials

Proof of Baker’s Theorem. Assume

60 + 51 log a1+ -+ Bn—l lOg Ap—1 = lOg 879

(B1) (Gel'fond—Baker's Method)

e?n—1_ ebPozot+P1z1+ - +Bp-12n-1

Functions: zg, e*t, ...

Y, )

Points: Z(1,logaq,...,loga,, 1) € C”

Derivatives: 0/0z;, (0 <1 <n —1).

n + 1 functions, n variables, 1 point, n derivatives
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Another proof of Baker’s Theorem. Assume again

60 + 51 1Og a1+ - Bn—l lOg qp—1 = lOg Ay,

(B2) (Generalization of Schneider's method)

Functions: 29, 21, ..., 2n—1,
20 %1 | . “n—1
e R e

eXP{Zo +z1logay 4+ - + 2,1 log CVn—1}

Points: {0} x Z" 1 +Z(By,,...,3,-1) € C"
Derivative: 9/0z.
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Another proof of Baker’s Theorem. Assume again

Bo+ P1logan + -+ - + Bp_1log a1 = log ay,
(B2) (Generalization of Schneider’'s method)
Functions: zg, 21, ..., 2n—1,

z Lo —
€Z0a11 o o o a’n,n—ll p—

exp{zo+ z1logag + -+ zp_1logay, 1}

Points: {0} x Z" '+ Z(By,,...,3,—-1) € C"
Derivative: 0/0z.

n + 1 functions, n variables, n points, 1 derivative
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Six Exponentials Theorem. [f x1, x5 are two complex numbers
which are Q-linearly independent and if vy1,vy2,ys are three

complex numbers which are Q-linearly independent, then one
at least of the six numbers

e¥i¥i  (i=1,2, j=1,2,3)

18 transcendental.
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Proof of the sixz exponentials Theorem

Assume x1,...,x, are Q-linearly independent numbers and
Y1, ...,y are Q-linearly independent numbers such that

e"YieQ for i=1,...,a,,j=1,...,b

with ab > a + 0.
Functions: ¢** (1 <i<a)

Points: y, € C (1 <35 <))

a functions, 1 variable, b points, O derivative
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Linear Subgroup Theorem
G:GgOXG%, d:dg—l—dl

W C T.(G) a C-subspace which is rational over Q. Let ¢ be its
dimension.

Y C T.(G) a finitely generated subgroup with I' = exp(Y)
contained in G(Q) = Qdo X (Q ). Let /1 be the Z-rank of I

V C T.(G) a C-subspace containing both W and Y. Let n be
the dimension of V.

Hypothesis:

n(ly +dy) < l1dy + Lody + 1dy
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n(ﬁl -+ dl) < V1dq + lodq + Y1dg

do + dq 1s the number of functions
do are linear
d, are exponential

n is the number of variables

/o Is the number of derivatives

/1 is the number of points
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do | di | bo| V1| n
Baker B; 1l 1 mn|in|1|n
Baker B> n| 1|1 |ni|n
Six exponentials | 0 | a | O | b | 1
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do | di | bo| V1| n
Baker By l I n|in|l1l|n
Baker B> n| 1|1 |ni|n
Six exponentials | 0 | a | O | b | 1

Baker:

n(ly +di) =n°+n

gldl —|—€0d1 —|—€1d0 — TL2 +n + 1

Six exponentials: a + b < ab

n(l1+dy) =a+Db

€1d1 -+ €0d1 -+ €1d0 — ab
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duality:

(dOa d17 807 €1) A (607 g17 d07 dl)
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Fourier-Borel duality:

(dOa d17 807 €1) A (607 g17 d07 dl)
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For v = (vy,...,v,) € C", set

0 0
D - a nao
01821 L 3Zn

Let Wyyeooy Wyyy UpyeewsUg, X and y in C", t € N9 and
s € N, For z € C", write

(uz)t = (ug2)"--- (udog)tdo and D = Dill Do

_EO

Then

Da((u2)e2)| _ = Di((wz)*e)| _,
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Interpretation of the duality in terms of Hopf algebras
following Stéphane Fischler

Let ¢, be the category with

objects:  (G,W,T') where G = G% x G4, W C T.(G) is
rational over Q and I" € G(Q) is finitely generated

morphisms: f : (G1,W1,I'1) — (Go, W5, T'3) where f: Gy —
(G5 is a morphism of algebraic groups such that f(I'y) C I's and
f induces a morphism

df : TL(G1) — To(G)

such that df (Wy) C Wa.
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Let H be a bicommutative Hopf algebra over Q of finite type.
Denote by dy the dimension of the Q-vector space of primitive
elements and by d; the rank of the group of group-like elements.

Let H’ be also a bicommutative Hopf algebra over Q of finite
type, £p the dimension of the space of primitive elements and /4

the rank of the group-like elements.

Let (-) : H x H" — Q be a bilinear product such that

(x,yy") = (Az,y®y) and (zz',y) = (z @2, Ay).
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Let ¢, be the category with

objects: (H,H',(-)) pair of Hopf algebras with a bilinear product
as above.

morphisms:  (f,g) + (H1, Hy, (\)1) — (Hz, Hy, (-)2) where [ :
Hy — Hy and g : H), — H{ are Hopf algebras morphisms such
that

(21, 9(x5))1 = (f(z1), T3)o.
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Stéphane Fischler: The categories €1 and €5 are equivalent.
Further, Fourier-Borel duality amounts to permute H and H',

Consequence: interpolation lemmas are equivalent to zero
estimates.
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Stéphane Fischler: The categories €1 and €5 are equivalent.

For R € C|G], 01,...,0, € W and v €T, set

Conversely, for H; = C|G] and Hy = Sym(W) ® kL', consider

I — G(C)

v — (R~ (R,7))
and

w — T.(G)

0 +— (R~ (R,0))
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Stéphane Fischler: The categories €1 and €5 are equivalent.
Further, Fourier-Borel duality amounts to permute H and H',

Open Problems:

e Define n associated with (G,T", W) in terms of (H, H', (-))
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Stéphane Fischler: The categories €1 and €5 are equivalent.
Further, Fourier-Borel duality amounts to permute H and H'.

Open Problems:
e Define n associated with (G,T", W) in terms of (H, H', (-))

e Extend to non linear commutative algebraic groups (elliptic
curves, abelian varieties, and generally semi-abelian varieties)
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Stéphane Fischler: The categories €1 and €5 are equivalent.
Further, Fourier-Borel duality amounts to permute H and H'.

Open Problems:
e Define n associated with (G,T", W) in terms of (H, H', (-))

e Extend to non linear commutative algebraic groups (elliptic
curves, abelian varieties, and generally semi-abelian varieties)

e Extend to non bicommutative Hopf algebras (of finite type to
start with)
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Stéphane Fischler: The categories €1 and €5 are equivalent.
Further, Fourier-Borel duality amounts to permute H and H'.

Open Problems:
e Define n associated with (G,T", W) in terms of (H, H', (-))

e Extend to non linear commutative algebraic groups (elliptic
curves, abelian varieties, and generally semi-abelian varieties)

e Extend to non bicommutative Hopf algebras (of finite type to
start with)

e (7) Transcendence results on non commutative algebraic groups
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