Hopf algebras and
 Diophantine problems

Michel Waldschmidt

miw@math.jussieu.fr

Hopf algebras (commutative, cocommutative, of finite type)
Algebraic groups (commutative, linear, over $\overline{\mathbf{Q}}$)
Exponential polynomials
Transcendence of values of exponential polynomials
Algebra of multizeta values

Algebras (over $k=\mathbf{C}$ or $k=\overline{\mathbf{Q}}$)

A k-algebra (A, m, η) is a k-vector space A with a product $m: A \otimes A \rightarrow A$ and a unit $\eta: k \longrightarrow A$ which are k-linear maps such that the following diagrams commute:

Commutative algebras

A k-algebra is commutative if the diagram

commutes. Here $\tau(x \otimes y)=y \otimes x$.

Coalgebras

A k-coalgebra (A, Δ, ϵ) is a k-vector space A with a coproduct $\Delta: A \rightarrow A \otimes A$ and a counit $\epsilon: A \longrightarrow k$ which are k-linear maps such that the following diagrams commute:

Commutative coalgebras

A k-coalgebra is commutative if the diagram

commutes.

Bialgebras

A bialgebra $(A, m, \eta, \Delta, \epsilon)$ is a k-algebra (A, m, η) together with a coalgebra structure (A, Δ, ϵ) which is compatible: Δ and ϵ are algebra morphisms

$$
\Delta(x y)=\Delta(x) \Delta(y), \quad \epsilon(x y)=\epsilon(x) \epsilon(y)
$$

Hopf Algebras

A Hopf algebra $(H, m, \eta, \Delta, \epsilon, S)$ is a bialgebra $(H, m, \eta, \Delta, \epsilon)$ with an antipode $S: H \rightarrow H$ which is a k-linear map such that the following diagram commutes:

$$
\begin{array}{crrcc}
H \otimes H & \stackrel{\Delta}{\rightleftarrows} & H & \xrightarrow{\longrightarrow} & H \otimes H \\
\mathrm{Id} \otimes S \downarrow & \eta \circ \epsilon \downarrow & & \downarrow S \otimes \mathrm{Id} \\
H \otimes H & \underset{m}{l} & H & \overleftarrow{m} & H \otimes H
\end{array}
$$

In a Hopf Algebra the primitive elements

$$
\Delta(x)=x \otimes 1+1 \otimes x
$$

satisfy $\epsilon(x)=0$ and $S(x)=-x$; they form a Lie algebra for the bracket

$$
[x, y]=x y-y x
$$

In a Hopf Algebra the primitive elements

$$
\Delta(x)=x \otimes 1+1 \otimes x
$$

satisfy $\epsilon(x)=0$ and $S(x)=-x$; they form a Lie algebra for the bracket

$$
[x, y]=x y-y x
$$

The group-like elements

$$
\Delta(x)=x \otimes x, \quad x \neq 0
$$

are invertible, they satisfy $\epsilon(x)=1, S(x)=x^{-1}$ and form a multiplicative group.

Example 1.

Let G be a finite multiplicative group, $k G$ the algebra of G over k which is a k vector-space with basis G. The mapping

$$
m: k G \otimes k G \rightarrow k G
$$

extends the product

$$
(x, y) \mapsto x y
$$

of G by linearity. The unit

$$
\eta: k \rightarrow k G
$$

maps 1 to 1_{G}.

Define a coproduct and a counit

$$
\Delta: k G \rightarrow k G \otimes k G \text { and } \epsilon: k G \rightarrow k
$$

by extending

$$
\Delta(x)=x \otimes x \quad \text { and } \quad \epsilon(x)=1 \quad \text { for } \quad x \in G
$$

by linearity. The antipode

$$
S: k G \rightarrow k G
$$

is defined by

$$
S(x)=x^{-1} \text { for } x \in G .
$$

Since $\Delta(x)=x \otimes x$ for $x \in G$ this Hopf algebra $k G$ is cocommutative.

It is a commutative algebra if and only if G is commutative.
The set of group like elements is G : one recovers G from $k G$.

Example 2.

Again let G be a finite multiplicative group. Consider the k algebra k^{G} of mappings $G \rightarrow k$, with basis $\delta_{g}(g \in G)$, where

$$
\delta_{g}\left(g^{\prime}\right)= \begin{cases}1 & \text { for } g^{\prime}=g \\ 0 & \text { for } g^{\prime} \neq g\end{cases}
$$

Define m by

$$
m\left(\delta_{g} \otimes \delta_{g^{\prime}}\right)=\delta_{g} \delta_{g^{\prime}}
$$

Hence m is commutative and $m\left(\delta_{g} \otimes \delta_{g}\right)=\delta_{g}$ for $g \in G$. The unit $\eta: k \rightarrow k^{G}$ maps 1 to $\sum_{g \in G} \delta_{g}$.

Define a coproduct $\Delta: k^{G} \rightarrow k^{G} \otimes k^{G}$ and a counit $\epsilon: k^{G} \rightarrow k$ by

$$
\Delta\left(\delta_{g}\right)=\sum_{g^{\prime} g^{\prime \prime}=g} \delta_{g^{\prime}} \otimes \delta_{g^{\prime \prime}} \quad \text { and } \quad \epsilon\left(\delta_{g}\right)=\delta_{g}\left(1_{G}\right)
$$

The coproduct Δ is cocommutative if and only if the group G is commutative.

Define an antipode S by

$$
S\left(\delta_{g}\right)=\delta_{g^{-1}}
$$

Remark. One may identify $k^{G} \otimes k^{G}$ and $k^{G \times G}$ with

$$
\delta_{g} \otimes \delta_{g^{\prime}}=\delta_{g, g^{\prime}}
$$

Duality of Hopf Algebras

The Hopf algebras $k G$ from example 1 and k^{G} from example 2 are dual from each other:

$$
\begin{array}{ccc}
k G \times k^{G} & \longrightarrow & k \\
\left(g_{1}, \delta_{g_{2}}\right) & \longmapsto & \delta_{g_{2}}\left(g_{1}\right)
\end{array}
$$

The basis G of $k G$ is dual to the basis $\left(\delta_{g}\right)_{g \in G}$ of k^{G}.

Example 3.

Let G be a topological compact group over C. Denote by $\mathfrak{R}(G)$ the set of continuous functions $f: G \rightarrow \mathbf{C}$ such that the translates $f_{t}: x \mapsto f(t x)$, for $t \in G$, span a finite dimensional vector space.

Define a coproduct Δ, a counit ϵ and an antipode S on $\mathfrak{R}(G)$ by

$$
\Delta f(x, y)=f(x y), \quad \epsilon(f)=f(1), \quad S f(x)=f\left(x^{-1}\right)
$$

for $x, y \in G$.
Hence $\mathfrak{R}(G)$ is a commutative Hopf algebra.

Example 4.

Let \mathfrak{g} be a Lie algebra, $\mathfrak{U}(\mathfrak{g})$ its universal envelopping algebra, namely $\mathfrak{T}(\mathfrak{g}) / \mathfrak{I}$ where $\mathfrak{T}(\mathfrak{g})$ is the tensor algebra of \mathfrak{g} and \mathfrak{I} the two sided ideal generated by $X Y-Y X-[X, Y]$.

Define a coproduct Δ, a counit ϵ and an antipode S on $\mathfrak{U}(\mathfrak{g})$ by

$$
\Delta(x)=x \otimes 1+1 \otimes x, \quad \epsilon(x)=0, \quad S(x)=-x
$$

for $x \in \mathfrak{g}$.
Hence $\mathfrak{U}(\mathfrak{g})$ is a cocommutative Hopf algebra.
The set of primitive elements is \mathfrak{g} : one recovers \mathfrak{g} from $\mathfrak{U}(\mathfrak{g})$.

Duality of Hopf Algebras (again)

Let G be a compact connected Lie group with Lie algebra \mathfrak{g}. Then the two Hopf algebras $\mathfrak{R}(G)$ and $\mathfrak{U}(\mathfrak{g})$ are dual from each other.

Bicommutative Hopf algebras of finite type

1.

$$
H=k[X], \quad \Delta(X)=X \otimes 1+1 \otimes X, \quad \epsilon(X)=0, \quad S(X)=-X
$$

Bicommutative Hopf algebras of finite type

1.

$$
H=k[X], \quad \Delta(X)=X \otimes 1+1 \otimes X, \quad \epsilon(X)=0, \quad S(X)=-X
$$

$$
k[X] \otimes k[X] \simeq k\left[T_{1}, T_{2}\right], \quad X \otimes 1 \mapsto T_{1}, \quad 1 \otimes X \mapsto T_{2}
$$

$$
\Delta P(X)=P\left(T_{1}+T_{2}\right), \quad \epsilon P(X)=P(0), \quad S P(X)=P(-X)
$$

Bicommutative Hopf algebras of finite type

1.

$$
H=k[X], \quad \Delta(X)=X \otimes 1+1 \otimes X, \quad \epsilon(X)=0, \quad S(X)=-X .
$$

$$
k[X] \otimes k[X] \simeq k\left[T_{1}, T_{2}\right], \quad X \otimes 1 \mapsto T_{1}, \quad 1 \otimes X \mapsto T_{2}
$$

$\Delta P(X)=P\left(T_{1}+T_{2}\right), \quad \epsilon P(X)=P(0), \quad S P(X)=P(-X)$.
$\mathbf{G}_{a}(K)=\operatorname{Hom}_{k}(k[X], K), \quad k\left[\mathbf{G}_{a}\right]=k[X]$
$k\left[\mathbf{G}_{a}\right]$ is a bicommutative Hopf algebra of finite type.

Bicommutative Hopf algebras of finite type

2.

$$
H=k\left[Y, Y^{-1}\right], \quad \Delta(Y)=Y \otimes Y, \quad \epsilon(Y)=1, \quad S(Y)=Y^{-1}
$$

Bicommutative Hopf algebras of finite type

2.

$$
H=k\left[Y, Y^{-1}\right], \quad \Delta(Y)=Y \otimes Y, \quad \epsilon(Y)=1, \quad S(Y)=Y^{-1}
$$

$$
H \otimes H \simeq k\left[T_{1}, T_{1}^{-1}, T_{2}, T_{2}^{-1}\right], \quad Y \otimes 1 \mapsto T_{1}, \quad 1 \otimes Y \mapsto T_{2}
$$

$$
\Delta P(Y)=P\left(T_{1} T_{2}\right), \quad \epsilon P(Y)=P(1), \quad S P(Y)=P\left(Y^{-1}\right)
$$

Bicommutative Hopf algebras of finite type

2.

$$
H=k\left[Y, Y^{-1}\right], \quad \Delta(Y)=Y \otimes Y, \quad \epsilon(Y)=1, \quad S(Y)=Y^{-1}
$$

$$
H \otimes H \simeq k\left[T_{1}, T_{1}^{-1}, T_{2}, T_{2}^{-1}\right], \quad Y \otimes 1 \mapsto T_{1}, \quad 1 \otimes Y \mapsto T_{2}
$$

$$
\Delta P(Y)=P\left(T_{1} T_{2}\right), \quad \epsilon P(Y)=P(1), \quad S P(Y)=P\left(Y^{-1}\right)
$$

$$
\mathbf{G}_{m}(K)=\operatorname{Hom}_{k}\left(k\left[Y, Y^{-1}\right], K\right), \quad k\left[\mathbf{G}_{m}\right]=k\left[Y, Y^{-1}\right]
$$

$k\left[\mathbf{G}_{m}\right]$ is a bicommutative Hopf algebra of finite type.

Bicommutative Hopf algebras of finite type

3.

$$
\begin{aligned}
H & =k\left[X_{1}, \ldots, X_{d_{0}}, Y_{1}, Y_{1}^{-1}, \ldots, Y_{d_{1}}, Y_{d_{1}}^{-1}\right] \\
& \simeq k[X]^{\otimes d_{0}} \otimes k\left[Y, Y^{-1}\right]^{\otimes d_{1}}
\end{aligned}
$$

Primitive elements: k-space $k X_{1}+\cdots+k X_{d_{0}}$, dimension d_{0}.

Group-like elements: multiplicative group $\left\langle Y_{1}, \ldots, Y_{d_{1}}\right\rangle$, rank d_{1}.

$$
\begin{gathered}
G=\mathbf{G}_{a}^{d_{0}} \times \mathbf{G}_{m}^{d_{1}} \\
k[G]=H, \quad G(K)=\operatorname{Hom}_{k}(H, K) .
\end{gathered}
$$

Bicommutative Hopf algebras of finite type

3.

$$
\begin{aligned}
H & =k\left[X_{1}, \ldots, X_{d_{0}}, Y_{1}, Y_{1}^{-1}, \ldots, Y_{d_{1}}, Y_{d_{1}}^{-1}\right] \\
& \simeq k[X]^{\otimes d_{0}} \otimes k\left[Y, Y^{-1}\right]^{\otimes d_{1}}
\end{aligned}
$$

The category of commutative linear algebraic groups over k $G=\mathbf{G}_{a}^{d_{0}} \times \mathbf{G}_{m}^{d_{1}}$ is anti-equivalent to the category of Hopf algebras of finite type which are bicommutative (commutative and cocomutative)

$$
H=k[G] .
$$

The vector space of primitive elements has dimension d_{0} while the rank of the group-like elements is d_{1}.

Other examples

If W is a k-vector space of dimension $\ell_{0}, \operatorname{Sym}(W)$ is a bicommutative Hopf algebra of finite type, anti-isomorphic to $k\left[\mathbf{G}_{a}^{\ell_{0}}\right]:$

For a basis $\partial_{1}, \ldots, \partial_{\ell_{0}}$ of $W, \operatorname{Sym}(W) \simeq k\left[\partial_{1}, \ldots, \partial_{\ell_{0}}\right]$.

Other examples

If W is a k-vector space of dimension $\ell_{0}, \operatorname{Sym}(W)$ is a bicommutative Hopf algebra of finite type, anti-isomorphic to $k\left[\mathbf{G}_{a}^{\ell_{0}}\right]$.

If Γ is a torsion free finitely generated Z -module of rank ℓ_{1}, then the group algebra $k \Gamma$ is again a bicommutative Hopf algebra of finite type, anti-isomorphic to $k\left[\mathbf{G}_{m}^{\ell_{1}}\right]$:

For a basis $\gamma_{1}, \ldots, \gamma_{\ell_{1}}$ of $\Gamma, k \Gamma \simeq k\left[\gamma_{1}, \gamma_{1}^{-1}, \ldots, \gamma_{\ell_{1}}, \gamma_{\ell_{1}}^{-1}\right]$.

Other examples

If W is a k-vector space of dimension $\ell_{0}, \operatorname{Sym}(W)$ is a bicommutative Hopf algebra of finite type, anti-isomorphic to $k\left[\mathbf{G}_{a}^{\ell_{0}}\right]$.

If Γ is a torsion free finitely generated Z -module of rank ℓ_{1}, then the group algebra $k \Gamma$ is again a bicommutative Hopf algebra of finite type, anti-isomorphic to $k\left[\mathbf{G}_{m}^{\ell_{1}}\right]$.

The category of bicommutative Hopf algebras of finite type is equivalent to the category of pairs (W, Γ) where W is a k-vector space and Γ is a finitely generated \mathbf{Z}-module:

$$
H=\operatorname{Sym}(W) \otimes k \Gamma
$$

Commutative linear algebraic groups over $\overline{\mathbf{Q}}$

$$
\begin{aligned}
G=\mathbf{G}_{a}^{d_{0}} \times \mathbf{G}_{m}^{d_{1}} \quad & d=d_{0}+d_{1} \\
& G(\overline{\mathbf{Q}})=\overline{\mathbf{Q}}^{d_{0}} \times\left(\overline{\mathbf{Q}}^{\times}\right)^{d_{1}} \\
& \left(\beta_{1}, \ldots, \beta_{d_{0}}, \alpha_{1}, \ldots, \alpha_{d_{1}}\right)
\end{aligned}
$$

Commutative linear algebraic groups over $\overline{\mathbf{Q}}$

$$
\begin{aligned}
G=\mathbf{G}_{a}^{d_{0}} \times \mathbf{G}_{m}^{d_{1}} \quad & d=d_{0}+d_{1} \\
& G(\overline{\mathbf{Q}})=\overline{\mathbf{Q}}^{d_{0}} \times\left(\overline{\mathbf{Q}}^{\times}\right)^{d_{1}}
\end{aligned}
$$

$$
\begin{aligned}
\exp _{G}: T_{e}(G)=\mathbf{C}^{d} & \longrightarrow G(\mathbf{C})=\mathbf{C}^{d_{0}} \times\left(\mathbf{C}^{\times}\right)^{d_{1}} \\
\left(z_{1}, \ldots, z_{d}\right) & \longmapsto\left(z_{1}, \ldots, z_{d_{0}}, e^{z_{d_{0}+1}}, \ldots, e^{z_{d}}\right)
\end{aligned}
$$

Commutative linear algebraic groups over $\overline{\mathbf{Q}}$

$$
\begin{array}{ll}
G=\mathbf{G}_{a}^{d_{0}} \times \mathbf{G}_{m}^{d_{1}} & d=d_{0}+d_{1} \\
& G(\overline{\mathbf{Q}})=\overline{\mathbf{Q}}^{d_{0}} \times\left(\overline{\mathbf{Q}}^{\times}\right)^{d_{1}}
\end{array}
$$

$$
\exp _{G}: T_{e}(G)=\mathbf{C}^{d} \longrightarrow G(\mathbf{C})=\mathbf{C}^{d_{0}} \times\left(\mathbf{C}^{\times}\right)^{d_{1}}
$$

$$
\left(z_{1}, \ldots, z_{d}\right) \longmapsto\left(z_{1}, \ldots, z_{d_{0}}, e^{z_{d_{0}+1}}, \ldots, e^{z_{d}}\right)
$$

For α_{j} and β_{i} in $\overline{\mathbf{Q}}$,

$$
\exp _{G}\left(\beta_{1}, \ldots, \beta_{d_{0}}, \log \alpha_{1}, \ldots, \log \alpha_{d_{1}}\right) \in G(\overline{\mathbf{Q}})
$$

Baker's Theorem. If

$$
\beta_{0}+\beta_{1} \log \alpha_{1}+\cdots+\beta_{n} \log \alpha_{n}=0
$$

with algebraic β_{i} and α_{j}, then

1. $\beta_{0}=0$
2. If $\left(\beta_{1}, \ldots, \beta_{n}\right) \neq(0, \ldots, 0)$, then $\log \alpha_{1}, \ldots, \log \alpha_{n}$ are \mathbf{Q} linearly dependent.
3. If $\left(\log \alpha_{1}, \ldots, \log \alpha_{n}\right) \neq(0, \ldots, 0)$, then $\beta_{1}, \ldots, \beta_{n}$ are \mathbf{Q} linearly dependent.

Example: $\quad(3-2 \sqrt{5}) \log 3+\sqrt{5} \log 9-\log 27=0$.

Example: $\quad(3-2 \sqrt{5}) \log 3+\sqrt{5} \log 9-\log 27=0$.

Corollaries.

1. Hermite-Lindemann $(n=1)$: transcendence of

$$
e, \quad \pi, \quad \log 2, \quad e^{\sqrt{2}}
$$

Example: $\quad(3-2 \sqrt{5}) \log 3+\sqrt{5} \log 9-\log 27=0$.

Corollaries.

1. Hermite-Lindemann $(n=1)$: transcendence of

$$
e, \quad \pi, \quad \log 2, \quad e^{\sqrt{2}}
$$

2. Gel'fond-Schneider $\left(n=2, \beta_{0}=0\right)$: transcendence of

$$
2^{\sqrt{2}}, \quad \log 2 / \log 3, \quad e^{\pi}
$$

Example: $\quad(3-2 \sqrt{5}) \log 3+\sqrt{5} \log 9-\log 27=0$.

Corollaries.

1. Hermite-Lindemann $(n=1)$: transcendence of

$$
e, \quad \pi, \quad \log 2, \quad e^{\sqrt{2}}
$$

2. Gel'fond-Schneider $\left(n=2, \beta_{0}=0\right)$: transcendence of

$$
2^{\sqrt{2}}, \quad \log 2 / \log 3, \quad e^{\pi}
$$

3. Example with $n=2, \beta_{0} \neq 0$: transcendence of

$$
\int_{0}^{1} \frac{d x}{1+x^{3}}=\frac{1}{3} \log 2+\frac{\pi}{3 \sqrt{3}}
$$

Values of exponential polynomials

Proof of Baker's Theorem. Assume

$$
\beta_{0}+\beta_{1} \log \alpha_{1}+\cdots+\beta_{n-1} \log \alpha_{n-1}=\log \alpha_{n}
$$

(B_{1}) (Gel'fond-Baker's Method)
Functions: $z_{0}, e^{z_{1}}, \ldots, e^{z_{n-1}}, e^{\beta_{0} z_{0}+\beta_{1} z_{1}+\cdots+\beta_{n-1} z_{n-1}}$
Points: $\mathbf{Z}\left(1, \log \alpha_{1}, \ldots, \log \alpha_{n-1}\right) \in \mathbf{C}^{n}$
Derivatives: $\partial / \partial z_{i},(0 \leq i \leq n-1)$.

Values of exponential polynomials

Proof of Baker's Theorem. Assume

$$
\beta_{0}+\beta_{1} \log \alpha_{1}+\cdots+\beta_{n-1} \log \alpha_{n-1}=\log \alpha_{n}
$$

(B_{1}) (Gel'fond-Baker's Method)
Functions: $z_{0}, e^{z_{1}}, \ldots, e^{z_{n-1}}, e^{\beta_{0} z_{0}+\beta_{1} z_{1}+\cdots+\beta_{n-1} z_{n-1}}$
Points: $\mathbf{Z}\left(1, \log \alpha_{1}, \ldots, \log \alpha_{n-1}\right) \in \mathbf{C}^{n}$
Derivatives: $\partial / \partial z_{i},(0 \leq i \leq n-1)$.

$$
n+1 \text { functions, } n \text { variables, } 1 \text { point, } n \text { derivatives }
$$

Another proof of Baker's Theorem. Assume again

$$
\beta_{0}+\beta_{1} \log \alpha_{1}+\cdots+\beta_{n-1} \log \alpha_{n-1}=\log \alpha_{n}
$$

$\left(B_{2}\right)$ (Generalization of Schneider's method)
Functions: $z_{0}, z_{1}, \ldots, z_{n-1}$,

$$
\begin{aligned}
e^{z_{0}} \alpha_{1}^{z_{1}} \cdots \alpha_{n-1}^{z_{n-1}} & = \\
& \exp \left\{z_{0}+z_{1} \log \alpha_{1}+\cdots+z_{n-1} \log \alpha_{n-1}\right\}
\end{aligned}
$$

Points: $\{0\} \times \mathbf{Z}^{n-1}+\mathbf{Z}\left(\beta_{0},, \ldots, \beta_{n-1}\right) \in \mathbf{C}^{n}$
Derivative: $\partial / \partial z_{0}$.

Another proof of Baker's Theorem. Assume again

$$
\beta_{0}+\beta_{1} \log \alpha_{1}+\cdots+\beta_{n-1} \log \alpha_{n-1}=\log \alpha_{n}
$$

$\left(B_{2}\right)$ (Generalization of Schneider's method)
Functions: $z_{0}, z_{1}, \ldots, z_{n-1}$,

$$
\begin{aligned}
e^{z_{0}} \alpha_{1}^{z_{1}} \cdots \alpha_{n-1}^{z_{n-1}}= & \\
& \exp \left\{z_{0}+z_{1} \log \alpha_{1}+\cdots+z_{n-1} \log \alpha_{n-1}\right\}
\end{aligned}
$$

Points: $\{0\} \times \mathbf{Z}^{n-1}+\mathbf{Z}\left(\beta_{0}, \ldots, \beta_{n-1}\right) \in \mathbf{C}^{n}$
Derivative: $\partial / \partial z_{0}$.

$$
n+1 \text { functions, } n \text { variables, } n \text { points, } 1 \text { derivative }
$$

Six Exponentials Theorem. If x_{1}, x_{2} are two complex numbers which are Q-linearly independent and if y_{1}, y_{2}, y_{3} are three complex numbers which are Q-linearly independent, then one at least of the six numbers

$$
e^{x_{i} y_{j}} \quad(i=1,2, j=1,2,3)
$$

is transcendental.

Proof of the six exponentials Theorem

Assume x_{1}, \ldots, x_{a} are \mathbf{Q}-linearly independent numbers and y_{1}, \ldots, y_{b} are \mathbf{Q}-linearly independent numbers such that

$$
e^{x_{i} y_{j}} \in \overline{\mathbf{Q}} \quad \text { for } \quad i=1, \ldots, a,, j=1, \ldots, b
$$

with $a b>a+b$.
Functions: $e^{x_{i} z} \quad(1 \leq i \leq a)$
Points: $y_{j} \in \mathbf{C} \quad(1 \leq j \leq b)$

$$
a \text { functions, } 1 \text { variable, } b \text { points, } 0 \text { derivative }
$$

Linear Subgroup Theorem

$G=\mathbf{G}_{a}^{d_{0}} \times \mathbf{G}_{m}^{d_{1}}, \quad d=d_{0}+d_{1}$.
$W \subset T_{e}(G)$ a C-subspace which is rational over $\overline{\mathbf{Q}}$. Let ℓ_{0} be its dimension.
$Y \subset T_{e}(G)$ a finitely generated subgroup with $\Gamma=\exp (Y)$ contained in $G(\overline{\mathbf{Q}})=\overline{\mathbf{Q}}^{d_{0}} \times\left(\overline{\mathbf{Q}}^{\times}\right)^{d_{1}}$. Let ℓ_{1} be the Z-rank of Γ.
$V \subset T_{e}(G)$ a C-subspace containing both W and Y. Let n be the dimension of V.

Hypothesis:

$$
n\left(\ell_{1}+d_{1}\right)<\ell_{1} d_{1}+\ell_{0} d_{1}+\ell_{1} d_{0}
$$

$$
n\left(\ell_{1}+d_{1}\right)<\ell_{1} d_{1}+\ell_{0} d_{1}+\ell_{1} d_{0}
$$

$d_{0}+d_{1}$ is the number of functions
d_{0} are linear
d_{1} are exponential
n is the number of variables
ℓ_{0} is the number of derivatives
ℓ_{1} is the number of points

	d_{0}	d_{1}	ℓ_{0}	ℓ_{1}	n
Baker B_{1}	1	n	n	1	n
Baker B_{2}	n	1	1	n	n
Six exponentials	0	a	0	b	1

	d_{0}	d_{1}	ℓ_{0}	ℓ_{1}	n
Baker B_{1}	1	n	n	1	n
Baker B_{2}	n	1	1	n	n
Six exponentials	0	a	0	b	1

Baker:

$$
\begin{gathered}
n\left(\ell_{1}+d_{1}\right)=n^{2}+n \\
\ell_{1} d_{1}+\ell_{0} d_{1}+\ell_{1} d_{0}=n^{2}+n+1
\end{gathered}
$$

Six exponentials: $a+b<a b$

$$
\begin{gathered}
n\left(\ell_{1}+d_{1}\right)=a+b \\
\ell_{1} d_{1}+\ell_{0} d_{1}+\ell_{1} d_{0}=a b
\end{gathered}
$$

duality:

$$
\begin{aligned}
\left(d_{0}, d_{1}, \ell_{0}, \ell_{1}\right) & \longleftrightarrow\left(\ell_{0}, \ell_{1}, d_{0}, d_{1}\right) \\
\left(\frac{d}{d z}\right)^{s}\left(z^{t} e^{x z}\right)_{z=y} & =\left(\frac{d}{d z}\right)^{t}\left(z^{s} e^{y z}\right)_{z=x}
\end{aligned}
$$

Fourier-Borel duality:

$$
\begin{gathered}
\left(d_{0}, d_{1}, \ell_{0}, \ell_{1}\right) \longleftrightarrow\left(\ell_{0}, \ell_{1}, d_{0}, d_{1}\right) \\
\left(\frac{d}{d z}\right)^{s}\left(z^{t} e^{x z}\right)_{z=y}=\left(\frac{d}{d z}\right)^{t}\left(z^{s} e^{y z}\right)_{z=x} \\
\mathrm{~L}_{s y}: f \longmapsto\left(\frac{d}{d z}\right)^{s} f(y) . \\
f_{\zeta}(z)=e^{z \zeta}, \quad \mathrm{~L}_{s y}\left(f_{\zeta}\right)=\zeta^{s} e^{y \zeta} \\
\mathrm{~L}_{s y}\left(z^{t} f_{\zeta}\right)=\left(\frac{d}{d \zeta}\right)^{t} \mathrm{~L}_{s y}\left(f_{\zeta}\right)
\end{gathered}
$$

For $\underline{v}=\left(v_{1}, \ldots, v_{n}\right) \in \mathbf{C}^{n}$, set

$$
D_{\underline{v}}=v_{1} \frac{\partial}{\partial z_{1}}+\cdots+v_{n} \frac{\partial}{\partial z_{n}} .
$$

Let $\underline{w}_{1}, \ldots, \underline{w}_{\ell_{0}}, \underline{u}_{1}, \ldots, \underline{u}_{d_{0}}, \underline{x}$ and \underline{y} in $\mathbf{C}^{n}, \underline{t} \in \mathbf{N}^{d_{0}}$ and $\underline{s} \in \mathbf{N}^{\ell_{0}}$. For $\underline{z} \in \mathbf{C}^{n}$, write

$$
(\mathbf{u} \underline{z})^{\underline{t}}=\left(\underline{u}_{1} \underline{z}\right)^{t_{1}} \cdots\left(\underline{u}_{d_{0}} \underline{z}\right)^{t_{d_{0}}} \quad \text { and } \quad D D_{\mathbf{w}}^{s}=D_{\underline{w}_{1}}^{s_{1}} \cdots D_{\underline{w}_{\ell_{0}}}^{s_{\ell_{0}}} .
$$

Then

$$
\left.D_{\mathrm{w}}^{\underline{s}}\left((\mathbf{u} \underline{z})^{\underline{t}} e^{\underline{x} \underline{z}}\right)\right|_{\underline{z}=\underline{y}}=\left.D_{\underline{\mathbf{u}}}^{\underline{t}}\left((\mathbf{w} \underline{z})^{\underline{s}} e^{\underline{y} \underline{z}}\right)\right|_{\underline{z}=\underline{x}}
$$

Interpretation of the duality in terms of Hopf algebras

following Stéphane Fischler

Let \mathfrak{C}_{1} be the category with
objects: $\quad(G, W, \Gamma)$ where $G=\mathbf{G}_{a}^{d_{0}} \times \mathbf{G}_{m}^{d_{1}}, W \subset T_{e}(G)$ is rational over $\overline{\mathbf{Q}}$ and $\Gamma \in G(\overline{\mathbf{Q}})$ is finitely generated
morphisms: $\quad f:\left(G_{1}, W_{1}, \Gamma_{1}\right) \rightarrow\left(G_{2}, W_{2}, \Gamma_{2}\right)$ where $f: G_{1} \rightarrow$ G_{2} is a morphism of algebraic groups such that $f\left(\Gamma_{1}\right) \subset \Gamma_{2}$ and f induces a morphism

$$
d f: T_{e}\left(G_{1}\right) \longrightarrow T_{e}\left(G_{2}\right)
$$

such that $d f\left(W_{1}\right) \subset W_{2}$.

Let H be a bicommutative Hopf algebra over $\overline{\mathbf{Q}}$ of finite type. Denote by d_{0} the dimension of the $\overline{\mathbf{Q}}$-vector space of primitive elements and by d_{1} the rank of the group of group-like elements.

Let H^{\prime} be also a bicommutative Hopf algebra over $\overline{\mathbf{Q}}$ of finite type, ℓ_{0} the dimension of the space of primitive elements and ℓ_{1} the rank of the group-like elements.

Let $\langle\cdot\rangle: H \times H^{\prime} \longrightarrow \overline{\mathbf{Q}}$ be a bilinear product such that

$$
\left\langle x, y y^{\prime}\right\rangle=\left\langle\Delta x, y \otimes y^{\prime}\right\rangle \quad \text { and } \quad\left\langle x x^{\prime}, y\right\rangle=\left\langle x \otimes x^{\prime}, \Delta y\right\rangle .
$$

Let \mathfrak{C}_{2} be the category with
objects: $\left(H, H^{\prime},\langle\cdot\rangle\right)$ pair of Hopf algebras with a bilinear product as above.
morphisms: $\quad(f, g):\left(H_{1}, H_{1}^{\prime},\langle\cdot\rangle_{1}\right) \rightarrow\left(H_{2}, H_{2}^{\prime},\langle\cdot\rangle_{2}\right)$ where $f:$ $H_{1} \rightarrow H_{2}$ and $g: H_{2}^{\prime} \rightarrow H_{1}^{\prime}$ are Hopf algebras morphisms such that

$$
\left\langle x_{1}, g\left(x_{2}^{\prime}\right)\right\rangle_{1}=\left\langle f\left(x_{1}\right), x_{2}^{\prime}\right\rangle_{2}
$$

Stéphane Fischler: The categories \mathfrak{C}_{1} and \mathfrak{C}_{2} are equivalent. Further, Fourier-Borel duality amounts to permute H and H^{\prime}. Consequence: interpolation lemmas are equivalent to zero estimates.

Stéphane Fischler: The categories \mathfrak{C}_{1} and \mathfrak{C}_{2} are equivalent.

For $R \in \mathbf{C}[G], \partial_{1}, \ldots, \partial_{k} \in W$ and $\gamma \in \Gamma$, set

$$
\left\langle R, \gamma \otimes \partial_{1} \cdot \ldots \cdot \partial_{k}\right\rangle=\partial_{1} \cdot \ldots \cdot \partial_{k} R(\gamma)
$$

Conversely, for $H_{1}=\mathbf{C}[G]$ and $H_{2}=\operatorname{Sym}(W) \otimes k \Gamma$, consider

$$
\begin{array}{ccc}
\Gamma & \longrightarrow & G(\mathbf{C}) \\
\gamma & \longmapsto & (R \mapsto\langle R, \gamma\rangle)
\end{array}
$$

and

$$
\begin{array}{rcc}
W & \longrightarrow & T_{e}(G) \\
\partial & \longmapsto & (R \mapsto\langle R, \partial\rangle)
\end{array}
$$

Stéphane Fischler: The categories \mathfrak{C}_{1} and \mathfrak{C}_{2} are equivalent. Further, Fourier-Borel duality amounts to permute H and H^{\prime}.

Open Problems:

- Define n associated with (G, Γ, W) in terms of $\left(H, H^{\prime},\langle\cdot\rangle\right)$

Stéphane Fischler: The categories \mathfrak{C}_{1} and \mathfrak{C}_{2} are equivalent. Further, Fourier-Borel duality amounts to permute H and H^{\prime}.

Open Problems:

- Define n associated with (G, Γ, W) in terms of $\left(H, H^{\prime},\langle\cdot\rangle\right)$
- Extend to non linear commutative algebraic groups (elliptic curves, abelian varieties, and generally semi-abelian varieties)

Stéphane Fischler: The categories \mathfrak{C}_{1} and \mathfrak{C}_{2} are equivalent. Further, Fourier-Borel duality amounts to permute H and H^{\prime}.

Open Problems:

- Define n associated with (G, Γ, W) in terms of $\left(H, H^{\prime},\langle\cdot\rangle\right)$
- Extend to non linear commutative algebraic groups (elliptic curves, abelian varieties, and generally semi-abelian varieties)
- Extend to non bicommutative Hopf algebras (of finite type to start with)

Stéphane Fischler: The categories \mathfrak{C}_{1} and \mathfrak{C}_{2} are equivalent. Further, Fourier-Borel duality amounts to permute H and H^{\prime}.

Open Problems:

- Define n associated with (G, Γ, W) in terms of $\left(H, H^{\prime},\langle\cdot\rangle\right)$
- Extend to non linear commutative algebraic groups (elliptic curves, abelian varieties, and generally semi-abelian varieties)
- Extend to non bicommutative Hopf algebras (of finite type to start with)
- (?) Transcendence results on non commutative algebraic groups

