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Hopf algebras (commutative, cocommutative, of finite type)

Algebraic groups (commutative, linear, over Q)

Exponential polynomials

Transcendence of values of exponential polynomials

Algebra of multizeta values
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Algebras (over k = C or k = Q)

A k-algebra (A,m, η) is a k-vector space A with a product
m : A⊗A→ A and a unit η : k −→ A which are k-linear maps

such that the following diagrams commute:

(Associativity)
A⊗A⊗A

m⊗Id−−→ A⊗A

Id⊗m ↓ ↓ m

A⊗A −→
m

A

(Unit)
k ⊗A

η⊗Id−−→ A⊗A
Id⊗η←−− A⊗ k

↓ ↓ m ↓
A = A = A
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Commutative algebras

A k-algebra is commutative if the diagram

A⊗A
τ−→ A⊗A

m ↓ ↓ m

A = A

commutes. Here τ(x⊗ y) = y ⊗ x.
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Coalgebras

A k-coalgebra (A,∆, ε) is a k-vector space A with a coproduct
∆ : A → A ⊗ A and a counit ε : A −→ k which are k-linear

maps such that the following diagrams commute:

(Coassociativity)
A

∆−→ A⊗A

∆ ↓ ↓ ∆⊗Id

A⊗A −−→
Id⊗∆

A⊗A⊗A

(Counit)
A = A = A

↓ ↓ ∆ ↓
k ⊗A ←−−

ε⊗Id
A⊗A −−→

Id⊗ε
A⊗ k
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Commutative coalgebras

A k-coalgebra is commutative if the diagram

A = A

∆ ↓ ↓ ∆

A⊗A ←−
τ

A⊗A

commutes.
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Bialgebras

A bialgebra (A,m, η, ∆, ε) is a k-algebra (A,m, η) together

with a coalgebra structure (A,∆, ε) which is compatible: ∆ and

ε are algebra morphisms

∆(xy) = ∆(x)∆(y), ε(xy) = ε(x)ε(y).
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Hopf Algebras

A Hopf algebra (H,m, η, ∆, ε, S) is a bialgebra (H,m, η, ∆, ε)
with an antipode S : H → H which is a k-linear map such that

the following diagram commutes:

H ⊗H
∆←− H

∆−→ H ⊗H

Id⊗S ↓ η◦ε ↓ ↓ S⊗Id

H ⊗H −→
m

H ←−
m

H ⊗H
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In a Hopf Algebra the primitive elements

∆(x) = x⊗ 1 + 1⊗ x

satisfy ε(x) = 0 and S(x) = −x; they form a Lie algebra for the

bracket

[x, y] = xy − yx.
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In a Hopf Algebra the primitive elements

∆(x) = x⊗ 1 + 1⊗ x

satisfy ε(x) = 0 and S(x) = −x; they form a Lie algebra for the

bracket

[x, y] = xy − yx.

The group-like elements

∆(x) = x⊗ x, x 6= 0

are invertible, they satisfy ε(x) = 1, S(x) = x−1 and form a

multiplicative group.
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Example 1.

Let G be a finite multiplicative group, kG the algebra of G over

k which is a k vector-space with basis G. The mapping

m : kG⊗ kG→ kG

extends the product

(x, y) 7→ xy

of G by linearity. The unit

η : k → kG

maps 1 to 1G.
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Define a coproduct and a counit

∆ : kG→ kG⊗ kG and ε : kG→ k

by extending

∆(x) = x⊗ x and ε(x) = 1 for x ∈ G

by linearity. The antipode

S : kG→ kG

is defined by

S(x) = x−1 for x ∈ G.
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Since ∆(x) = x ⊗ x for x ∈ G this Hopf algebra kG is

cocommutative.

It is a commutative algebra if and only if G is commutative.

The set of group like elements is G: one recovers G from kG.
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Example 2.

Again let G be a finite multiplicative group. Consider the k-

algebra kG of mappings G→ k, with basis δg (g ∈ G), where

δg(g′) =
{

1 for g′ = g,

0 for g′ 6= g.

Define m by

m(δg ⊗ δg′) = δgδg′.

Hence m is commutative and m(δg ⊗ δg) = δg for g ∈ G.

The unit η : k → kG maps 1 to
∑

g∈G δg.
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Define a coproduct ∆ : kG → kG ⊗ kG and a counit ε : kG → k

by

∆(δg) =
∑

g′g′′=g

δg′ ⊗ δg′′ and ε(δg) = δg(1G).

The coproduct ∆ is cocommutative if and only if the group G is

commutative.

Define an antipode S by

S(δg) = δg−1.

Remark. One may identify kG ⊗ kG and kG×G with

δg ⊗ δg′ = δg,g′.
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Duality of Hopf Algebras

The Hopf algebras kG from example 1 and kG from example 2

are dual from each other:

kG× kG −→ k

(g1, δg2) 7−→ δg2(g1)

The basis G of kG is dual to the basis (δg)g∈G of kG.
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Example 3.

Let G be a topological compact group over C. Denote by

R(G) the set of continuous functions f : G → C such that the

translates ft : x 7→ f(tx), for t ∈ G, span a finite dimensional

vector space.

Define a coproduct ∆, a counit ε and an antipode S on R(G) by

∆f(x, y) = f(xy), ε(f) = f(1), Sf(x) = f(x−1)

for x, y ∈ G.

Hence R(G) is a commutative Hopf algebra.
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Example 4.

Let g be a Lie algebra, U(g) its universal envelopping algebra,

namely T(g)/I where T(g) is the tensor algebra of g and I the

two sided ideal generated by XY − Y X − [X, Y ].

Define a coproduct ∆, a counit ε and an antipode S on U(g) by

∆(x) = x⊗ 1 + 1⊗ x, ε(x) = 0, S(x) = −x

for x ∈ g.

Hence U(g) is a cocommutative Hopf algebra.

The set of primitive elements is g: one recovers g from U(g).
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Duality of Hopf Algebras (again)

Let G be a compact connected Lie group with Lie algebra g.

Then the two Hopf algebras R(G) and U(g) are dual from each

other.
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Bicommutative Hopf algebras of finite type

1.

H = k[X], ∆(X) = X ⊗ 1 + 1⊗X, ε(X) = 0, S(X) = −X.
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Bicommutative Hopf algebras of finite type

1.

H = k[X], ∆(X) = X ⊗ 1 + 1⊗X, ε(X) = 0, S(X) = −X.

k[X]⊗ k[X] ' k[T1, T2], X ⊗ 1 7→ T1, 1⊗X 7→ T2

∆P (X) = P (T1 + T2), εP (X) = P (0), SP (X) = P (−X).
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Bicommutative Hopf algebras of finite type

1.

H = k[X], ∆(X) = X ⊗ 1 + 1⊗X, ε(X) = 0, S(X) = −X.

k[X]⊗ k[X] ' k[T1, T2], X ⊗ 1 7→ T1, 1⊗X 7→ T2

∆P (X) = P (T1 + T2), εP (X) = P (0), SP (X) = P (−X).

Ga(K) = Homk(k[X],K), k[Ga] = k[X]

k[Ga] is a bicommutative Hopf algebra of finite type.
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Bicommutative Hopf algebras of finite type

2.

H = k[Y, Y −1], ∆(Y ) = Y ⊗Y , ε(Y ) = 1, S(Y ) = Y −1.
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Bicommutative Hopf algebras of finite type

2.

H = k[Y, Y −1], ∆(Y ) = Y ⊗Y , ε(Y ) = 1, S(Y ) = Y −1.

H ⊗H ' k[T1, T
−1
1 , T2, T

−1
2 ], Y ⊗ 1 7→ T1, 1⊗ Y 7→ T2

∆P (Y ) = P (T1T2), εP (Y ) = P (1), SP (Y ) = P (Y −1).
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Bicommutative Hopf algebras of finite type

2.

H = k[Y, Y −1], ∆(Y ) = Y ⊗Y , ε(Y ) = 1, S(Y ) = Y −1.

H ⊗H ' k[T1, T
−1
1 , T2, T

−1
2 ], Y ⊗ 1 7→ T1, 1⊗ Y 7→ T2

∆P (Y ) = P (T1T2), εP (Y ) = P (1), SP (Y ) = P (Y −1).

Gm(K) = Homk(k[Y, Y −1],K), k[Gm] = k[Y, Y −1],

k[Gm] is a bicommutative Hopf algebra of finite type.
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Bicommutative Hopf algebras of finite type

3.

H = k[X1, . . . , Xd0, Y1, Y
−1
1 , . . . , Yd1, Y

−1
d1

]

' k[X]⊗d0 ⊗ k[Y, Y −1]⊗d1

Primitive elements: k-space kX1 + · · ·+ kXd0,

dimension d0.

Group-like elements: multiplicative group 〈Y1, . . . , Yd1〉,
rank d1.

G = Gd0
a ×Gd1

m

k[G] = H, G(K) = Homk(H,K).
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Bicommutative Hopf algebras of finite type

3.

H = k[X1, . . . , Xd0, Y1, Y
−1
1 , . . . , Yd1, Y

−1
d1

]

' k[X]⊗d0 ⊗ k[Y, Y −1]⊗d1

The category of commutative linear algebraic groups over k

G = Gd0
a × Gd1

m is anti-equivalent to the category of Hopf
algebras of finite type which are bicommutative (commutative
and cocomutative)

H = k[G].

The vector space of primitive elements has dimension d0 while

the rank of the group-like elements is d1.
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Other examples

If W is a k-vector space of dimension `0, Sym(W ) is a

bicommutative Hopf algebra of finite type, anti-isomorphic to

k[G`0
a ]:

For a basis ∂1, . . . , ∂`0 of W , Sym(W ) ' k[∂1, . . . , ∂`0].
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Other examples

If W is a k-vector space of dimension `0, Sym(W ) is a

bicommutative Hopf algebra of finite type, anti-isomorphic to

k[G`0
a ].

If Γ is a torsion free finitely generated Z-module of rank `1, then

the group algebra kΓ is again a bicommutative Hopf algebra of

finite type, anti-isomorphic to k[G`1
m]:

For a basis γ1, . . . , γ`1 of Γ, kΓ ' k[γ1, γ
−1
1 , . . . , γ`1, γ

−1
`1

].
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Other examples

If W is a k-vector space of dimension `0, Sym(W ) is a

bicommutative Hopf algebra of finite type, anti-isomorphic to

k[G`0
a ].

If Γ is a torsion free finitely generated Z-module of rank `1, then

the group algebra kΓ is again a bicommutative Hopf algebra of

finite type, anti-isomorphic to k[G`1
m].

The category of bicommutative Hopf algebras of finite type is
equivalent to the category of pairs (W,Γ) where W is a k-vector
space and Γ is a finitely generated Z-module:

H = Sym(W )⊗ kΓ.
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Commutative linear algebraic groups over Q

G = Gd0
a ×Gd1

m d = d0 + d1

G(Q) = Q
d0 × (Q

×
)d1

(β1, . . . , βd0, α1, . . . , αd1)
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Commutative linear algebraic groups over Q

G = Gd0
a ×Gd1

m d = d0 + d1

G(Q) = Q
d0 × (Q

×
)d1

expG : Te(G) = Cd −→ G(C) = Cd0 × (C×)d1

(z1, . . . , zd) 7−→ (z1, . . . , zd0, e
zd0+1, . . . , ezd)
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Commutative linear algebraic groups over Q

G = Gd0
a ×Gd1

m d = d0 + d1

G(Q) = Q
d0 × (Q

×
)d1

expG : Te(G) = Cd −→ G(C) = Cd0 × (C×)d1

(z1, . . . , zd) 7−→ (z1, . . . , zd0, e
zd0+1, . . . , ezd)

For αj and βi in Q,

expG(β1, . . . , βd0, log α1, . . . , log αd1) ∈ G(Q)
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Baker’s Theorem. If

β0 + β1 log α1 + · · ·+ βn log αn = 0

with algebraic βi and αj, then

1. β0 = 0

2. If (β1, . . . , βn) 6= (0, . . . , 0), then log α1, . . . , log αn are Q-
linearly dependent.

3. If (log α1, . . . , log αn) 6= (0, . . . , 0), then β1, . . . , βn are Q-
linearly dependent.
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Example: (3− 2
√

5) log 3 +
√

5 log 9− log 27 = 0.
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Example: (3− 2
√

5) log 3 +
√

5 log 9− log 27 = 0.

Corollaries.

1. Hermite-Lindemann (n = 1): transcendence of

e, π, log 2, e
√

2.
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Example: (3− 2
√

5) log 3 +
√

5 log 9− log 27 = 0.

Corollaries.

1. Hermite-Lindemann (n = 1): transcendence of

e, π, log 2, e
√

2.

2. Gel’fond-Schneider (n = 2, β0 = 0): transcendence of

2
√

2, log 2/ log 3, eπ.
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Example: (3− 2
√

5) log 3 +
√

5 log 9− log 27 = 0.

Corollaries.

1. Hermite-Lindemann (n = 1): transcendence of

e, π, log 2, e
√

2.

2. Gel’fond-Schneider (n = 2, β0 = 0): transcendence of

2
√

2, log 2/ log 3, eπ.

3. Example with n = 2, β0 6= 0: transcendence of∫ 1

0

dx

1 + x3
=

1
3

log 2 +
π

3
√

3
·
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Values of exponential polynomials

Proof of Baker’s Theorem. Assume

β0 + β1 log α1 + · · ·+ βn−1 log αn−1 = log αn

(B1) (Gel’fond–Baker’s Method)

Functions: z0, ez1, . . . , ezn−1, eβ0z0+β1z1+···+βn−1zn−1

Points: Z(1, log α1, . . . , log αn−1) ∈ Cn

Derivatives: ∂/∂zi, (0 ≤ i ≤ n− 1).
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Values of exponential polynomials

Proof of Baker’s Theorem. Assume

β0 + β1 log α1 + · · ·+ βn−1 log αn−1 = log αn

(B1) (Gel’fond–Baker’s Method)

Functions: z0, ez1, . . . , ezn−1, eβ0z0+β1z1+···+βn−1zn−1

Points: Z(1, log α1, . . . , log αn−1) ∈ Cn

Derivatives: ∂/∂zi, (0 ≤ i ≤ n− 1).

n + 1 functions, n variables, 1 point, n derivatives
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Another proof of Baker’s Theorem. Assume again

β0 + β1 log α1 + · · ·+ βn−1 log αn−1 = log αn

(B2) (Generalization of Schneider’s method)

Functions: z0, z1, . . . , zn−1,

ez0αz1
1 · · ·α

zn−1
n−1 =

exp{z0 + z1 log α1 + · · ·+ zn−1 log αn−1}

Points: {0} × Zn−1 + Z(β0, , . . . , βn−1) ∈ Cn

Derivative: ∂/∂z0.

Academia Sinica, Taipei, October 30, 2003 41



Another proof of Baker’s Theorem. Assume again

β0 + β1 log α1 + · · ·+ βn−1 log αn−1 = log αn

(B2) (Generalization of Schneider’s method)

Functions: z0, z1, . . . , zn−1,

ez0αz1
1 · · ·α

zn−1
n−1 =

exp{z0 + z1 log α1 + · · ·+ zn−1 log αn−1}

Points: {0} × Zn−1 + Z(β0, , . . . , βn−1) ∈ Cn

Derivative: ∂/∂z0.

n + 1 functions, n variables, n points, 1 derivative
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Six Exponentials Theorem. If x1, x2 are two complex numbers
which are Q-linearly independent and if y1, y2, y3 are three
complex numbers which are Q-linearly independent, then one
at least of the six numbers

exiyj (i = 1, 2, j = 1, 2, 3)

is transcendental.
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Proof of the six exponentials Theorem

Assume x1, . . . , xa are Q-linearly independent numbers and

y1, . . . , yb are Q-linearly independent numbers such that

exiyj ∈ Q for i = 1, . . . , a, , j = 1, . . . , b

with ab > a + b.

Functions: exiz (1 ≤ i ≤ a)

Points: yj ∈ C (1 ≤ j ≤ b)

a functions, 1 variable, b points, 0 derivative
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Linear Subgroup Theorem

G = Gd0
a ×Gd1

m, d = d0 + d1.

W ⊂ Te(G) a C-subspace which is rational over Q. Let `0 be its

dimension.

Y ⊂ Te(G) a finitely generated subgroup with Γ = exp(Y )
contained in G(Q) = Q

d0 × (Q
×
)d1. Let `1 be the Z-rank of Γ.

V ⊂ Te(G) a C-subspace containing both W and Y . Let n be

the dimension of V .

Hypothesis:

n(`1 + d1) < `1d1 + `0d1 + `1d0
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n(`1 + d1) < `1d1 + `0d1 + `1d0

d0 + d1 is the number of functions

d0 are linear

d1 are exponential

n is the number of variables

`0 is the number of derivatives

`1 is the number of points
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d0 d1 `0 `1 n

Baker B1 1 n n 1 n

Baker B2 n 1 1 n n

Six exponentials 0 a 0 b 1
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d0 d1 `0 `1 n

Baker B1 1 n n 1 n

Baker B2 n 1 1 n n

Six exponentials 0 a 0 b 1

Baker:

n(`1 + d1) = n2 + n

`1d1 + `0d1 + `1d0 = n2 + n + 1

Six exponentials: a + b < ab

n(`1 + d1) = a + b

`1d1 + `0d1 + `1d0 = ab
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duality:

(d0, d1, `0, `1)←→ (`0, `1, d0, d1)

(
d

dz

)s (
ztexz

)
z=y

=
(

d

dz

)t (
zseyz

)
z=x

.
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Fourier-Borel duality:

(d0, d1, `0, `1)←→ (`0, `1, d0, d1)

(
d

dz

)s (
ztexz

)
z=y

=
(

d

dz

)t (
zseyz

)
z=x

.

Lsy : f 7−→
(

d

dz

)s

f(y).

fζ(z) = ezζ, Lsy(fζ) = ζseyζ.

Lsy(ztfζ) =
(

d

dζ

)t

Lsy(fζ).
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For v = (v1, . . . , vn) ∈ Cn, set

Dv = v1
∂

∂z1
+ · · ·+ vn

∂

∂zn
·

Let w1, . . . , w`0
, u1, . . . , ud0

, x and y in Cn, t ∈ Nd0 and

s ∈ N`0. For z ∈ Cn, write

(uz)t = (u1z)t1 · · · (ud0
z)td0 and Ds

w = Ds1
w1
· · ·D

s`0
w`0

.

Then

Ds
w
(
(uz)texz

)∣∣
z=y

= D t
u
(
(wz)seyz

)∣∣
z=x
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Interpretation of the duality in terms of Hopf algebras
following Stéphane Fischler

Let C1 be the category with

objects: (G, W, Γ) where G = Gd0
a × Gd1

m, W ⊂ Te(G) is

rational over Q and Γ ∈ G(Q) is finitely generated

morphisms: f : (G1,W1,Γ1) → (G2,W2,Γ2) where f : G1 →
G2 is a morphism of algebraic groups such that f(Γ1) ⊂ Γ2 and

f induces a morphism

df : Te(G1) −→ Te(G2)

such that df(W1) ⊂W2.
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Let H be a bicommutative Hopf algebra over Q of finite type.

Denote by d0 the dimension of the Q-vector space of primitive

elements and by d1 the rank of the group of group-like elements.

Let H ′ be also a bicommutative Hopf algebra over Q of finite

type, `0 the dimension of the space of primitive elements and `1
the rank of the group-like elements.

Let 〈·〉 : H ×H ′ −→ Q be a bilinear product such that

〈x, yy′〉 = 〈∆x, y ⊗ y′〉 and 〈xx′, y〉 = 〈x⊗ x′,∆y〉.
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Let C2 be the category with

objects: (H,H ′, 〈·〉) pair of Hopf algebras with a bilinear product

as above.

morphisms: (f, g) : (H1,H
′
1, 〈·〉1) → (H2,H

′
2, 〈·〉2) where f :

H1 → H2 and g : H ′
2 → H ′

1 are Hopf algebras morphisms such

that

〈x1, g(x′2)〉1 = 〈f(x1), x′2〉2.
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Stéphane Fischler: The categories C1 and C2 are equivalent.
Further, Fourier-Borel duality amounts to permute H and H ′.

Consequence: interpolation lemmas are equivalent to zero

estimates.
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Stéphane Fischler: The categories C1 and C2 are equivalent.

For R ∈ C[G], ∂1, . . . , ∂k ∈W and γ ∈ Γ, set

〈R, γ ⊗ ∂1 · . . . · ∂k〉 = ∂1 · . . . · ∂kR(γ).

Conversely, for H1 = C[G] and H2 = Sym(W )⊗ kΓ, consider

Γ −→ G(C)
γ 7−→

(
R 7→ 〈R, γ〉

)
and

W −→ Te(G)
∂ 7−→

(
R 7→ 〈R, ∂〉

)
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Stéphane Fischler: The categories C1 and C2 are equivalent.
Further, Fourier-Borel duality amounts to permute H and H ′.

Open Problems:

• Define n associated with (G, Γ,W ) in terms of (H,H ′, 〈·〉)
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Stéphane Fischler: The categories C1 and C2 are equivalent.
Further, Fourier-Borel duality amounts to permute H and H ′.

Open Problems:
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Open Problems:

• Define n associated with (G, Γ,W ) in terms of (H,H ′, 〈·〉)
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• (?) Transcendence results on non commutative algebraic groups

Academia Sinica, Taipei, October 30, 2003 60


