Academia Sinica, Taipei

October 30, 2003

Hopf algebras and Diophantine problems

Michel Waldschmidt

miw@math.jussieu.fr

http://www.math.jussieu.fr/~miw/

Hopf algebras (commutative, cocommutative, of finite type)

Algebraic groups (commutative, linear, over $\overline{\mathbf{Q}}$)

Exponential polynomials

Transcendence of values of exponential polynomials

Algebra of multizeta values

Algebras (over $k = \mathbf{C}$ or $k = \overline{\mathbf{Q}}$)

A *k*-algebra (A, m, η) is a *k*-vector space *A* with a **product** $m : A \otimes A \to A$ and a **unit** $\eta : k \longrightarrow A$ which are *k*-linear maps such that the following diagrams commute:

 $(Associativity) \qquad \begin{array}{cccc} A \otimes A \otimes A & \xrightarrow{m \otimes \mathrm{Id}} & A \otimes A \\ \mathrm{Id} \otimes m \downarrow & & \downarrow m \\ A \otimes A & \xrightarrow{m} & A \end{array} \\ k \otimes A & \xrightarrow{\eta \otimes \mathrm{Id}} & A \otimes A & \xrightarrow{\mathrm{Id} \otimes \eta} & A \otimes k \\ (Unit) & \downarrow & & \downarrow m & & \downarrow \\ A & = & A & = & A \end{array}$

Commutative algebras

A k-algebra is *commutative* if the diagram

$$\begin{array}{cccccc} A \otimes A & \xrightarrow{\tau} & A \otimes A \\ m \downarrow & & \downarrow m \\ A & = & A \end{array}$$

commutes. Here $\tau(x \otimes y) = y \otimes x$.

Coalgebras

A *k*-coalgebra (A, Δ, ϵ) is a *k*-vector space A with a coproduct $\Delta : A \to A \otimes A$ and a counit $\epsilon : A \longrightarrow k$ which are *k*-linear maps such that the following diagrams commute:

Commutative coalgebras

A k-coalgebra is *commutative* if the diagram

$$\begin{array}{rcl} A & = & A \\ \Delta \downarrow & & \downarrow \Delta \\ A \otimes A & \xleftarrow{} & A \otimes A \end{array}$$

commutes.

Bialgebras

A **bialgebra** $(A, m, \eta, \Delta, \epsilon)$ is a *k*-algebra (A, m, η) together with a coalgebra structure (A, Δ, ϵ) which is *compatible*: Δ and ϵ are algebra morphisms

$$\Delta(xy) = \Delta(x)\Delta(y), \quad \epsilon(xy) = \epsilon(x)\epsilon(y).$$

Hopf Algebras

A Hopf algebra $(H, m, \eta, \Delta, \epsilon, S)$ is a bialgebra $(H, m, \eta, \Delta, \epsilon)$ with an *antipode* $S : H \to H$ which is a *k*-linear map such that the following diagram commutes:

In a Hopf Algebra the *primitive* elements

 $\Delta(x) = x \otimes 1 + 1 \otimes x$

satisfy $\epsilon(x) = 0$ and S(x) = -x; they form a Lie algebra for the bracket

[x,y] = xy - yx.

In a Hopf Algebra the *primitive* elements

 $\Delta(x) = x \otimes 1 + 1 \otimes x$

satisfy $\epsilon(x) = 0$ and S(x) = -x; they form a Lie algebra for the bracket

$$[x,y] = xy - yx.$$

The group-like elements

$$\Delta(x) = x \otimes x, \quad x \neq 0$$

are invertible, they satisfy $\epsilon(x) = 1$, $S(x) = x^{-1}$ and form a multiplicative group.

Example 1.

Let G be a finite multiplicative group, kG the algebra of G over k which is a k vector-space with basis G. The mapping

 $m: kG \otimes kG \to kG$

extends the product

$$(x,y)\mapsto xy$$

of G by linearity. The unit

$$\eta: k \to kG$$

maps 1 to 1_G .

Define a coproduct and a counit

 $\Delta: kG \to kG \otimes kG$ and $\epsilon: kG \to k$

by extending

$$\Delta(x) = x \otimes x$$
 and $\epsilon(x) = 1$ for $x \in G$

by linearity. The antipode

 $S: kG \to kG$

is defined by

$$S(x) = x^{-1}$$
 for $x \in G$.

Since $\Delta(x) = x \otimes x$ for $x \in G$ this Hopf algebra kG is cocommutative.

- It is a commutative algebra if and only if G is commutative.
- The set of group like elements is G: one recovers G from kG.

Example 2.

Again let G be a finite multiplicative group. Consider the kalgebra k^G of mappings $G \to k$, with basis $\delta_g \ (g \in G)$, where

$$\delta_g(g') = \begin{cases} 1 & \text{for } g' = g, \\ 0 & \text{for } g' \neq g. \end{cases}$$

Define m by

 $m(\delta_g \otimes \delta_{g'}) = \delta_g \delta_{g'}.$ Hence *m* is commutative and $m(\delta_g \otimes \delta_g) = \delta_g$ for $g \in G$. The unit $\eta : k \to k^G$ maps 1 to $\sum_{g \in G} \delta_g$. Define a coproduct $\Delta: k^G \to k^G \otimes k^G$ and a counit $\epsilon: k^G \to k$ by

$$\Delta(\delta_g) = \sum_{g'g'' = g} \delta_{g'} \otimes \delta_{g''} \quad \text{and} \quad \epsilon(\delta_g) = \delta_g(1_G).$$

The coproduct Δ is cocommutative if and only if the group G is commutative.

Define an antipode S by

$$S(\delta_g) = \delta_{g^{-1}}.$$

Remark. One may identify $k^G \otimes k^G$ and $k^{G \times G}$ with

$$\delta_g \otimes \delta_{g'} = \delta_{g,g'}.$$

Duality of Hopf Algebras

The Hopf algebras kG from example 1 and k^G from example 2 are *dual* from each other:

$$\begin{array}{cccc} kG \times k^G & \longrightarrow & k \\ (g_1, \delta_{g_2}) & \longmapsto & \delta_{g_2}(g_1) \end{array}$$

The basis G of kG is dual to the basis $(\delta_g)_{g \in G}$ of k^G .

Example 3.

Let G be a topological compact group over \mathbb{C} . Denote by $\mathfrak{R}(G)$ the set of continuous functions $f: G \to \mathbb{C}$ such that the translates $f_t: x \mapsto f(tx)$, for $t \in G$, span a finite dimensional vector space.

Define a coproduct Δ , a counit ϵ and an antipode S on $\mathfrak{R}(G)$ by

$$\Delta f(x,y) = f(xy), \quad \epsilon(f) = f(1), \quad Sf(x) = f(x^{-1})$$

for x, $y \in G$.

Hence $\mathfrak{R}(G)$ is a commutative Hopf algebra.

Example 4.

Let \mathfrak{g} be a Lie algebra, $\mathfrak{U}(\mathfrak{g})$ its universal envelopping algebra, namely $\mathfrak{T}(\mathfrak{g})/\mathfrak{I}$ where $\mathfrak{T}(\mathfrak{g})$ is the tensor algebra of \mathfrak{g} and \mathfrak{I} the two sided ideal generated by XY - YX - [X, Y].

Define a coproduct Δ , a counit ϵ and an antipode S on $\mathfrak{U}(\mathfrak{g})$ by

$$\Delta(x) = x \otimes 1 + 1 \otimes x, \quad \epsilon(x) = 0, \quad S(x) = -x$$

for $x \in \mathfrak{g}$.

Hence $\mathfrak{U}(\mathfrak{g})$ is a cocommutative Hopf algebra.

The set of primitive elements is \mathfrak{g} : one recovers \mathfrak{g} from $\mathfrak{U}(\mathfrak{g})$.

Duality of Hopf Algebras (again)

Let G be a compact connected Lie group with Lie algebra \mathfrak{g} . Then the two Hopf algebras $\mathfrak{R}(G)$ and $\mathfrak{U}(\mathfrak{g})$ are dual from each other.

1.

 $H=k[X], \ \Delta(X)=X\otimes 1+1\otimes X, \ \epsilon(X)=0, \ S(X)=-X.$

1.

 $H = k[X], \ \Delta(X) = X \otimes 1 + 1 \otimes X, \ \epsilon(X) = 0, \ S(X) = -X.$

 $k[X] \otimes k[X] \simeq k[T_1, T_2], \quad X \otimes 1 \mapsto T_1, \quad 1 \otimes X \mapsto T_2$ $\Delta P(X) = P(T_1 + T_2), \quad \epsilon P(X) = P(0), \quad SP(X) = P(-X).$

1.

 $H = k[X], \ \Delta(X) = X \otimes 1 + 1 \otimes X, \ \epsilon(X) = 0, \ S(X) = -X.$

$$\begin{split} k[X] \otimes k[X] \simeq k[T_1, T_2], \quad X \otimes 1 \mapsto T_1, \quad 1 \otimes X \mapsto T_2 \\ \Delta P(X) = P(T_1 + T_2), \quad \epsilon P(X) = P(0), \quad SP(X) = P(-X). \\ \mathbf{G}_a(K) = \mathrm{Hom}_k(k[X], K), \quad k[\mathbf{G}_a] = k[X] \\ k[\mathbf{G}_a] \text{ is a bicommutative Hopf algebra of finite type.} \end{split}$$

2.

 $H = k[Y, Y^{-1}], \quad \Delta(Y) = Y \otimes Y, \quad \epsilon(Y) = 1, \quad S(Y) = Y^{-1}.$

2.

 $H = k[Y, Y^{-1}], \quad \Delta(Y) = Y \otimes Y, \quad \epsilon(Y) = 1, \quad S(Y) = Y^{-1}.$

 $H \otimes H \simeq k[T_1, T_1^{-1}, T_2, T_2^{-1}], \quad Y \otimes 1 \mapsto T_1, \quad 1 \otimes Y \mapsto T_2$ $\Delta P(Y) = P(T_1T_2), \quad \epsilon P(Y) = P(1), \quad SP(Y) = P(Y^{-1}).$

2.

 $H = k[Y, Y^{-1}], \quad \Delta(Y) = Y \otimes Y, \quad \epsilon(Y) = 1, \quad S(Y) = Y^{-1}.$

$$\begin{split} H\otimes H&\simeq k[T_1,T_1^{-1},T_2,T_2^{-1}], \quad Y\otimes 1\mapsto T_1, \quad 1\otimes Y\mapsto T_2\\ \Delta P(Y)&=P(T_1T_2), \quad \epsilon P(Y)=P(1), \quad SP(Y)=P(Y^{-1}).\\ \mathbf{G}_m(K)&=\mathrm{Hom}_k(k[Y,Y^{-1}],K), \quad k[\mathbf{G}_m]=k[Y,Y^{-1}],\\ k[\mathbf{G}_m] \text{ is a bicommutative Hopf algebra of finite type.} \end{split}$$

3.

$$H = k[X_1, \dots, X_{d_0}, Y_1, Y_1^{-1}, \dots, Y_{d_1}, Y_{d_1}^{-1}]$$
$$\simeq k[X]^{\otimes d_0} \otimes k[Y, Y^{-1}]^{\otimes d_1}$$

Primitive elements: k-space $kX_1 + \cdots + kX_{d_0}$, dimension d_0 .

Group-like elements: multiplicative group $\langle Y_1, \ldots, Y_{d_1} \rangle$, rank d_1 .

$$G = \mathbf{G}_a^{d_0} \times \mathbf{G}_m^{d_1}$$
$$k[G] = H, \quad G(K) = \operatorname{Hom}_k(H, K).$$

3.

$$H = k[X_1, \dots, X_{d_0}, Y_1, Y_1^{-1}, \dots, Y_{d_1}, Y_{d_1}^{-1}]$$
$$\simeq k[X]^{\otimes d_0} \otimes k[Y, Y^{-1}]^{\otimes d_1}$$

The category of commutative linear algebraic groups over k $G = \mathbf{G}_{a}^{d_{0}} \times \mathbf{G}_{m}^{d_{1}}$ is anti-equivalent to the category of Hopf algebras of finite type which are bicommutative (commutative and cocomutative)

$$H = k[G].$$

The vector space of primitive elements has dimension d_0 while the rank of the group-like elements is d_1 .

Other examples

If W is a k-vector space of dimension ℓ_0 , $\operatorname{Sym}(W)$ is a bicommutative Hopf algebra of finite type, anti-isomorphic to $k[\mathbf{G}_a^{\ell_0}]$:

For a basis $\partial_1, \ldots, \partial_{\ell_0}$ of W, $\operatorname{Sym}(W) \simeq k[\partial_1, \ldots, \partial_{\ell_0}]$.

Other examples

If W is a k-vector space of dimension ℓ_0 , $\operatorname{Sym}(W)$ is a bicommutative Hopf algebra of finite type, anti-isomorphic to $k[\mathbf{G}_a^{\ell_0}]$.

If Γ is a torsion free finitely generated **Z**-module of rank ℓ_1 , then the group algebra $k\Gamma$ is again a bicommutative Hopf algebra of finite type, anti-isomorphic to $k[\mathbf{G}_m^{\ell_1}]$:

For a basis $\gamma_1, \ldots, \gamma_{\ell_1}$ of Γ , $k\Gamma \simeq k[\gamma_1, \gamma_1^{-1}, \ldots, \gamma_{\ell_1}, \gamma_{\ell_1}^{-1}]$.

Other examples

If W is a k-vector space of dimension ℓ_0 , $\operatorname{Sym}(W)$ is a bicommutative Hopf algebra of finite type, anti-isomorphic to $k[\mathbf{G}_a^{\ell_0}]$.

If Γ is a torsion free finitely generated **Z**-module of rank ℓ_1 , then the group algebra $k\Gamma$ is again a bicommutative Hopf algebra of finite type, anti-isomorphic to $k[\mathbf{G}_m^{\ell_1}]$.

The category of bicommutative Hopf algebras of finite type is equivalent to the category of pairs (W, Γ) where W is a k-vector space and Γ is a finitely generated **Z**-module:

 $H = \operatorname{Sym}(W) \otimes k\Gamma.$

Commutative linear algebraic groups over $\overline{\mathbf{Q}}$

 $G = \mathbf{G}_a^{d_0} \times \mathbf{G}_m^{d_1} \qquad d = d_0 + d_1$

 $G(\overline{\mathbf{Q}}) = \overline{\mathbf{Q}}^{d_0} \times (\overline{\mathbf{Q}}^{\times})^{d_1}$

 $(\beta_1,\ldots,\beta_{d_0},\alpha_1,\ldots,\alpha_{d_1})$

Commutative linear algebraic groups over $\overline{\mathbf{Q}}$

 $G = \mathbf{G}_a^{d_0} \times \mathbf{G}_m^{d_1} \qquad d = d_0 + d_1$ $G(\overline{\mathbf{Q}}) = \overline{\mathbf{Q}}^{d_0} \times (\overline{\mathbf{Q}}^{\times})^{d_1}$

$$\exp_G : T_e(G) = \mathbf{C}^d \longrightarrow G(\mathbf{C}) = \mathbf{C}^{d_0} \times (\mathbf{C}^{\times})^{d_1}$$
$$(z_1, \dots, z_d) \longmapsto (z_1, \dots, z_{d_0}, e^{z_{d_0+1}}, \dots, e^{z_d})$$

Commutative linear algebraic groups over $\overline{\mathbf{Q}}$

 $G = \mathbf{G}_a^{d_0} \times \mathbf{G}_m^{d_1} \qquad d = d_0 + d_1$ $G(\overline{\mathbf{Q}}) = \overline{\mathbf{Q}}^{d_0} \times (\overline{\mathbf{Q}}^{\times})^{d_1}$

$$\exp_{G}: T_{e}(G) = \mathbf{C}^{d} \longrightarrow G(\mathbf{C}) = \mathbf{C}^{d_{0}} \times (\mathbf{C}^{\times})^{d_{1}}$$
$$(z_{1}, \dots, z_{d}) \longmapsto (z_{1}, \dots, z_{d_{0}}, e^{z_{d_{0}+1}}, \dots, e^{z_{d}})$$
For α_{j} and β_{i} in $\overline{\mathbf{Q}}$,
$$\exp_{G}(\beta_{1}, \dots, \beta_{d_{0}}, \log \alpha_{1}, \dots, \log \alpha_{d_{1}}) \in G(\overline{\mathbf{Q}})$$

Baker's Theorem. If

$$\beta_0 + \beta_1 \log \alpha_1 + \dots + \beta_n \log \alpha_n = 0$$

with algebraic β_i and α_j , then

1. $\beta_0 = 0$

2. If $(\beta_1, \ldots, \beta_n) \neq (0, \ldots, 0)$, then $\log \alpha_1, \ldots, \log \alpha_n$ are **Q**-linearly dependent.

3. If $(\log \alpha_1, \ldots, \log \alpha_n) \neq (0, \ldots, 0)$, then β_1, \ldots, β_n are **Q**-linearly dependent.

Example: $(3 - 2\sqrt{5})\log 3 + \sqrt{5}\log 9 - \log 27 = 0.$

Example: $(3 - 2\sqrt{5}) \log 3 + \sqrt{5} \log 9 - \log 27 = 0.$ **Corollaries.**

1. *Hermite-Lindemann* (n = 1): transcendence of

 $e, \pi, \log 2, e^{\sqrt{2}}.$

Example: $(3 - 2\sqrt{5}) \log 3 + \sqrt{5} \log 9 - \log 27 = 0.$ **Corollaries.**

1. *Hermite-Lindemann* (n = 1): transcendence of

 $e, \pi, \log 2, e^{\sqrt{2}}.$

2. Gel'fond-Schneider $(n = 2, \beta_0 = 0)$: transcendence of

$$2^{\sqrt{2}}, \quad \log 2 / \log 3, \quad e^{\pi}.$$

Example: $(3 - 2\sqrt{5}) \log 3 + \sqrt{5} \log 9 - \log 27 = 0.$ **Corollaries.**

1. *Hermite-Lindemann* (n = 1): transcendence of

$$e, \quad \pi, \quad \log 2, \quad e^{\sqrt{2}}.$$

2. *Gel'fond-Schneider* $(n = 2, \beta_0 = 0)$: transcendence of

$$2^{\sqrt{2}}, \quad \log 2 / \log 3, \quad e^{\pi}.$$

3. *Example with* n = 2, $\beta_0 \neq 0$: transcendence of

$$\int_0^1 \frac{dx}{1+x^3} = \frac{1}{3}\log 2 + \frac{\pi}{3\sqrt{3}}$$

Values of exponential polynomials

Proof of Baker's Theorem. Assume

 $\beta_0 + \beta_1 \log \alpha_1 + \dots + \beta_{n-1} \log \alpha_{n-1} = \log \alpha_n$

(B₁) (Gel'fond-Baker's Method) Functions: z_0 , e^{z_1} , ..., $e^{z_{n-1}}$, $e^{\beta_0 z_0 + \beta_1 z_1 + \dots + \beta_{n-1} z_{n-1}}$ Points: $\mathbf{Z}(1, \log \alpha_1, \dots, \log \alpha_{n-1}) \in \mathbf{C}^n$ Derivatives: $\partial/\partial z_i$, $(0 \le i \le n-1)$.

Values of exponential polynomials

Proof of Baker's Theorem. Assume

 $\beta_0 + \beta_1 \log \alpha_1 + \dots + \beta_{n-1} \log \alpha_{n-1} = \log \alpha_n$

(B₁) (Gel'fond-Baker's Method) Functions: $z_0, e^{z_1}, \ldots, e^{z_{n-1}}, e^{\beta_0 z_0 + \beta_1 z_1 + \cdots + \beta_{n-1} z_{n-1}}$ Points: $\mathbf{Z}(1, \log \alpha_1, \ldots, \log \alpha_{n-1}) \in \mathbf{C}^n$ Derivatives: $\partial/\partial z_i$, $(0 \le i \le n-1)$.

n+1 functions, n variables, 1 point, n derivatives

Another proof of Baker's Theorem. Assume again $\beta_0 + \beta_1 \log \alpha_1 + \dots + \beta_{n-1} \log \alpha_{n-1} = \log \alpha_n$ (B₂) (Generalization of Schneider's method) Functions: z_0, z_1, \dots, z_{n-1} ,

$$e^{z_0} \alpha_1^{z_1} \cdots \alpha_{n-1}^{z_{n-1}} =$$

 $\exp\{z_0 + z_1 \log \alpha_1 + \cdots + z_{n-1} \log \alpha_{n-1}\}$

Points: $\{0\} \times \mathbb{Z}^{n-1} + \mathbb{Z}(\beta_0, \dots, \beta_{n-1}) \in \mathbb{C}^n$ Derivative: $\partial/\partial z_0$.

Another proof of Baker's Theorem. Assume again

 $\beta_0 + \beta_1 \log \alpha_1 + \dots + \beta_{n-1} \log \alpha_{n-1} = \log \alpha_n$

 (B_2) (Generalization of Schneider's method)

Functions: $z_0, z_1, \ldots, z_{n-1},$

$$e^{z_0} \alpha_1^{z_1} \cdots \alpha_{n-1}^{z_{n-1}} =$$

$$\exp\{z_0 + z_1 \log \alpha_1 + \cdots + z_{n-1} \log \alpha_{n-1}\}$$
Points: $\{0\} \times \mathbf{Z}^{n-1} + \mathbf{Z}(\beta_0, \dots, \beta_{n-1}) \in \mathbf{C}^n$

Derivative: $\partial/\partial z_0$.

n+1 functions, n variables, n points, 1 derivative

Six Exponentials Theorem. If x_1, x_2 are two complex numbers which are **Q**-linearly independent and if y_1, y_2, y_3 are three complex numbers which are **Q**-linearly independent, then one at least of the six numbers

$$e^{x_i y_j}$$
 $(i = 1, 2, j = 1, 2, 3)$

is transcendental.

Proof of the six exponentials Theorem

Assume x_1, \ldots, x_a are Q-linearly independent numbers and y_1, \ldots, y_b are Q-linearly independent numbers such that

$$e^{x_i y_j} \in \overline{\mathbf{Q}}$$
 for $i = 1, \dots, a, j = 1, \dots, b$

with ab > a + b.

Functions: $e^{x_i z}$ $(1 \le i \le a)$

Points: $y_j \in \mathbf{C}$ $(1 \le j \le b)$

a functions, 1 variable, b points, 0 derivative

Linear Subgroup Theorem

 $G = \mathbf{G}_a^{d_0} \times \mathbf{G}_m^{d_1}, \qquad d = d_0 + d_1.$

 $W \subset T_e(G)$ a **C**-subspace which is rational over $\overline{\mathbf{Q}}$. Let ℓ_0 be its dimension.

 $Y \subset T_e(G)$ a finitely generated subgroup with $\Gamma = \exp(Y)$ contained in $G(\overline{\mathbf{Q}}) = \overline{\mathbf{Q}}^{d_0} \times (\overline{\mathbf{Q}}^{\times})^{d_1}$. Let ℓ_1 be the Z-rank of Γ .

 $V \subset T_e(G)$ a **C**-subspace containing both W and Y. Let n be the dimension of V.

Hypothesis:

$$n(\ell_1 + d_1) < \ell_1 d_1 + \ell_0 d_1 + \ell_1 d_0$$

 $n(\ell_1 + d_1) < \ell_1 d_1 + \ell_0 d_1 + \ell_1 d_0$

- $d_0 + d_1$ is the number of functions
 - d_0 are linear
 - d_1 are exponential
- n is the number of variables
- ℓ_0 is the number of derivatives
- ℓ_1 is the number of points

	d_0	d_1	ℓ_0	ℓ_1	n
Baker B_1	1	n	n	1	n
Baker B_2	n	1	1	n	n
Six exponentials	0	a	0	b	1

	d_0	d_1	ℓ_0	ℓ_1	n
Baker B_1	1	n	n	1	n
Baker B_2	n	1	1	n	n
Six exponentials	0	a	0	b	1

Baker:

$$n(\ell_1 + d_1) = n^2 + n$$

$$\ell_1 d_1 + \ell_0 d_1 + \ell_1 d_0 = n^2 + n + 1$$

Six exponentials: a + b < ab

$$n(\ell_1 + d_1) = a + b$$
$$\ell_1 d_1 + \ell_0 d_1 + \ell_1 d_0 = ab$$

duality:

$$(d_0, d_1, \ell_0, \ell_1) \longleftrightarrow (\ell_0, \ell_1, d_0, d_1)$$

$$\left(\frac{d}{dz}\right)^s \left(z^t e^{xz}\right)_{z=y} = \left(\frac{d}{dz}\right)^t \left(z^s e^{yz}\right)_{z=x}.$$

Fourier-Borel duality:

$$(d_0, d_1, \ell_0, \ell_1) \longleftrightarrow (\ell_0, \ell_1, d_0, d_1)$$

$$\left(\frac{d}{dz}\right)^s (z^t e^{xz})_{z=y} = \left(\frac{d}{dz}\right)^t (z^s e^{yz})_{z=x}.$$

$$\mathsf{L}_{sy} : f \longmapsto \left(\frac{d}{dz}\right)^s f(y).$$

$$f_{\zeta}(z) = e^{z\zeta}, \qquad \mathsf{L}_{sy}(f_{\zeta}) = \zeta^s e^{y\zeta}.$$

$$\mathsf{L}_{sy}(z^t f_{\zeta}) = \left(\frac{d}{d\zeta}\right)^t \mathsf{L}_{sy}(f_{\zeta}).$$

For $\underline{v} = (v_1, \ldots, v_n) \in \mathbf{C}^n$, set

$$D_{\underline{v}} = v_1 \frac{\partial}{\partial z_1} + \dots + v_n \frac{\partial}{\partial z_n}.$$

Let $\underline{w}_1, \ldots, \underline{w}_{\ell_0}, \underline{u}_1, \ldots, \underline{u}_{d_0}, \underline{x}$ and \underline{y} in $\mathbf{C}^n, \underline{t} \in \mathbf{N}^{d_0}$ and $\underline{s} \in \mathbf{N}^{\ell_0}$. For $\underline{z} \in \mathbf{C}^n$, write

 $(\mathbf{u}\underline{z})^{\underline{t}} = (\underline{u}_1\underline{z})^{t_1} \cdots (\underline{u}_{d_0}\underline{z})^{t_{d_0}} \quad \text{and} \quad D^{\underline{s}}_{\mathbf{w}} = D^{s_1}_{\underline{w}_1} \cdots D^{s_{\ell_0}}_{\underline{w}_{\ell_0}}.$

Then

$$D_{\mathbf{w}}^{\underline{s}}((\mathbf{u}\underline{z})^{\underline{t}}e^{\underline{x}\underline{z}})\big|_{\underline{z}=\underline{y}} = D_{\mathbf{u}}^{\underline{t}}((\mathbf{w}\underline{z})^{\underline{s}}e^{\underline{y}\underline{z}})\big|_{\underline{z}=\underline{x}}$$

Interpretation of the duality in terms of Hopf algebras following Stéphane Fischler

Let \mathfrak{C}_1 be the category with

objects: (G, W, Γ) where $G = \mathbf{G}_a^{d_0} \times \mathbf{G}_m^{d_1}$, $W \subset T_e(G)$ is rational over $\overline{\mathbf{Q}}$ and $\Gamma \in G(\overline{\mathbf{Q}})$ is finitely generated

morphisms: $f: (G_1, W_1, \Gamma_1) \to (G_2, W_2, \Gamma_2)$ where $f: G_1 \to G_2$ is a morphism of algebraic groups such that $f(\Gamma_1) \subset \Gamma_2$ and f induces a morphism

$$df: T_e(G_1) \longrightarrow T_e(G_2)$$

such that $df(W_1) \subset W_2$.

Let H be a bicommutative Hopf algebra over $\overline{\mathbf{Q}}$ of finite type. Denote by d_0 the dimension of the $\overline{\mathbf{Q}}$ -vector space of primitive elements and by d_1 the rank of the group of group-like elements.

Let H' be also a bicommutative Hopf algebra over $\overline{\mathbf{Q}}$ of finite type, ℓ_0 the dimension of the space of primitive elements and ℓ_1 the rank of the group-like elements.

Let $\langle \cdot \rangle : H imes H' \longrightarrow \overline{\mathbf{Q}}$ be a bilinear product such that

 $\langle x, yy' \rangle = \langle \Delta x, y \otimes y' \rangle$ and $\langle xx', y \rangle = \langle x \otimes x', \Delta y \rangle.$

Let \mathfrak{C}_2 be the category with

objects: $(H, H', \langle \cdot \rangle)$ pair of Hopf algebras with a bilinear product as above.

morphisms: $(f,g): (H_1, H'_1, \langle \cdot \rangle_1) \to (H_2, H'_2, \langle \cdot \rangle_2)$ where $f: H_1 \to H_2$ and $g: H'_2 \to H'_1$ are Hopf algebras morphisms such that

$$\langle x_1, g(x_2') \rangle_1 = \langle f(x_1), x_2' \rangle_2.$$

Consequence: interpolation lemmas are equivalent to zero estimates.

Stéphane Fischler: The categories \mathfrak{C}_1 and \mathfrak{C}_2 are equivalent.

For $R \in \mathbb{C}[G]$, $\partial_1, \ldots, \partial_k \in W$ and $\gamma \in \Gamma$, set

$$\langle R, \gamma \otimes \partial_1 \cdot \ldots \cdot \partial_k \rangle = \partial_1 \cdot \ldots \cdot \partial_k R(\gamma).$$

Conversely, for $H_1 = \mathbb{C}[G]$ and $H_2 = \operatorname{Sym}(W) \otimes k\Gamma$, consider

$$\begin{array}{cccc} \Gamma & \longrightarrow & G(\mathbf{C}) \\ \gamma & \longmapsto & \left(R \mapsto \langle R, \gamma \rangle \right) \end{array}$$

and

$$\begin{array}{cccc} W & \longrightarrow & T_e(G) \\ \partial & \longmapsto & \left(R \mapsto \langle R, \partial \rangle \right) \end{array}$$

Open Problems:

• Define n associated with (G, Γ, W) in terms of $(H, H', \langle \cdot \rangle)$

Open Problems:

• Define n associated with (G, Γ, W) in terms of $(H, H', \langle \cdot \rangle)$

• Extend to non linear commutative algebraic groups (elliptic curves, abelian varieties, and generally semi-abelian varieties)

Open Problems:

• Define n associated with (G, Γ, W) in terms of $(H, H', \langle \cdot \rangle)$

• Extend to non linear commutative algebraic groups (elliptic curves, abelian varieties, and generally semi-abelian varieties)

• Extend to non bicommutative Hopf algebras (of finite type to start with)

Open Problems:

- Define n associated with (G, Γ, W) in terms of $(H, H', \langle \cdot \rangle)$
- Extend to non linear commutative algebraic groups (elliptic curves, abelian varieties, and generally semi-abelian varieties)
- Extend to non bicommutative Hopf algebras (of finite type to start with)
- (?) Transcendence results on non commutative algebraic groups