PÓLYA'S THEOREM BY SCHNEIDER'S METHOD

By
M. WALDSCHMIDT (Paris)

Dedicated to Professor Th. Schneider on his 65th birthday

A well known theorem of G. Pólya states that 2^{z} is the smallest transcendental entire function with integral values at all positive integral points z; more precisely, if f is an entire function satisfying $f(n) \in \mathbf{Z}$ for all $n \in \mathbf{N}$, and

$$
\begin{equation*}
\limsup _{R \rightarrow \infty} \frac{1}{R} \log |f|_{R}<\log 2 \tag{1}
\end{equation*}
$$

(where $|f|_{R}=\sup _{|z|=R}|f(z)|$), then f is a polynomial.
We give here a new proof of this theorem, with a somewhat worse constant in place of $\log 2$, but which allows some further generalisations.

Notations. We denote by $\mathbf{N}, \mathbf{Z}, \mathbf{Q}, \mathbf{C}$ the non-negative rational integers, the rational integers, the rational numbers and the complex numbers, respectively. When α is an algebraic number, we denote by $s(\alpha)=\max \{\log |\bar{\alpha}|, \log d(\alpha)\}$ the size of α (see for instance [3], § 1.2). For $R>0, B_{R}$ is the set $\{z \in \mathbb{C} ;|z| \leqq R\}$. Finally, when $h \in \mathbf{N}$ and $z \in \mathbf{C}$, we define $\binom{z}{h}$ by

$$
\binom{z}{h}=\frac{z(z-1) \ldots(z-h+1)}{h!} .
$$

We shall use only the trivial bounds

$$
\left|\binom{z}{h}\right| \leqq 2^{H+R} \quad \text { and } \quad\left|\binom{z}{h}\right| \leqq e^{H}\left(\frac{R}{H}+1\right)^{H}
$$

for $|z| \leqq R$ and $1 \leqq h \leqq H$.
The main result of this paper is the following.
Theorem 1. Let K be a number field, and γ_{0}, γ_{1} two positive real numbers. Then there exists an effectively computable number C, depending only on γ_{0}, γ_{1} and $[K: \mathbf{Q}]$, with the following property:

Let S be a subset of Z, with $\operatorname{Card} S \cap B_{R} \geqq \gamma_{0} R$ for all sufficiently large R; let f, g be two entire functions satisfying

$$
g(n) \neq 0 \quad \text { and } \quad \frac{f(n)}{g(n)} \in K \quad \text { for all } \quad n \in S
$$

such that for all sufficiently large R,

$$
\max _{n \in S \cap B_{R}} \log \left\{\frac{1}{|g(n)|} ; s\left(\frac{f(n)}{g(n)}\right)\right\} \leqq \gamma_{1} R,
$$

and

$$
\max \left\{\log |g|_{R} ; \log |f|_{R}\right\} \leqq R / C .
$$

Then f / g is a rational function.
We obtain Pólya's theorem (with the constant Log 2 in (1) replaced by $1 / C$) by setting

$$
S=\mathbf{N} ; \gamma_{0}=\gamma_{1}=1 ; g=1 ; K=\mathbf{Q} .
$$

(When $m \in \mathbf{Z}$, then $s(m)=\log |m|$). A computation ${ }^{1}$ of C by the present method leads to $C=283$, and it is an interesting problem to obtain by this way the best possible constant $\frac{1}{\log 2}=1.44 \ldots$.

Proof of Theorem 1. Let k_{0} be an integer with $k_{0}>2 \delta / \gamma_{0}$, where $\delta=[K: \mathbf{Q}]$, and let h_{0} be a real number with $2 \delta / k_{0}<h_{0}<\gamma_{0}$ (for instance $k_{0}=\left[2 \delta / \gamma_{0}\right]+1, h_{0}=$ $\left.=\left(\gamma_{0 /} / 2\right)+\left(\delta / k_{0}\right)\right)$. Let N be a sufficiently large integer; c_{1}, c_{2}, c_{3} will denote positive constants which are effectively (and easily) computable in terms of $\gamma_{9}, \gamma_{1}, \delta$ (and h_{0}, k_{0}).

First step. We construct rational integers

$$
a_{h, k} \quad\left(0 \leqq h<h_{0} N ; \quad 0 \leqq k \leqq k_{0}-1\right),
$$

of absolute value less than $\exp \left(c_{1} N\right)$, not all zero, such that the meromorphic function

$$
F(z)=\sum_{0 \leqq h<h_{0} N} \sum_{0 \leqq k<k_{0}} a_{h, k}\binom{z}{h}\left(\frac{f(z)}{g(z)}\right)^{k}
$$

satisfies

$$
F(n)=0 \quad \text { for all } \quad n \in S \cap B_{N} .
$$

We have to solve a system of at most $2 N+1$ linear equations, with at least $h_{0} k_{0} N$ unknowns, and with coefficients in K; for $n \in S \cap B_{N}$, the numbers

$$
\binom{n}{h}\left(\frac{f(n)}{g(n)}\right)^{k} \quad\left(0 \leqq h<h_{0} N ; 0 \leqq k<k_{0}\right)
$$

have a common denominator bounded by $\gamma_{1} k_{0} N$, and a size bounded by $\left(h_{0}+1+k_{0} \gamma_{1}\right) N$. Hence Lemma 1.3.1 of [3] gives a non trivial solution $a_{h, k}$ with $\log \max _{h, k}\left|a_{h, k}\right|<c_{1} N$.

Second step. For $m \in S$, either $F(m)=0$, or $\log |F(m)| \geqq-c_{2}|m|$.
The denominator of $F(m)$ is bounded by $\gamma_{1} k_{0}|m|$, and the size of $F(m)$ is bounded by

$$
\log \left[k_{0}\left(h_{0} N+1\right)\right]+c_{1} N+\left(|m|+h_{0} N\right) \log 2+\gamma_{1} k_{0}|m| .
$$

[^0]The basic inequality

$$
-2 \delta s(\alpha) \leqq \log |\alpha| \quad \text { for all } \quad \alpha \in K, \alpha \neq 0
$$

(see [3], (1.2.3)) for $|m| \geqq N$, and the first step for $|m| \leqq N$, give the result.
Third step: induction. Define $G(z)=(g(z))^{k_{0}} \cdot F(z)$. Then, for all integers $M \geqq N$,
$(\mathrm{I})_{M}$:

$$
F(m)=0 \text { for all } m \in S \cap B_{M},
$$

and
(II) ${ }_{M}$: $\log |G|_{M}<-c_{3} M, \quad$ with $\quad c_{3}=k_{0} \gamma_{1}+c_{2}$.
The first step proves $(\mathrm{I})_{N}$, and $(\mathrm{II})_{M} \Rightarrow(\mathrm{I})_{M}$ is a consequence of the second step and of the hypothesis on the lower bound for $|g(m)|$. The property "(II) $)_{M}$ for all M " implies $F=0$, which means that f / g is an algebraic function (and consequently a rational function, because f / g is meromorphic in C). Now, to conclude the proof of Theorem 1, it is sufficient to prove (I) $)_{M} \Rightarrow(\mathrm{II})_{M+1}$.

Assume $\left(\mathrm{I}_{M}\right.$ is true. Then, for $R>M$, we get from Schwarz lemma

$$
\log |G|_{M+1} \leqq \log |G|_{R}-\gamma_{0} M \log \frac{R^{2}+(M+1)^{2}}{2 R(M+1)}
$$

(Cf. Lemma 6.2.1 of [3], where the inequality

$$
\left|\frac{R_{2}^{2}-z \bar{z}_{j}}{R_{2}\left(z-z_{j}\right)}\right| \geqq \frac{R_{2}^{2}-R_{1} \varrho}{R_{2}\left(R_{1}+\varrho\right)}, \quad|z|=R_{1}, \quad\left|z_{j}\right| \leqq \varrho
$$

can be sharpened to ${ }^{2}$

$$
\left.\left|\frac{R_{2}^{2}-z \bar{z}_{j}}{R_{2}\left(z-z_{j}\right)}\right| \equiv \frac{R_{2}^{2}+R_{1} \varrho}{R_{2}\left(R_{1}+\varrho\right)} .\right)
$$

We bound $|G|_{R}$ for $R>M$:

$$
\log |G|_{R} \leqq \log \left[\left(h_{0} N+1\right) k_{0}\right]+c_{1} N+h_{0} N\left[1+\log \left(\frac{R}{h_{0} N}+1\right)\right]+2 k_{0} \frac{R}{C}
$$

Choose $R=l_{0}(M+1)$, with l_{0} sufficiently large, say

$$
\frac{\gamma_{0}-h_{0}}{3} \log l_{0} \geqq \max \left\{c_{3} ; 2 h_{0}+c_{1}+\gamma_{0}-h_{0} \log h_{0}\right\} .
$$

Then

$$
\gamma_{0} \log \frac{R^{2}+(M+1)^{2}}{2 R(M+1)} \geqq \gamma_{0} \log \frac{l_{0}}{2}
$$

and we obtain

$$
\log |G|_{M+1}<-\left\{\frac{2}{3}\left(\gamma_{0}-h_{0}\right) \log l_{0}-\frac{2 k_{0} l_{0}}{C}\right\} M
$$

which is $<-c_{3} M$ when C is sufficiently large. This proves Theorem 1 .

[^1]It would be interesting to generalize Theorem 1 to more general sets S, for example to $S \subset \mathbf{Z}[i]$; the corresponding generalisation of Pólya's theorem is due to FUKASAWA and GEL'FOND [2]: if f is an entire function satisfying $f(a+i b) \in \mathbf{Z}[i]$, when $a+i b \in \mathbf{Z}[i]$, and

$$
\begin{equation*}
\limsup _{R \rightarrow \infty} \frac{1}{R^{2}} \log |f|_{R}<\frac{\pi}{2\left(1+e^{164 / \pi}\right)^{2}}, \tag{2}
\end{equation*}
$$

then f is a polynomial.
With the present method, we can deal only with a stronger hypothesis (where $1 / R^{2}$ is replaced by $(\log R) / R^{2}$ in (2)), because we do not know interpolation polynomials in $\mathbb{Z}[i]$ generalizing the polynomials $\binom{z}{n}$ in \mathbb{Z}; this problem ${ }^{3}$ is connected with those of the measure of irrationality (or transcendence) of e^{π}, and of the algebraic independence of π and e^{π}.

On the other hand, we can consider more general sets of algebraic numbers. Using the method of proof of Theorem 1, we get:

Theorem 2. Let K be a number field, γ_{1}, γ_{2} positive real numbers, and $\Psi:[0,+\infty) \rightarrow[0,+\infty)$ a positive real valued function satisfying $\lim _{R \rightarrow \infty} \sup \frac{\Psi(\lambda R)}{\Psi(R)}<\infty$ for all $\lambda \geqq 1$. Then there exists a constant $C>0$ with the following property: Let S be a subset of K with

$$
\operatorname{Card} S \cap B_{R} \geqq \Psi(R)
$$

and

$$
\max _{x \in S \cap B_{R}} s(\alpha) \leqq \gamma_{2} \log R
$$

for all sufficiently large R. Let f, g be two entire functions, satisfying

$$
g(\alpha) \neq 0 \quad \text { and } \quad \frac{f(\alpha)}{g(\alpha)} \in K \quad \text { for } \quad \alpha \in S
$$

such that for all sufficiently large R,

$$
\max _{\alpha \in S \cap B_{R}}\left\{\log \frac{1}{|g(\alpha)|} ; s\left(\frac{f(\alpha)}{g(\alpha)}\right)\right\} \leqq \gamma_{1} \cdot \frac{\Psi(R)}{\log R},
$$

and

$$
\max \left\{\log |f|_{R} ; \log |g|_{R}\right\} \leqq \frac{\Psi(R)}{C \log R}
$$

Then f / g is a rational function.
We obtain as a corollary Gel'fond Schneider's theorem on the transcendence of a^{b} (choose: $f(z)=a^{z} ; g(z)=1 ; \Psi(R)=R^{2} ; S \subset\{h+k b, h, k \in \mathbf{Z}\}$.)

The proof of Theorem 2 is essentially the same as that of Theorem 1; first we assume that the function $R \mapsto \Psi(R) / \log R$ is non decreasing (otherwise we replace $\Psi(R)$ by $\left.(\log R) \cdot \inf _{R^{\prime} \cong R} \Psi\left(R^{\prime}\right) / \log R^{\prime}\right)$; then we replace the polynomials

[^2]$\binom{z}{h}$ by z^{h} in the preceeding proof, and the parameters $h_{0} N, k_{0}$ by $\left[h_{0} \Psi(N) / \log N\right]$, [$\left.k_{0} \log N\right]$, respectively.

Finally, we mention two possible generalisations of Theorems 1 and 2. Firstly Pólya's theorem has been generalized to functions of several variables by A. Baker [1]; using the interpolation formulas in [1], it is easy to derive the corresponding generalisation of the present paper. Secondly, it is possible to replace the number field K by the field of algebraic numbers, provided that we assume a growth condition on the function
(see [3], Exercise 2.2.f).

$$
R \mapsto \max _{\alpha \in S \cap B_{R}}[\mathbf{Q}(\alpha, f(\alpha): \mathbf{Q}],
$$

References

[1] A. Baker, A note on integral integer-valued functions of several variables, Proc. Camb. Phil. Soc., 63 (1967), 715-720.
[2]A. O. Gel'fond, Sur les propriétés arithmétiques des fonctions entières, Tohoku Math. J., 30 (1929), 280-285.
[3] M. Waldschmidt, Nombres transcendants; Lecture Notes in Math., Springer Verlag. 402 (1974).
(Received November 4, 1975)

UNIVERSTTÉ P. ET M. CURIE (PARIS VI)
MATHEMATIOUES, T. $45-46$
4, PLACE JUSSIEU
75230 PARIS CEDEX 05
france

[^0]: 1 Made by A. Escassut and M. Mignotte.

[^1]: ${ }^{2}$ This was pointed out to me by J. Dufresnoy and H. L. Montgomery.

[^2]: ${ }^{3}$ Concerning this problem, see a forthcoming paper by Douglas Hensley: "Polynomials with Gaussian integer values at Gaussian integers."

