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S. Ramanujan.— Highly composite numbers, Proc. London Math.
Soc. 2 14 (1915), 347-409.

For n > 1 let d(n) denote the number of divisors of n. A superior highly
composite number is a positive integer n for which there exists ¢ > 0 such
that the function d(m)/m¢ reaches its maximum at n. The first superior
highly composite numbers are

2, 6, 12, 60, 120, 360, 2 520, 5 040, 55 440, 720 720,...
and their successive quotients are prime numbers

3.2 5 2 3 7 2 11, 13, 2, 3...
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L. Alaoglu, P. Erdés.— On highly composite and similar numbers, Trans. Amer.
Math. Soc., 56 (1944), 448-469.

Colossally abundant numbers : replace

d(n) = Zl

d|n

by

o(n) = Zd

d|ln
Quotients of consecutive colossally abundant numbers are prime.

i If = is a real number such that p{ and pj are rational integers for two
distinct primes p; and po, then z € Z 7
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L. Alaoglu, P. Erdos.— On highly composite and similar numbers, Trans. Amer.
Math. Soc., 56 (1944), 448-469.

S. Lang.— Nombres transcendants, Sém. Bourbaki 18eme année (1965/66),
N° 305.

S. Lang.— Algebraic values of meromorphic functions, II, Topology, 5 (1966),
363-370.

S. Lang.— Introduction to Transcendental Numbers, Addison-Wesley 1966.
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Six Exponentials Theorem (special case). If x is a real number
such that p7, p5 and p% are rational integers for three distinct
primes p1, p2 and ps, then x € Z.
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Six Exponentials Theorem (special case). If x is a real number
such that p7, p5 and p% are rational integers for three distinct
primes p1, p2 and ps, then x € Z.

Six Exponentials Theorem (again a special case). If x is a
complex number such that af, a3 and af are algebraic for three
multiplicatively independent numbers a1, as and a3, then x € Q.
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Six Exponentials Theorem. If 1,29 are two complex
numbers which are Q-linearly independent, if y1,y2,y3 are

three complexr numbers which are Q-linearly independent, then
one at least of the six numbers

e¥i¥i  (i=1,2, j=1,2,3)

18 transcendental.
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Six Exponentials Theorem. If 1,29 are two complex
numbers which are Q-linearly independent, if y1,y2,y3 are
three complexr numbers which are Q-linearly independent, then
one at least of the six numbers

e¥¥i  (i=1,2, j=1,2,3)

18 transcendental.

Set
XY :)\ij (i: 1,2; j: 1,2,3).
A 2 x 3 matrix has rank one iff it is of the form

1Yyr I1Y2 I1Y3
Toy1 T2Y2 Toys )
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Denote by Q the set of algebraic numbers and define

L={loga;aceQ l.={ eC;eecQ L

Six Exponentials Theorem (logarithmic form). For ¢ =1,2
and j =1,2,3, let \j; € L. Assume Ai1, A2, \13 are linearly

independent over Q and also A1, Aa1 are linearly independent
over Q. Then the matrix

<>\11 A12 >\13>
A2 A2a  Aos
has rank 2.
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Four Exponentials Conjecture
History.
A. Selberg (50’s).
Th. Schneider(1957) - first problem.
S Lang (60’s).
K. Ramachandra (1968).

Leopoldt's Conjecture on the p-adic rank of the units of an
algebraic number field (non vanishing of the p-adic regulator).
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Four Exponentials Conjecture (exponential form). Let x1, x5
be two Q-linearly independent complex numbers and y1, y2 also
two Q-linearly independent compler numbers. Then one at
least of the four numbers

65’31'917 65’31'927 65’32'91 65’32'92

)

18 transcendental.
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Four Exponentials Conjecture (logarithmic form).  For
1=1,2 and j = 1,2, let a;; be a non zero algebraic number and
Aij a complex number satisfying etii = o Assume A1, A2
are linearly independent over Q and also A1, X271 are linearly
independent over Q. Then

A11A22 # A12A21.
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Four Exponentials Conjecture (logarithmic form).  For
1=1,2 and j = 1,2, let a;; be a non zero algebraic number and
Aij a complex number satisfying etii = o Assume A1, A2
are linearly independent over Q and also A1, X271 are linearly
independent over Q. Then

A11A22 # A12A21.

Notice:
A1 A1

A11A22 — A2 A2 = det
11722 12421 Mo Moo
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Algebraic independence of logarithms of algebraic numbers

Conjecture Let aq,...,a, be non zero algebraic numbers. For
1 <j<nlet)\ cC satisfy eNi = aj. Assume Ay, ..., A\, are
linearly independent over Q. Then A\i,...,\, are algebraically
independent.
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Algebraic independence of logarithms of algebraic numbers

Conjecture Let aq,...,a, be non zero algebraic numbers. For
1 <j<nlet)\ cC satisfy eNi = aj. Assume Ay, ..., A\, are
linearly independent over Q. Then A\i,...,\, are algebraically
independent.

Write A; = log «;.

If logaq, ..., loga,, are Q-linearly independent then they are
algebraically independent.
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Algebraic independence of logarithms of algebraic numbers

Conjecture Let aq,...,a, be non zero algebraic numbers. For
1 <j<nlet)\ cC satisfy eNi = aj. Assume Ay, ..., A\, are
linearly independent over Q. Then A\i,...,\, are algebraically
independent.

Open problem:

transc.degoQ(L) > 27
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Quadratic relations between logarithms of algebraic
numbers

Homogeneous quadratic relations (Four Ezponentials
Conjecture):

AA2 = A3y 7
Transcendence of o(18B)/log~ .

(log a)(log 3) = (logy)(log d)?
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Quadratic relations between logarithms of algebraic
numbers

Non homogeneous quadratic relations:

(log ) (log 3) = log v

Open problem: Transcendence of 2182

(log2)* = log ~?
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Quadratic relations between logarithms of algebraic
numbers

Non homogeneous relations

Three Exponentials Conjecture (logarithmic form). Let
A1, Ao, A3 be three elements in L and v a non zero algebraic
number. Assume Ay = yA3. Then AiAa = yA3 = 0.
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Quadratic relations between logarithms of algebraic
numbers

Non homogeneous relations

Three Exponentials Conjecture (logarithmic form). Let
A1, Ao, A3 be three elements in L and v a non zero algebraic
number. Assume Ay = yA3. Then AiAa = yA3 = 0.

Special case: A\; = Ay = log, v = 1: transcendence of o/'°8*?

2
Example: transcendence of e™ 7?7
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Quadratic relations between logarithms of algebraic
numbers

Non homogeneous relations

Three Exponentials Conjecture (logarithmic form). Let
A1, A2, A3 be three elements in L and v a non zero algebraic
number. Assume Ay = yA3. Then AiAa = yA3 = 0.

Three Exponentials Conjecture (exponential form). Let
xr1,To,y be mnon zero complexr numbers and v a non zero
algebraic number. Then one at least of the three numbers

pTLY T2y YT/ T2

Y ,

18 transcendental.
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Five Exponentials Theorem (exponential form). If x1,xo are
Q-linearly independent, y1,ys are Q-linearly independent and
v 18 a non zero algebraic number, then one at least of the five

numbers
eTIYL eTIV2 T2 oT2Y2 67962/%

18 transcendental.
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Five Exponentials Theorem (exponential form). If x1,xo are
Q-linearly independent, y1,ys are Q-linearly independent and
v 18 a non zero algebraic number, then one at least of the five
numbers

eTIYL eTIV2 T2 oT2Y2 e Y2/

18 transcendental.

Five Exponentials Theorem (logarithmic form). For
i =1,2 and 5 =1,2, let \j; € L. Assume A\11, \12 are linearly
independent over Q. Further let v € QX and A € L. Then the

matrix
( A1 A2 Y )
A21 A2g A
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Sharp Six Exponentials Theorem (logarithmic form). For
1 =1,2 and j=1,2,3, let \jj € L and (i € Q. Assume
A11, A2, A13 are linearly independent over Q and also A1, A21
are linearly independent over Q. Then the matriz

()\11 + 5311 A2+ Bz Aig+ 513)
Aot + (21 Aog + [Boo Aag + [og

has rank 2.
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Sharp Six Exponentials Theorem (exponential form). If x1,xo
are two complexr numbers which are Q-linearly independent,
of y1,1y2,y3 are three complex numbers which are Q-linearly
independent and if 8;; are siz algebraic numbers such that

e“¥i Pii e Q for i=1,2, j=1,2,3,

then x;y; = Bi; fort=1,2 and j =1,2,3.
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Sharp Six Exponentials Theorem (exponential form). If x1,xo
are two complexr numbers which are Q-linearly independent,
of y1,1y2,y3 are three complex numbers which are Q-linearly
independent and if 8;; are siz algebraic numbers such that

e“¥i Pii e Q for i=1,2, j=1,2,3,

then x;y; = Bi; fort=1,2 and j =1,2,3.

The sharp six exponentials Theorem implies the five exponentials
Theorem: set y3 = v/x1 and use Baker's Theorem for checking
that y1, Y2, y3 are linearly independent over Q.
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A consequence of the sharp six exponentials Theorem:
One at least of the two numbers

A2 log «

3 2
A — o , e)\ :a(loga)

18 transcendental.

DD
rank = 1.
(A A2 >\3>
First proof in 1970 (also by W.D. Brownawell) as a consequence of a result of

algebraic independence.
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Sharp Four Exponentials Conjecture (exponential form).
If x1,x9 are two complex numbers which are Q-linearly
independent, if y1,vys, are two complexr numbers which are Q-

linearly independent and if 311, 812, B21, P22 are four algebraic
numbers such that the four numbers

r1y1—0B11 ,T1y2—PB12  ,xT2y1—021 ,T2y2—[22
e e , € , €

Y

are algebraic, then x;y; = B fori=1,2 and j =1, 2.
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Sharp Four Exponentials Conjecture (logarithmic form). For
i=1,2andj=1,2, let \;; € L and B3;; € Q. Assume A1, M9
are linearly independent over Q and also A1, Aa1 are linearly
independent over Q. Then

M1+ G110 A2+ Bio

det
Ao1 4 B21 Ao + (oo

£0.
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Sharp Three Exponentials Conjecture (exponential form).
If x1,x9,y are non zero complex numbers and o, 31, 32,7 are
algebraic numbers such that the three numbers

x1Yy—0>51 xoy— B2 YIr1/T2)—CX
e e 7 6( /x2)

)

are algebraic, then either xoy = B2 or yr1 = axs.
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Sharp Three Exponentials Conjecture (exponential form).
If x1,x9,y are non zero complex numbers and o, 31, 32,7 are
algebraic numbers such that the three numbers

x1Yy—0>51 xoy— B2 Yr1/T2)— X
e e 7 e( /x2)

)

are algebraic, then either xoy = B9 or yr1 = axs.

Sharp Three Exponentials Conjecture (logarithmic form).
Let A1, Ao, A3 be three elements of L with M3 #0 and
531, B2, B3,y four algebraic numbers. Then

M+ G v

det
Ao+ B2 A3+ 33

£0.
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Sharp Five Exponentials Conjecture. If 1,29 are Q-
linearly independent, if y1,y2 are Q-linearly independent and
if a, 811, 812, P21, B2,y are six algebraic numbers with v # 0
such that

6$1y1—511 6$1y2—512 6$2y1—521

Y Y Y

6516‘2?12—@27 e(r2/T1)—C

are algebraic, then x;y; = Bi; for i =1,2, j =1,2 and also
YTXo — OXX7.
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Sharp Five Exponentials Conjecture. If 1,29 are Q-
linearly independent, if y1,y2 are Q-linearly independent and

if a, 811, 812, P21, B2,y are six algebraic numbers with v # 0
such that

6$1y1—511 6:(:1?;2-612 6$2y1—521

Y Y Y

eélﬂ‘zy2—5227 e(r2/T1)—C

are algebraic, then x;y; = Bi; for i =1,2, j =1,2 and also
YTXo — OXX7.

Difficult case: when y1,y2,v/x1 are Q-linearly dependent.

Example: 1 =y =~v = 1.
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Sharp Five Exponentials Conjecture. If 1,29 are Q-
linearly independent, if y1,y2 are Q-linearly independent and
if a, 811, 812, P21, B2,y are six algebraic numbers with v # 0
such that

6$1y1—511 6$1y2—512 6$2y1—521

Y Y Y

6516‘2?12—@27 e(r2/T1)—C

are algebraic, then x;y; = Bi; for i =1,2, j =1,2 and also
YTXo — OXX7.

2
Consequence: Transcendence of the number e™ .

Proof. Set r1=yY1 =1, xo=yo=1m, vy=1, a =0, 611:1,
Bij =0 for (4,7) # (1,1).
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Denote by L the Q-vector space spanned by 1 and £ (linear

combinations of logarithms of algebraic numbers with algebraic coefficients):

/
L= {ﬁo+25hlogah; ¢ >0, a'sin QX, (3's in Q}
h=1

Strong Six Exponentials Theorem (D. Roy). If z1, 25
are Q-linearly independent and if yi,vy2,ys are Q-linearly
independent, then one at least of the six numbers

LilYj (Z — 1727 J — 17273)

does not belong to L.
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Strong Four Exponentials Conjecture. If x1,25 are Q-

linearly independent and if y1,vy2, are Q-linearly independent,
then one at least of the four numbers

L1Y1, L1Y2, L2Y1, L2Y2

does not belong to L.
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Strong Three Exponentials Conjecture. If x1, x5,y are non

zero complex numbers with x1/xo € Q and x1/x2 € Q, then
one at least of the three numbers

1Y, X2y, $2/$1

1s not in L.
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Strong Five Exponentials Conjecture. Let x1,x9 be

Q-linearly independent and vyi,vys be Q-linearly independent.
Then one at least of the five numbers

T1Y1, T1Y2, T2Y1, T2Y2, $1/$2

does not belong to L.
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sharp

strong
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12 statements

Three exponentials
Four exponentials
Five exponentials

Six exponentials

Number Theory Conference 2003

40



sharp

strong

http://www.math.jussieu.fr/~miw/

12 statements

Three exponentials
Four exponentials Conjecture
Five exponentials Theorem

Six exponentials
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12 statements

Three exponentials
sharp Four exponentials Conjecture
strong Five exponentials Theorem

Six exponentials

Three exponentials: three conjectures
Four exponentials: three conjectures
Six exponentials:  three theorems

Five exponentials: two conjectures (for sharp and strong)
one theorem
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Alg. indep. C

Y
Strong 3 exp C<= Strong 4 exp C = Strong 5 exp C = Strong 6 exp T
Y Y Y Y
Sharp 3 exp C« Sharp4 exp C = Sharpb5exp C = Sharp6exp T
Y Y Y Y
3exp C 4 exp C = S5exp T = 6bexp T

Remark:
The sharp 6 exponentials Theorem implies the 5 exponentials Theorem.
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Consequences of the 4 exponentials Conjecture

A2
)\11 _ 1)\2 2! 7é 07
22
)\11 >\21
- == 07
)\12 >\22 #

http://www.math.jussieu.fr/~miw/

)\11)\22

- a7 (),
)\12>\21 #

A11A22 — A12A21 # 0.
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Consequence of the sharp 4 exponentials Conjecture

Let \;; (¢ = 1,2, j = 1,2) be four non zero logarithms of algebraic
numbers.
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Consequence of the sharp 4 exponentials Conjecture

Let \;; (¢ = 1,2, j = 1,2) be four non zero logarithms of algebraic
numbers.

Assume

Then
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Proof. Assume

Use the sharp four exponentials conjecture with

(>\11 _ B)AQQ — )\12)\21-
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Consequence of the strong 4 exponentials Conjecture

Let \;; (¢ = 1,2, j = 1,2) be four non zero logarithms of algebraic
numbers.

Assume .
11A22  —
- E .
A12A21 «
Then
A11A29
- E .
A12A21 Q
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Proof: Assume
A11A22 B

A12A21 Feq

Use the strong four exponentials conjecture with

>\11)\22 — 6)\12>\21-
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Consequence of the strong 4 exponentials Conjecture

Let \;; (¢ = 1,2, j = 1,2) be four non zero logarithms of algebraic
numbers.

Assume
A1 A2l —

— - ]
)\12 )\22 Q

Then
e cither )\11/)\12 - Q and )\21/)\22 = Q
® Or )\12/)\22 c Q and

)\11 >\21

— c )
)\12 )\22 Q
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Remark:

E B bA11 — aAi2 _a
A192 bA1o b
Proof: Assume \ \
11 21 .
_ — = )
A2 A2 peq

Use the strong four exponentials conjecture with

A2(BA22 + Aa1) = A1 90
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Question: Let A\;; (¢ = 1,2, j = 1, 2) be four non zero logarithms
of algebraic numbers. Assume

A11A22 — A12A21 € Q.

Deduce
A11A22 = A12M21.
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Question: Let A\;; (¢ = 1,2, j = 1, 2) be four non zero logarithms
of algebraic numbers. Assume

A11A22 — A12A21 € Q.

Deduce
A11A22 = A12M21.

Answer: This is a consequence of the Conjecture on algebraic
independence of logarithms of algebraic numbers.
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Consequences of the strong 6 exponentials Theorem

Let \;; (#=1,2, j=1,2,3) be six non zero logarithms of
algebraic numbers. Assume
® \i1, Ay are linearly independent over Q

and
® \i1, A2, A\13 are linearly independent over Q.
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e One at least of the two numbers

1 transcendental.
e One at least of the two numbers

)\12)\21 )\13)\21
)\11>\22 )\11>\23

18 transcendental.
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e One at least of the two numbers

)\12 >\22 )\13 )\23

M1 Aot A1 Ao

18 transcendental.

o Also one at least of the two numbers

)\21 >\22 )\21 )\23

)\_11_)\12} A1 A3

18 transcendental.
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Replacing Aoq by 1.

e One at least of the two numbers
A2 — A11A22, A1z — A11A23

18 transcendental.

e The same holds for

18 transcendental.
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e Finally one at least of the two numbers

A1A22  A11Aes
Ao A13

18 transcendental, and also one at least of the two numbers

1 )\22 1 )\23

A1 A2 A1 Mg

18 transcendental.
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Missing:

One at least of the two numbers

A12A21 — A22A 11,

15 transcendental ¢

http://www.math.jussieu.fr/~miw/

A13A21 — A3 A1
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Theorem. Let \;; (i1=1,2, j=1,2,3,4,5) be ten non zero
logarithms of algebraic numbers. Assume

® \i1, o1 are linearly independent over Q
and

® \1,..., A5 are linearly independent over Q.
Then one at least of the four numbers

A1jA21 — A2 1, (0 =2,3,4,5)

18 transcendental.
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Further related transcendence results

Theorem (W.D. Brownawell, M. W., 1970) For i =1,2 and

J=1,2, let ay; be a non zero algebraic number and A\;; a

A

compler number satisfying e = ;.  Assume A1, M2 are

linearly independent over Q and also A1, a1 are linearly
independent over Q. Then one at least of the following two

statements holds

© A11A22 # A12A21

o the field Q(A11, A2, Ao1A22) has transcendence degree > 2.
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Consequences

2

e One at least of the two numbers €€, €€ is transcendental.

2 3 .
e For A € L\ {0}, one at least of the two numbers e*", e is
transcendental.

e One at least of the two following statements is true:
o the two numbers e and 7 are algebraically independent
2
o the number e™ is transcendental.

e For A € £\ {0}, one at least of the two following statements
IS true:
o the two numbers e and A are algebraically independent

2 .
o the number ¢?” is transcendental.
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Generalization

Theorem (D. Roy—-M. W., 1995) Let QQ € Q|X1,...,X,] be a
homogeneous quadratic polynomial and M1, ..., \, be elements
wn L such that

QA ... \) = 0.

Assume the field Q(Aq, ..., \n) has transcendence degree 1 over

Q. Then the point (A1, ..., \,) belongs to a linear subspace of
C" contained in the hypersurface () = 0.

Next step: investigate the transcendence of numbers

Q(A, .- An).
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Happy Birthday Professor Ramachandra!

Number Theory Conference 2003, Bangalore
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