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1. Introduction

In [7], we gave a survey of Lidstone theory for analytic functions of single variable.

Here we extend this theory to two variables.

In § 1 we give references to earlier papers on bivariate Lidstone polynomials. In

§ 2 we introduce our generalization to two variables of the univariate theory. The ex-

istence of the bivariate polynomials follows from Theorem 2.1. They give rise to four

new sequences of polynomials - they correspond to the two sequences
(
Λk(z)

)
k≥0

and
(
Λk(1−z)

)
k≥0 for the univariate case. In Theorem 4.1 we give a closed formula

for these polynomials in terms of the univariate Lidstone polynomials.

In § 5 we give a characterization of these polynomials by means of a system of

partial differential equations (Proposition 5.1). In § 6, we give explicitly the gener-

ating series of these sequences (Theorem 6.1) involving the generating series sinh(ζz)
sinh ζ

of the sequence of univariate Lidstone polynomials. In § 7 we give a two dimensional

generalization of the theorem of Poritsky and Whittaker on the expansion of entire

functions of exponential type < π (Theorem 7.1) – we start the proof by explaining

how these polynomials and their generating series were identified. We also prove

2–dimensional analogs of the results of Buck and Schoenberg for entire functions of

two variables of finite exponential type (Theorem 8.1 and Corollary 8.1).
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This paper is an introduction to a forthcoming paper [8] where we extend the

theory to several variables.

We work with two complex variables z = (z1, z2). We write |z| for max{|z1|, |z2|}.
For an analytic function f of two variables, we use the notation

|f |r = sup
|z|=r

|f(z)|.

For t = (t1, t2) ∈ N2, we set ‖t‖ = t1 + t2, t! = t1!t2! and we define

Dt =

(
∂

∂z1

)t1 ( ∂

∂z2

)t2
.

We also write zt = zt11 z
t2
2 . For ζ = (ζ1, ζ2) and z = (z1, z2) in C2, we write ζz =

ζ1z1 + ζ2z2. We use the Kronecker symbol

δab =

{
1 if a = b,

0 if a 6= b.

According to Lidstone interpolation in one variable, any polynomial f ∈ C[z] has a

finite expansion

f(z) =
∑
k≥0

f (2k)(0)Λk(1− z) +
∑
k≥0

f (2k)(1)Λk(z).

We keep the notations of [7] for the Lidstone polynomials in one variable: for k ≥ 0,

Λ2k,1(z) = Λk(z), Λ2k,0(z) = Λk(1− z),

so that any polynomial f ∈ C[z] in a single variable can be written

f(z) =
∑
t∈2N

f (t)(0)Λt,0(z) +
∑
t∈2N

f (t)(1)Λt,1(z).

Let f ∈ C[z1, z2] be a polynomial in two variables. Using Lidstone polynomials in

a single variable, one deduces

f(z1, z2) =
∑
t1∈2N

∑
t2∈2N

(
(D(t1,t2)f)(0, 0)Λt1,0(z1)Λt2,0(z2)+

(D(t1,t2)f)(1, 0)Λt1,1(z1)Λt2,0(z2) + (D(t1,t2)f)(0, 1)Λt1,0(z1)Λt2,1(z2)+

(D(t1,t2)f)(1, 1)Λt1,1(z1)Λt2,1(z2)
)
.

This produces an expansion involving the derivatives D(t1,t2)f at the four points

e0 = (0, 0), e1 = (1, 0), e2 = (0, 1) and e1 + e2 = (1, 1) with t1 and t2 both even.

If we know (Dtf)(ei) for t1 and t2 both even at these four points, we know the

polynomial f . However, if f has degree D, this expansion involves polynomials

Λt1,i(z1)Λt2,j(z2) (with i, j ∈ {0, 1}) of degree D + 1.

Let T ∈ 2N. For a polynomial f of total degree ≤ T + 1, we have Dtf = 0 as

soon as ‖t‖ > T is even. The dimension of the space C[z1, z2]≤T+1 of polynomials

of total degree ≤ T + 1 is 1
2 (T + 2)(T + 3). The number of t ∈ N2 with ‖t‖ even and
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‖t‖ ≤ T is 1
4 (T + 2)2. The number of t ∈ N2 with t1 and t2 both even and ‖t‖ ≤ T

is 1
8 (T + 2)(T + 4). We notice that

1

2
(T + 2)(T + 3) =

1

4
(T + 2)2 +

1

4
(T + 2)(T + 4).

The generalization to functions of two variables of Lidstone univariate theory that

we develop in this paper involves giving up the symmetry among the three points e0,

e1, e2. Our conditions at e0 involve all Dt with t1 + t2 even, while the conditions at

e1 and e2 involve only the Dt with both t1 and t2 even. Consequently, we introduce

the following subset of N2 × {0, 1, 2}:

T =
{

(t, 0) | ‖t‖ ∈ 2N
}⋃{

(t, i) ∈ N2 × {1, 2} | t1 and t2 ∈ 2N
}
.

Our approach is different from the one in [3], where the authors use the univariate

theory to cover the triangle with corners e0, e1, e2: they write the expansion of a

function on each segment [te1, te2], 0 ≤ t ≤ 1, by means of Lidstone interpolation

in a single variable. They produce explicit formulae for the main terms and also

for the remainder. They study uniform convergence and investigate computational

aspects.

These interpolation formulae of [3] are combined with bivariate Shepard opera-

tors in [1, 2]. The point of view of [3] is also used in [4] where the authors obtain a

new class of embedded boundary-type cubature formulae on the simplex.

2. The sequences of bivariate polynomials

Here is the corresponding generalization of [7, Lemma 1].

Lemma 2.1. Let f ∈ C[z] be a polynomial satisfying

Dtf(ei) = 0 for all (t, i) ∈ T . (2.1)

Then f = 0.

We will give two proofs of this lemma.

Proof. [First proof of Lemma 2.1] This first proof relies on [7, Lemma 1] (Lidstone

interpolation for polynomials in a single variable).

Let

f(z1, z2) =
∑
k1≥0

∑
k2≥0

ak1,k2z
k1
1 zk22 ∈ C[z1, z2]

satisfy

(Dtf)(ei) = 0 for all (t, i) ∈ T .

For k2 ≥ 0, define a polynomial fk2 of a single variable by setting

fk2(z1) =
∑
k1≥0

ak1,k2z
k1
1 =

1

k2!
D(0,k2)f(z1, 0),
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so that

f(z1, z2) =
∑
k2≥0

fk2(z1)zk22 .

Let k2 ∈ 2N. For each t1, we have(
d

dz1

)t1
fk2(z1) =

1

k2!
(D(t1,k2)f)(z1, 0).

If t1 is even and i ∈ {0, 1}, then ((t1, k2), i) ∈ T . Using [7, Lemma 1], we deduce

fk2 = 0, hence ak1,k2 = 0 for all k2 even and all k1 ≥ 0. In the same way, fixing

k1 ≥ 0, considering the polynomial∑
k2≥0

ak1,k2z
k2
2 =

1

k1!
(D(k1,0)f)(0, z2)

and using [7, Lemma 1], we deduce ak1,k2 = 0 for all k1 ∈ 2N and all k2 ≥ 0.

Therefore the condition ak1,k2 6= 0 implies that k1 and k2 are both odd - this implies

that k1 + k2 is even. But the hypothesis (D(k1,k2)f)(0, 0) = 0 for all (k1, k2) ∈ N2

with k1 + k2 ∈ 2N implies ak1,k2 = 0 for all (k1, k2) ∈ N2 with k1 and k2 both odd,

hence ak1,k2 = 0 for all (k1, k2) ∈ N2, and therefore f = 0.

We have seen in § 1 that the dimension of the space C[z]≤T+1, which is 1
2 (T +

2)(T + 3), is also the number of (t, i) ∈ T which satisfy ‖t‖ ≤ T . Therefore Lemma

2.1 can be stated as follows:

Lemma 2.2. For T ∈ 2N, the map f 7→
(
(Dtf)(ei)

)
(t,i)∈T
‖t‖≤T

is an isomorphism

from the space of polynomials of total degree ≤ T + 1 to the space of complex tuples(
at,i
)
(t,i)∈T ,‖t‖≤T .

For T an even nonnegative integer, there is a natural bijective map between the

set of k ∈ N2 with ‖k‖ ≤ T + 1 and the set {(t, i) ∈ T | ‖t‖ ≤ T}: the image of

(k1, k2) with k1 + k2 even is ((k1, k2), 0), the image of (k1, k2) with k1 odd and k2
even is ((k1 − 1, k2), 1), and finally the image of (k1, k2) with k1 even and k2 odd

is ((k1, k2 − 1), 2). For the inverse bijective map, the image of ((t1, t2), 0) is (t1, t2),

the image of ((t1, t2), 1) is (t1 + 1, t2) and the image of ((t1, t2), 2) is (t1, t2 + 1).

For (k1, k2) ∈ N2 and (t1, t2) ∈ N2, we have

D(t1,t2)(zk11 zk22 ) =

{
k1!

(k1−t1)!
k2!

(k2−t2)!z
k1−t1
1 zk2−t22 if k1 ≥ t1 and k2 ≥ t2,

0 otherwise.

Hence

D(t1,t2)(zk11 zk22 )(e0) = t!δt,k.

Also for {i, j} = {1, 2}, we have

D(t1,t2)(zk11 zk22 )(ei) =

{
ki!kj !

(ki−ti)! if ki ≥ ti and kj = tj ,

0 otherwise.
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Proof. [Second proof of Lemma 2.1] We proceed by induction on the even integer

T ≥ 0 to prove that the map of Lemma 2.2 is injective on C[z]≤T+1: if a polynomial

f of total degree ≤ T + 1 satisfies (Dtf)(ei) = 0 for all (t, i) ∈ T with ‖t‖ ≤ T ,

then f = 0. This is true for T = 0: a polynomial f of total degree ≤ 1 is of the

form a00 + a10z1 + a01z2, there are 3 elements (t, i) ∈ T with ‖t‖ ≤ 1, which are

((0, 0), 0), ((0, 0), 1), ((0, 0), 2), and the conditions f(e0) = f(e1) = f(e2) = 0 imply

a00 = a10 = a01 = 0.

Assume that T ≥ 2 is even and that the result is true for T −2. Let f ∈ C[z1, z2]

have total degree ≤ T + 1:

f(z1, z2) =
∑

k1+k2≤T+1

ak1,k2z
k1
1 zk22 .

Let k1, k2 satisfy k1 + k2 = T . Using the assumption (Dtf)(ei) = 0 with (t1, t2) =

(k1, k2) and i = 0, we deduce ak1,k2 = 0.

Next, let k1, k2 satisfy k1 + k2 = T + 1. If k1 is odd (hence k2 is even) we use

the assumption (Dtf)(ei) = 0 with (t1, t2) = (k1 − 1, k2) and i = 1. If k1 is even

(hence k2 is odd) we use the assumption (Dtf)(ei) = 0 with (t1, t2) = (k1, k2 − 1)

and i = 2. In both cases we deduce ak1,k2 = 0. Hence f has total degree ≤ T − 2

and we conclude thanks to the induction hypothesis.

From Lemma 2.2 we deduce:

Theorem 2.1. For each (t, i) ∈ T , there exists a unique polynomial Λt,i satisfying,

for all (τ , j) ∈ T ,

(DτΛt,i)(ej) = δτ,tδij .

The polynomial Λt,i has degree at most ‖t‖+ 1.

An equivalent formulation is the following:

Corollary 2.1. Any polynomial f ∈ C[z1, z2] can be expanded as a finite sum

f(z1, z2) =
∑

(t,i)∈T

(Dtf)(ei)Λt,i(z1, z2).

This formula can be written

f(z1, z2) =
∑
‖t‖∈2N

(Dtf)(0, 0)Λt,0(z1, z2) +
∑

t1,t2∈2N
(Dtf)(1, 0)Λt,1(z1, z2)

+
∑

t1,t2∈2N
(Dtf)(0, 1)Λt,2(z1, z2).
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3. Recurrence formulae

From Corollary 2.1 one deduces, for t1 and t2 even,

zt1+1
1

(t1 + 1)!

zt22
t2!

=
∑

0≤τ1≤t1
τ1∈2N

1

(t1 − τ1 + 1)!
Λ(τ1,t2),1(z),

zt11
t1!

zt2+1
2

(t2 + 1)!
=

∑
0≤τ2≤t2
τ2∈2N

1

(t2 − τ2 + 1)!
Λ(t1,τ2),2(z),

zt11
t1!

zt22
t2!

= Λt,0(z) +
∑

0≤τ1≤t1
τ1∈2N

1

(t1 − τ1)!
Λ(τ1,t2),1(z) +

∑
0≤τ2≤t2
τ2∈2N

1

(t2 − τ2)!
Λ(t1,τ2),2(z),

while for t1 and t2 odd we have

zt11
t1!

zt22
t2!

= Λ(t1,t2),0(z).

This yields recurrence formulae producing the polynomials Λt,i by induction on ‖t‖:

Lemma 3.1. For t1 and t2 even, we have

Λt,1(z) =
zt1+1
1

(t1 + 1)!

zt22
t2!
−

∑
0≤τ1≤t1−2
τ1∈2N

1

(t1 − τ1 + 1)!
Λ(τ1,t2),1(z),

Λt,2(z) =
zt11
t1!

zt2+1
2

(t2 + 1)!
−

∑
0≤τ2≤t2−2
τ2∈2N

1

(t2 − τ2 + 1)!
Λ(t1,τ2),2(z),

Λt,0(z) =
zt11
t1!

zt22
t2!
−

∑
0≤τ1≤t1
τ1∈2N

1

(t1 − τ1)!
Λ(τ1,t2),1(z)−

∑
0≤τ2≤t2
τ2∈2N

1

(t2 − τ2)!
Λ(t1,τ2),2(z).

For t1 and t2 odd, we have

Λt,0(z) =
zt11
t1!

zt22
t2!
·

4. Explicit formulae

The Lidstone polynomials in a single variable Λt,1(z) and Λt,0(z) = Λt,1(1 − z),

(t even, z ∈ C) introduced in [7, §2] enable us to give explicit formulae for the

polynomials Λt,i –in § 7, before proving Theorem 7.1, we will mimic the argument
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of the proof of [7, §6] to explain how these formulae were found.

Theorem 4.1. For t1 and t2 both even, we have

Λ(t1,t2),1(z1, z2) = Λt1,1(z1)
zt22
t2!
,

Λ(t1,t2),2(z1, z2) =
zt11
t1!

Λt2,1(z2),

Λ(t1,t2),0(z1, z2) =
zt11
t1!

Λt2,0(z2) + Λt1,0(z1)
zt22
t2!
− zt11 z

t2
2

t1!t2!
·

For t1 and t2 both odd, we have

Λ(t1,t2),0(z1, z2) =
zt11
t1!

zt22
t2!
·

Proof. The last formula of Theorem 4.1, for t1 and t2 both odd and i = 0, follows

from Lemma 3.1.

Suppose now that both t1 and t2 are even. It is not difficult to check by brute

force that the right hand sides of each of the three first formulae satisfy the prop-

erties of Theorem 2.1 which give a characterization of Λt,i.

Here is an alternative argument, which relies on Lemma 3.1. We first check the

formula of Theorem 4.1 for Λt,i with i = 1 by induction on t1. For t1 = 0 Lemma

3.1 gives

Λ(0,t2),1(z1, z2) = z1
zt22
t2!

;

recall Λ0,1(z1) = z1. Assuming that the formula of Theorem 4.1 for i = 1 holds

for 0 ≤ τ1 < t1, we deduce it for t1 by means of Lemma 3.1 and of the recurrence

formula in one variable [7, Equation (4)]. The proof of the formula for i = 2 is

similar.

Once we know the two first formulae (for i = 1 and i = 2), we deduce the third

one (for i = 0) thanks to [7, Equation (5)] in one variable and to Lemma 3.1.

Example. Here is the formula for the expansion of a polynomial in 2 variables

of total degree ≤ 3, involving the univariate Lidstone polynomials Λ0,1(z) = z,

Λ0,0(z) = 1− z, Λ2,1(z) = 1
6 (z3 − z) and Λ2,0(z) = Λ2,1(1− z):

f(z1, z2) = f(0, 0)(1− z1 − z2) + f(1, 0)z1 + f(0, 1)z2 + (D(1,1)f)(0, 0)z1z2

+(D(2,0)f)(0, 0)

(
Λ2,0(z1)− 1

2
z21z2

)
+ (D(2,0)f)(1, 0)Λ2,1(z1) +

1

2
(D(2,0)f)(0, 1)z21z2

+(D(0,2)f)(0, 0)

(
Λ2,0(z2)− 1

2
z1z

2
2

)
+ (D(0,2)f)(0, 1)Λ2,1(z2) +

1

2
(D(0,2)f)(1, 0)z1z

2
2 .
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For t1 and t2 both even and i ∈ {0, 1, 2}, the total degree of Λ(t1,t2),i(z1, z2) is

t1 + t2 + 1, the homogeneous component of highest degree is

− zt1+1
1

(t1 + 1)!

zt22
t2!
− zt11
t1!

zt2+1
2

(t2 + 1)!
for i = 0,

zt1+1
1

(t1 + 1)!

zt22
t2!

for i = 1,

zt11
t1!

zt2+1
2

(t2 + 1)!
for i = 2.

From Theorem 4.1 and [7, Equation (15)], one deduces, for any (t, i) ∈ T and any

z ∈ C2,

|Λt,1(z)| ≤ 2π−t1e3π|z1|/2
|z2|t2
t2!

,

|Λt,2(z)| ≤ 2
|z1|t1
t1!

π−t2e3π|z2|/2,

|Λt,0(z)| ≤ |z1|
t1 |z2|t2
t1!t2!

+ 2e3π/2
(
|z1|t1
t1!

π−t2e3π|z2|/2 + π−t1e3π|z1|/2
|z2|t2
t2!

)
.

(4.1)

Example. From Theorem 4.1, using equation [7, Equation (3)] for Λ4,0, we deduce

Λ(4,4),0(z1, z2) =
z41z

4
2

4!2
−
(
z51
5!

+
z31
18
− z1

45

)
z42
4!
− z41

4!

(
z52
5!

+
z32
18
− z2

45

)
;

using the numerical values 4!2 = 576, 4!5! = 2880, 4!18 = 432, 4!45 = 1080 we

deduce

Λ(4,4),0(z1, z2) =− 1

2880
z51z

4
2 −

1

2880
z41z

5
2 +

1

576
z41z

4
2

− 1

432
z41z

3
2 −

1

432
z31z

4
2 +

1

1080
z1z

4
2 +

1

1080
z41z2.

(4.2)

5. Differential equation

The following result is an analog in two variables of [7, Lemma 2] for the family

of polynomials Λt,0 (t = (t1, t2), t1, t2 both even). There are three further sim-

ilar statements, that we will not need nor prove, for the three other families of

polynomials

Λ(t1,t2),0, t1 and t2 both odd ≥ 1,

Λ(t1,t2),1, t1 and t2 both even ≥ 0,

Λ(t1,t2),2, t1 and t2 both even ≥ 0.

Proposition 5.1. The family of polynomials Λt,0 (t = (t1, t2), t1, t2 both even) is

the unique solution of the system of differential equations{
D(2,0)Lt1,t2 = Lt1−2,t2 when both t1 and t2 are even with t1 ≥ 2

D(0,2)Lt1,t2 = Lt1,t2−2 when both t1 and t2 are even with t2 ≥ 2
(5.1)
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satisfying Lt1,0 = Λ(t1,0),0 for t1 ≥ 0 even and L0,t2 = Λ(0,t2),0 for t2 ≥ 0 even, with

the four initial conditions

Lt1,t2(e0) = Lt1,t2(e1) = Lt1,t2(e2) =D(1,1)Lt1,t2(e0) = 0

for all t1 and t2 both even with ‖t‖ ≥ 2.

Notice that Λ(t1,0),0(z1, z2) = Λ(0,t1),0(z2, z1).

The families of polynomials, for t1, t2 ∈ 2N,

Λt1+t2,1(1− z1 − z2),
zt1+1
1

(t1 + 1)!

zt22
t2!
,

zt11
t1!

zt2+1
2

(t2 + 1)!
,

zt11
t1!

zt22
t2!
,

satisfy the system of differential equations (5.1), but not the other assumptions.

Notice also that D(1,1)Λ(1,1),0(z1, z2) = 1, while Λ(0,0),0(z1, z2) = 1− z1 − z2.

Proof. [Proof of Proposition 5.1] The fact that the family of polynomials Λt,0
(t = (t1, t2), t1, t2 both even), satisfies these conditions follows from Theorem 2.1.

Conversely, let Lt be a solution. We prove Lt1,t2 = Λ(t1,t2),0 by induction on

t1 + t2. This is true by assumption for t1 = 0 and also for t2 = 0. Assume t1 ≥ 2

and t2 ≥ 2. Define g = Lt1,t2 − Λ(t1,t2),0. Using the two differential equations

D(2,0)Lt1,t2 = Lt1−2,t2 and D(0,2)Lt1,t2 = Lt1,t2−2

together with

D(2,0)Λ(t1,t2),0 = Λ(t1−2,t2),0 and D(0,2)Λ(t1,t2),0 = Λ(t1,t2−2),0

and with the induction hypothesis

Lt1−2,t2 = Λ(t1−2,t2),0 and Lt1,t2−2 = Λ(t1,t2−2),0,

we deduce D(2,0)g = D(0,2)g = 0; therefore g has degree ≤ 1 in z1 and z2: it is

of the form g(z) = a00 + a10z1 + a01z2 + a11z1z2. Such a polynomial is completely

determined by the four numbers g(e0), g(e1), g(e2), (D(1,1)g)(e0). From the four

initial conditions we deduce g = 0. The result follows.

6. Generating series

Following [5, p. 27], we will say that a series of functions
∑
α aα(z) converges nor-

mally in an open subset Ω of Cn if
∑
α supK |aα(z)| converges for every compact

set K ⊂ Ω. For instance [5, Theorem 2.2.6] an analytic function in a polydisc

{z ∈ Cn | |zj | < rj , j = 1, . . . , n} is the sum of its Taylor expansion at the origin

with normal convergence in this polydisc.
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Denote by M0, M̃0, M1, M2 the four generating series

M0(ζ, z) =
∑

t1,t2 both even

Λ(t1,t2),0(z1, z2)ζt11 ζ
t2
2 ,

M̃0(ζ, z) =
∑

t1,t2 both odd

Λ(t1,t2),0(z1, z2)ζt11 ζ
t2
2 ,

M1(ζ, z) =
∑

t1,t2 both even

Λ(t1,t2),1(z1, z2)ζt11 ζ
t2
2 ,

M2(ζ, z) =
∑

t1,t2 both even

Λ(t1,t2),2(z1, z2)ζt11 ζ
t2
2 .

Using the generating series [7, Equation (6)] of Lidstone polynomials in a single

variable ∑
t∈2N

Λt,1(z)ζt =
sinh(ζz)

sinh(ζ)
(6.1)

combined with Theorem 4.1, we deduce:

Theorem 6.1. These four generating series are normally convergent in the domain

{(ζ1, ζ2, z1, z2) ∈ C4 | |ζ1| < π, |ζ2| < π}

where they define analytic functions of 4 variables, namely

M0(ζ, z) = cosh(ζ1z1)
sinh(ζ2(1− z2))

sinh(ζ2)
+

sinh(ζ1(1− z1))

sinh(ζ1)
cosh(ζ2z2)

− cosh(ζ1z1) cosh(ζ2z2),

M̃0(ζ, z) = sinh(ζ1z1) sinh(ζ2z2),

M1(ζ, z) =
sinh(ζ1z1)

sinh(ζ1)
cosh(ζ2z2),

M2(ζ, z) = cosh(ζ1z1)
sinh(ζ2z2)

sinh(ζ2)
·

For the proof of the normal convergence of the series (6.1) in {(ζ, z) ∈ C2 |
|ζ| < π}, let us introduce the entire function of a single variable

ϕ(z) =

{
sinh(z)
z for z 6= 0,

1 for z = 0.

Since the function 1/ϕ(ζ) is analytic in |ζ| < π, the function of two variables

F (ζ, z) = z
ϕ(ζz)

ϕ(ζ)

is analytic in the domain {(ζ, z) ∈ C2 | |ζ| < π, z ∈ C}; hence its Taylor expansion

is normally convergent in this domain. Finally, for z ∈ C, we have

F (ζ, z) =

{
sinh(ζz)
sinh(ζ) for ζ 6= 0,

z for ζ = 0.
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7. Expansion of entire functions of two variables

Let f be an entire function of two complex variables. We define the exponential

type τ(f) ∈ [0,∞] as

τ(f) = lim sup
|z1|+|z2|→∞

1

|z1|+ |z2|
log |f(z1, z2)|.

If f has an exponential type ≤ τ , then for each z1 ∈ C, the function z2 7→ f(z1, z2)

has exponential type ≤ τ and for each z2 ∈ C, the function z1 7→ f(z1, z2) has

exponential type ≤ τ :

lim sup
r→∞

1

r
log sup
|z2|≤r

|f(z1, z2)| ≤ τ for all z1 ∈ C

and

lim sup
r→∞

1

r
log sup
|z1|≤r

|f(z1, z2)| ≤ τ for all z2 ∈ C.

As pointed out by Damien Roy, the function∑
k≥0

(z1z2)k

k!2

has exponential type 1; however, for each ε > 0, for each z1 ∈ C, the function z2 7→
f(z1, z2) has exponential type ≤ ε and for each z2 ∈ C, the function z1 7→ f(z1, z2)

has exponential type ≤ ε.

Lemma 7.1. For any z0 ∈ C2, we have

lim sup
k1+k2→∞

|D(k1,k2)f(z0)|
1

k1+k2 = τ(f).

Proof. Since f(z) and f(z0+z) have the same exponential type, it suffices to prove

the result for z0 = 0. We write the Taylor expansion of f at the origin

f(z) =
∑
k1≥0

∑
k2≥0

ck1,k2z
k1
1 zk22

with

ck1,k2 =
1

k1!k2!
D(k1,k2)f(0).

We first prove the upper bound for τ(f). Let τ > 0. Assume

|ck1,k2 | ≤
τk1+k2

k1!k2!

for all sufficiently large k1 + k2, say k1 + k2 > K. Then, for z ∈ C2,

|f(z)| ≤
∑

k1+k2≤K

|ck1,k2 ||z1|k1 |z2|k2 +
∑

k1+k2>K

τk1+k2 |z1|k1 |z2|k2
k1!k2!
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with ∑
k1+k2>K

τk1+k2 |z1|k1 |z2|k2
k1!k2!

≤ eτ(|z1|+|z2|).

Hence τ(f) ≤ τ .

We now prove the lower bound for τ(f). From Parseval’s relation

1

(2π)2

∫ π

0

∫ π

0

|f(r1eiθ1 , r2eiθ2)|2dθ1dθ2 =
∑
k1≥0

∑
k2≥0

|ck1,k2 |2r
2k1
1 r2k22

for r1 > 0 and r2 > 0, we deduce Cauchy’s inequalities [5, Theorem 2.2.7]:

|ck1,k2 |r
k1
1 r

k2
2 ≤ sup

|z1|=r1
|z2|=r2

|f(z1, z2)|. (7.1)

Assume τ(f) <∞; let τ = τ(f). For any ε > 0 we have

|f(z1, z2)| ≤ e(τ+ε)(|z1|+|z2|)

for sufficiently large |z1| + |z2| depending on ε. We apply this upper bound for

|z1| = r1 = k1/τ and |z2| = r2 = k2/τ using Cauchy’s inequalities (7.1):

|D(k1,k2)f(0)| ≤ k1!τk1

kk11
· k2!τk2

kk22
e(1+(ε/τ))(k1+k2)

for sufficiently large k1 + k2. From Stirling’s formula (for N ≥ 1)

N ! < NNe−N
√

2πNe1/(12N)

we conclude

lim sup
k1+k2→∞

|D(k1,k2)f(0)|1/(k1+k2) ≤ τ.

From Lemma 7.1 se deduce:

Corollary 7.1. Let f be an entire function of two variables of exponential type

≤ τ . Then the Laplace transform of f , viz. the function of two complex variables

F (ζ1, ζ2) =
∑
k1≥0

∑
k2≥0

D(k1,k2)f(0)ζ−k1−11 ζ−k2−12 ,

is analytic in the domain
{

(ζ1, ζ2) ∈ C2 | |ζ1| > τ, |ζ2| > τ
}

.

Theorem 7.1. Let f be an entire function in C2 having exponential type < π.

Then

f(z) =
∑

(t,i)∈T

(Dtf)(ei)Λt,i(z),

where the series is normally convergent in C2.
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Before starting with the proof of Theorem 7.1, let us look at what it means for

the function eζz when ζ ∈ C2 satisfies 0 < |ζ1| < π and 0 < |ζ2| < π; this function

has exponential type max{|ζ1|, |ζ2|} < π; from Theorem 7.1 we deduce:

eζz =
∑
‖t‖∈2N

Λt,0(z)ζt + eζ1
∑

t1, t2∈2N
Λt,1(z)ζt + eζ2

∑
t1, t2∈2N

Λt,2(z)ζt,

which can be written

eζz =
∑

(t,i)∈T

Λt,i(z)e
ζiζt (7.2)

by setting ζ0 = 0.

We wish to use this formula by replacing ζ1 with −ζ1 and/or ζ2 with −ζ2.

However the first sum does not behave well under these substitutions. This is why

we splitted it into two parts in § 6, so that∑
(t,i)∈T

Λt,i(z)e
ζiζt = M0(ζ, z) + M̃0(ζ, z) +M1(ζ, z)eζ1 +M2(ζ, z)eζ2 .

Hence (7.2) yields

eζ1z1+ζ2z2 = M0(ζ, z) + M̃0(ζ, z) +M1(ζ, z)eζ1 +M2(ζ, z)eζ2 ,

e−ζ1z1+ζ2z2 = M0(ζ, z)− M̃0(ζ, z) +M1(ζ, z)e−ζ1 +M2(ζ, z)eζ2 ,

eζ1z1−ζ2z2 = M0(ζ, z)− M̃0(ζ, z) +M1(ζ, z)eζ1 +M2(ζ, z)e−ζ2 ,

e−ζ1z1−ζ2z2 = M0(ζ, z) + M̃0(ζ, z) +M1(ζ, z)e−ζ1 +M2(ζ, z)e−ζ2 .

(7.3)

Let U , U1, U2, V1, V2 be five variables. Introduce the matrix

P =


U U U1 U2

U −U V1 U2

U −U U1 V2
U U V1 V2

 .

Its determinant is 4U2(U1 − V1)(U2 − V2), hence is not 0. Denote by R the matrix

P specialized at (U,U1, V1, U2, V2) = (1, eζ1 , e−ζ1 , eζ2 , e−ζ2), and by Q the matrix P

specialized at (U,U1, V1, U2, V2) = (1, 1,−1, 1,−1):

R =


1 1 eζ1 eζ2

1 −1 e−ζ1 eζ2

1 −1 eζ1 e−ζ2

1 1 e−ζ1 e−ζ2

 , Q =


1 1 1 1

1 −1 −1 1

1 −1 1 −1

1 1 −1 −1

 .

Their determinants are not 0, thanks to our assumption 0 < |ζ1|, |ζ2| < π. From

(7.3) we deduce 
eζ1z1+ζ2z2

e−ζ1z1+ζ2z2

eζ1z1−ζ2z2

e−ζ1z1−ζ2z2

 = R


M0(ζ, z)

M̃0(ζ, z)

M1(ζ, z)

M2(ζ, z)

 .
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We also have

QR = 4


1 0 cosh(ζ1) cosh(ζ2)

0 1 0 0

0 0 sinh(ζ1) 0

0 0 0 sinh(ζ2)

 ,

hence

QR


M0(ζ, z)

M̃0(ζ, z)

M1(ζ, z)

M2(ζ, z)

 = 4


M0(ζ, z) + cosh(ζ1)M1(ζ, z) + cosh(ζ2)M2(ζ, z)

M̃0(ζ, z)

sinh(ζ1)M1(ζ, z)

sinh(ζ2)M2(ζ, z)



= 4


cosh(ζ1z1) cosh(ζ2z2)

sinh(ζ1z1) sinh(ζ2z2)

sinh(ζ1z1) cosh(ζ2z2)

cosh(ζ1z1) sinh(ζ2z2).

 .

Therefore (7.3) implies

M̃0(ζ, z) = sinh(ζ1z1) sinh(ζ2z2),

M1(ζ, z) =
sinh(ζ1z1) cosh(ζ2z2)

sinh(ζ1)
,

M2(ζ, z) =
cosh(ζ1z1) sinh(ζ2z2)

sinh(ζ2)

and

M0(ζ, z) = cosh(ζ1z1) cosh(ζ2z2)− sinh(ζ1z1) cosh(ζ2z2)

tanh(ζ1)

− cosh(ζ1z1) sinh(ζ2z2)

tanh(ζ2)
·

(7.4)

From

sinh(ζ(1− z)) = sinh(ζ) cosh(ζz)− sinh(ζz) cosh(ζ) (7.5)

we see that (7.4) is equivalent to the formula for M0 in Theorem 6.1.

In conclusion, from (7.2), which is a special case of Theorem 7.1, we deduce

(7.3), which yields the results of Theorem 6.1. One easily deduces Theorem 4.1

from Theorem 6.1, and this is how we discovered the explicit formulae for the

polynomials Λt,i.

We are now ready to proceed to the proof of Theorem 7.1.

Proof. [Proof of Theorem 7.1]

We start by using elementary hyperbolic trigonometric formulae:

eζ1z1+ζ2z2 = cosh(ζ1z1 + ζ2z2) + sinh(ζ1z1 + ζ2z2),

cosh(ζ1z1 + ζ2z2) = cosh(ζ1z1) cosh(ζ2z2) + sinh(ζ1z1) sinh(ζ2z2),

sinh(ζ1z1 + ζ2z2) = sinh(ζ1z1) cosh(ζ2z2) + cosh(ζ1z1) sinh(ζ2z2).



September 3, 2022 19:5 BivariateLidstoneInterpolation

Lidstone interpolation II. Two variables 15

Using Theorem 6.1 (with the formula for M0 given by (7.4)) and writing

eζ1M1(ζ, z) =

(
1 +

cosh(ζ1)

sinh(ζ1)

)
sinh(ζ1z1) cosh(ζ2z2),

eζ2M2(ζ, z) =

(
1 +

cosh(ζ2)

sinh(ζ2)

)
sinh(ζ2z2) cosh(ζ1z1),

we deduce the first formula of (7.3), which implies the three other ones. As a

consequence, we obtain (7.2), which is the special case of Theorem 7.1 for the

functions z 7→ eζz when ζ ∈ C2 has |ζ1| < π and |ζ2| < π. As a matter of fact, the

results we established before the present proof show that (7.2) is equivalent to the

formulae of Theorem 6.1.

From this special case we deduce the general case of Theorem 7.1 by means of

Laplace transform in two variables, as follows. Let

f(z1, z2) =
∑
k1≥0

∑
k2≥0

ak1,k2
k1!k2!

zk11 zk22

be an entire function in C2 of exponential type ≤ τ . Corollary 7.1 shows that the

Laplace transform of f

F (ζ1, ζ2) =
∑
k1≥0

∑
k2≥0

ak1,k2ζ
−k1−1
1 ζ−k2−12 ,

is analytic in the domain
{

(ζ1, ζ2) ∈ C2 | |ζ1| > τ, |ζ2| > τ
}

. For r > τ , it

follows from Cauchy’s residue Theorem [7, Equation (11)] and from the uniform

convergence of the series for F on |ζ1| = |ζ2| = r that we have

f(z1, z2) =
1

(2πi)2

∫∫
|ζ1|=|ζ2|=r

eζ1z1+ζ2z2F (ζ1, ζ2)dζ1dζ2 (7.6)

and

D(t1,t2)f(z1, z2) =
1

(2πi)2

∫∫
|ζ1|=|ζ2|=r

ζt11 ζ
t2
2 eζ1z1+ζ2z2F (ζ1, ζ2)dζ1dζ2. (7.7)

Assume τ < π. Let r satisfy τ < r < π. In (7.6) we replace eζ1z1+ζ2z2 by the right

hand side of (7.2):

f(z1, z2) =
∑

(t,i)∈T

Λt,i(z1, z2)
1

(2πi)2

∫∫
|ζ1|=|ζ2|=r

ζt11 ζ
t2
2 eζiF (ζ1, ζ2)dζ1dζ2.

Using (7.7), we deduce

f(z1, z2) =
∑

(t,i)∈T

(Dtf)(ei)Λt,i(z1, z2).

The fact that this series is normally convergent in C2 follows from Lemma 7.1 and

the upper bounds (4.1) : given r > 0 and κ with τ(f) < κ < π, there exists c > 0

such that, for (t, i) ∈ T with sufficiently large ‖t‖, we have

|Dtf(ei)| ≤ κ‖t‖ and sup
‖z‖≤r

|Λt,i(z)| ≤
c

π‖t‖
,
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hence the series ∑
(t,i)∈T

|(Dtf)(ei)| sup
‖z‖≤r

|Λt,i(z)|

converges. This completes the proof of Theorem 7.1.

8. Functions of finite exponential type

Let K be a nonnegative integer and h1,1, . . . , hK,1 and h1,2, . . . , hK,2 be even entire

functions of a single variable with exponential type ≤ Kπ. Then the function

f(z1, z2) =

K∑
k=1

(hk,1(z2) sin(kπz1) + hk,2(z1) sin(kπz2))

is an entire function of exponential type ≤ Kπ which satisfies (Dtf)(ei) = 0 for all

(t, i) ∈ T . Corollary 8.1 below shows that any entire function having exponential

type ≤ Kπ which satisfies (Dtf)(ei) = 0 for all (t, i) ∈ T is of this form.

Here is the two–variable analog of the result of Buck’s [7, Proposition 3] for a

single variable:

Theorem 8.1. Let K be a nonnegative integer. Let f be an entire function in C2

of finite exponential type ≤ τ , with τ < (K + 1)π. Then for z ∈ C2 we have

f(z) =
∑

(t,i)∈T

(Dtf)(ei)gt,i(z) +

K∑
k=1

(hk,1(z2) sin(kπz1) + hk,2(z1) sin(kπz2)) ,

where the functions gt,i(z) are entire functions in C2, the series is normally con-

vergent in C2 and hk,1, hk,2 (k = 1, 2, . . . ,K) are even entire functions of a single

variable of exponential type ≤ τ .

Proof. Theorem 7.1 proves the formula of Theorem 8.1 for K = 0. Assume K ≥ 1.

We extend the proof of [7, § 8] to two variables: in the formula of the Laplace

transform (7.6), we will expand eζ1z1+ζ2z2 using the first formula of (7.3) together

with Theorem 6.1.

For M1(ζ, z) and M2(ζ, z) we use [7, Equation (17)] in the form

sinh(ζz)

sinh(ζ)
= AK(ζ, z) +GK(ζ, z)

with

AK(ζ, z) = 2π

K∑
k=1

(−1)k+1k sin(kπz)

ζ2 + k2π2

and GK an analytic function in the domain
{

(ζ, z) ∈ C2 | |ζ| < (K + 1)π
}

. For

M0(ζ, z) we use [7, Equation (20)] in the form

sinh(ζz) coth(ζ) = BK(ζ, z) +HK(ζ, z)
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with

BK(ζ, z) = −2π

K∑
k=1

k sin(kπz)

ζ2 + k2π2

and HK an analytic function in the domain
{

(ζ, z) ∈ C2 | |ζ| < (K + 1)π
}

. From

Theorem 6.1 we derive

M1(ζ, z) =
(
AK(ζ1, z1) +GK(ζ1, z1)

)
cosh(ζ2z2),

M2(ζ, z) = cosh(ζ1z1)
(
AK(ζ2, z2) +GK(ζ2, z2)

)
and from (7.4) we get

M0(ζ, z) = cosh(ζ1z1) cosh(ζ2z2)−
(
BK(ζ1, z1) +HK(ζ1, z1)

)
cosh(ζ2z2)

− cosh(ζ1z1)
(
BK(ζ2, z2) +HK(ζ2, z2)

)
.

We define gt,1(z) and gt,2(z) for t1 and t2 in 2N by writing the Taylor series

GK(ζ1, z1) cosh(ζ2z2) =
∑

(t,1)∈T

gt,1(z1, z2)ζt,

cosh(ζ1z1)GK(ζ2, z2) =
∑

(t,2)∈T

gt,2(z1, z2)ζt,

and so

gt1,t2,2(z1, z2) = gt2,t1,1(z2, z1).

Next we define gt,0(z) for ‖t‖ ∈ 2N as the coefficients of the Taylor series

cosh(ζ1z1 + ζ2z2)−HK(ζ1, z1) cosh(ζ2z2)− cosh(ζ1z1)HK(ζ2, z2)

=
∑

(t,0)∈T

gt,0(z1, z2)ζt.

Finally we set

χ(ζ, z) =
(
AK(ζ1, z1)eζ1 −BK(ζ1, z1)

)
cosh(ζ2z2)

+
(
AK(ζ2, z2)eζ2 −BK(ζ2, z2)

)
cosh(ζ1z1).

Using the first formula of (7.3) we obtain

eζz =
∑

(t,i)∈T

gt,i(z)e
ζiζt + χ(ζ, z), (8.1)

where for each z ∈ C the series is normally convergent in {ζ ∈ C2 | |ζ| < (K+1)π}.
Further, we have

χ(ζ, z) =

K∑
k=1

(
χk,1(ζ, z2) sin(kπz1) + χk,2(ζ, z1) sin(kπz2)

)
, (8.2)

where

χk,1(ζ, z) =
2πk

ζ21 + k2π2

(
(−1)k+1eζ1 + 1

)
cosh(ζ2z)
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and

χk,2(ζ, z) =
2πk

ζ22 + k2π2

(
(−1)k+1eζ2 + 1

)
cosh(ζ1z).

For k = 1, . . . ,K and j = 1, 2, the function χk,j(ζ, z) is analytic in the domain{
(ζ, z) ∈ C3 | Kπ < |ζ1| < (K + 1)π, Kπ < |ζ2| < (K + 1)π

}
and the map z 7→ χk,j(ζ, z) is even.

Let f be an entire function in C2 of finite exponential type ≤ τ , with Kπ ≤ τ <
(K+1)π. The assumption τ ≥ Kπ is no loss of generality a for the proof of Theorem

8.1. Let r satisfy τ < r < (K + 1)π. We denote by F the Laplace transform of f .

Combining (7.6) with (8.1) we deduce

f(z1, z2) =
1

(2πi)2

∫∫
|ζ1|=|ζ2|=r

 ∑
(t,i)∈T

eζigt,i(z)ζ
t + χ(ζ, z)

F (ζ1, ζ2)dζ1dζ2

=
∑

(t,i)∈T

gt,i(z)
1

(2πi)2

∫∫
|ζ1|=|ζ2|=r

eζiζtF (ζ1, ζ2)dζ1dζ2

+
1

(2πi)2

∫∫
|ζ1|=|ζ2|=r

χ(ζ, z)F (ζ1, ζ2)dζ1dζ2.

From (7.7) we deduce

1

(2πi)2

∫∫
|ζ1|=|ζ2|=r

eζiζtF (ζ1, ζ2)dζ1dζ2 = (Dtf)(ei).

Finally using (8.2) we deduce the formula of Theorem 8.1 with

hk,j(z) =
1

(2πi)2

∫∫
|ζ1|=|ζ2|=r

χk,j(ζ, z)F (ζ)dζ1dζ2

for any r with τ < r < (K+1)π. This function hk,j has exponential type ≤ r. Since

this is true for all r in the range τ < r < (K + 1)π, and since the exponential type

is defined with a lim sup, the exponential type is ≤ τ .

Let κ satisfy τ(f) < κ < r (recall r < (K + 1)π) and let R > 0. Lemma 7.1

implies that for (t, i) ∈ T with sufficiently large ‖t‖, we have

|Dtf(ei)| ≤ κ‖t‖.

Since the three functions GK(ζ1, z1) cosh(ζ2z2), cosh(ζ1z1)GK(ζ2, z2) and

cosh(ζ1z1 + ζ2z2)−HK(ζ1, z1) cosh(ζ2z2)− cosh(ζ1z1)HK(ζ2, z2)

are analytic in the domain

{(ζ1, ζ2, z1, z2) ∈ C4 | |ζ1| < (K + 1)π, |ζ2| < (K + 1)π}

aIn [7, Proposition 3], the condition τ(f) < r < (K+1)π should be replaced with max{τ(f),Kπ} <
r < (K + 1)π.
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and since r < (K + 1)π, it follows from Cauchy’s inequalities (7.1) that there exists

c > 0 (depending on r and R) such that, for (t, i) ∈ T , we have

sup
‖z‖≤R

|gt,i(z)| ≤
c

r‖t‖
·

Hence the series ∑
(t,i)∈T

|(Dtf)(ei)| sup
‖z‖≤R

|gt,i(z)|

converges.

This completes the proof of Theorem 8.1.

A consequence is the following analog in two variables of Schoenberg’s result [7,

Corollary 2]:

Corollary 8.1. Let f be an entire function having exponential type ≤ τ , with

τ < (K+1)π . Assume (Dtf)(ei) = 0 for all (t, i) ∈ T . Then there exist even entire

functions of a single variable hk,1 and hk,2 (k = 1, 2, . . . ,K) having exponential type

≤ τ such that

f(z1, z2) =

K∑
k=1

(
hk,1(z2) sin(kπz1) + hk,2(z1) sin(kπz2)

)
.

9. Further bivariate interpolation theories

In the present paper we extended to two variables the univariate Lidstone interpo-

lation theory by considering

(D(t1,t2)f)(e0) with t1 and t2 even, (D(t1,t2)f)(e0) with t1 and t2 odd,

(D(t1,t2)f)(e1) with t1 and t2 even, (D(t1,t2)f)(e2) with t1 and t2 even.

Our solution is not the unique one for which the theory can be developed. Indeed,

there is a potential similar story for each choice of 4 triples (ν1, ν2, i) among the

12 elements in (Z/2Z)2 × {0, 1, 2}. For a polynomial or an entire function f , one

considers the set of values

(D(t1,t2)f)(ei) with t1 ∈ ν1 and t2 ∈ ν2

for the four selected triples (ν1, ν2, i). Our choice is

(0, 0, 0), (1, 1, 0), (0, 0, 1), (0, 0, 2).

For each i ∈ {0, 1, 2}, the choice of the four triples

(0, 0, i), (1, 1, i), (1, 0, i), (0, 1, i)

corresponds to the Taylor expansion at ei. There are
(
12
4

)
= 495 choices for the

four triples (ν1, ν2, i). However, this number can be reduced by using symmetries.

Furthermore, not all of these sets of four triples are admissible.
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9.1. Admissible sets of four triples

Let S be a set of four triples (ν1, ν2, i) ∈ (Z/2Z)2 × {0, 1, 2}. We denote by TS the

set of (t, i) ∈ N2 × {0, 1, 2} such that t1 ∈ ν1 and t2 ∈ ν2 for all (ν1, ν2, i) ∈ S.

Definition: A set S of four triples (ν1, ν2, i) is called admissible if the map from

C[z1, z2] to CTS which sends f to the tuple (Dtf)(ei), (t, i) ∈ TS is an isomorphism.

For instance the choice

{(0, 0, 0), (1, 1, 0), (0, 0, 1), (1, 1, 1)}

is not admissible: if g is an odd function of a single variable, the function f(z1, z2) =

g(z2) satisfies

(Dtf)(e0) = (Dtf)(e1) = 0

for all t with ‖t‖ even. Also, if, for the four triples, the values of ν1 are all 1,

then the existence and unicity of the interpolation polynomials is not guaranteed;

this situation is similar to the question of interpolation of an univariate function

using derivatives of odd order at two points [6, §1.2] (even Lidstone–type sequences);

for such an interpolation problem, instead of interpolating f(z1, z2) using the four

triples (1, ν2, i), we interpolate (∂/∂z1)f(z1, z2) using the corresponding four triples

(0, ν2, i), assuming this second set is admissible.

Lemma 2.1 shows that our set of four triples

{(0, 0, 0), (1, 1, 0), (0, 0, 1), (0, 0, 2)}

is admissible.

9.2. Bivariate Whittaker interpolation

Two other admissible choices for the four triples (ν1, ν2, i) are

{(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 2)}

and

{(0, 0, 0), (1, 1, 0), (0, 1, 1), (1, 0, 2)};

one may compare with Whittaker’s expansion of a function of a single variable using

derivatives of odd order at one point and even order at the other [6, §6].
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