

Multiple Zeta Values

Michel Waldschmidt

http://www.math.jussieu.fr/~miw/

Relations between periods

1 Additivity

$$\int_{a}^{b} \left(f(x) + g(x) \right) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

and

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$

2 Change of variables

$$\int_{\varphi(a)}^{\varphi(b)} f(t)dt = \int_a^b f(\varphi(u))\varphi'(u)du.$$

Periods

M. Kontevich and D. Zagier (2000) - Periods.

A period is a complex number whose real and imaginary parts are values of absolutely convergent integrals of rational functions with rational coefficients over domains of \mathbb{R}^n given by polynomials (in)equalities with rational coefficients.

3 Newton-Leibniz-Stokes

$$\int_{a}^{b} f'(t)dt = f(b) - f(a).$$

Conjecture (Kontsevich–Zagier). If a period has two representations, then one can pass from one formula to another using only rules [], [2] and [3] in which all functions and domains of integrations are algebraic with algebraic coefficients.

Examples:
$$\begin{split} \sqrt{2} &= \int_{2x^2 \le 1} dx, \\ \pi &= \int_{x^2 + y^2 \le 1} dx dy, \\ \log 2 &= \int_{1 < x < 2} \frac{dx}{x}, \\ \zeta(2) &= \int_{1 > t_1 > t_2 > 0} \frac{dt_1}{t_1} \cdot \frac{dt_2}{1 - t_2} = \frac{\pi^2}{6}. \end{split}$$

Example:

$$\pi = \int_{x^2+y^2 \le 1} dx dy$$
$$= 2 \int_{-1}^1 \sqrt{1-x^2} dx$$
$$= \int_{-1}^1 \frac{dx}{\sqrt{1-x^2}}$$
$$= \int_{-\infty}^\infty \frac{dx}{1+x^2}$$

Far reaching conse	quences:
--------------------	----------

No "new" algebraic dependence relation among classical constants from analysis.

Conjecture. There is no algebraic relation at all: these numbers

 $\zeta(2), \quad \zeta(3), \quad \zeta(5), \quad \zeta(7), \dots$

are algebraically independent.

Known:

• Hermite-Lindemann: π is transcendental, hence $\zeta(2k)$ also for $k \geq 1$.

• Apéry (1978): $\zeta(3)$ is irrational.

Zeta Values – Euler Numbers

$$\zeta(s) = \sum_{n \geq 1} \frac{1}{n^s} \qquad \text{for } s \geq 2.$$

These are special values of the Riemann Zeta Function: $s \in \mathbf{C}$.

For $s \in \mathbf{Z}$ with $s \ge 2$, $\zeta(s)$ is a period:

$$\zeta(s) = \int_{1>t_1 > \dots > t_s > 0} \frac{dt_1}{t_1} \cdots \frac{dt_{s-1}}{t_{s-1}} \cdot \frac{dt_s}{1-t_s}.$$

• Rivoal (2000) + Ball, Zudilin... Infinitely many $\zeta(2k+1)$ are irrational + lower bound for the dimension of the Q-space they span.

Zeta Values – Euler Numbers

$$\zeta(s) = \sum_{n \geq 1} \frac{1}{n^s} \qquad \text{for } s \geq 2.$$

These are special values of the Riemann Zeta Function: $s \in \mathbf{C}$.

Euler: $\pi^{-2k}\zeta(2k) \in \mathbf{Q}$ for $k \ge 1$ (Bernoulli numbers).

Diophantine Question: Describe all the algebraic relations among the numbers

 $\zeta(2), \quad \zeta(3), \quad \zeta(5), \quad \zeta(7), \dots$

T. Rivoal: Let $\epsilon > 0$. For any sufficiently large odd integer a,
the dimension of the Q -space spanned by 1, $\zeta(3)$, $\zeta(5)$,
is at least $\frac{1-\epsilon}{1+\log 2}\log a.$
W. Zudilin: • One at least of the four numbers
$\zeta(5), \zeta(7), \zeta(9), \zeta(11)$

is irrational.

• There is an odd integer j in the range [5,69] such that the three numbers 1, $\zeta(3)$, $\zeta(j)$ are linearly independent over **Q**.

Linearization of the problem (Euler). The product of two zeta values is a sum of *multiple zeta values*. From $\sum_{n_1 \ge 1} n_1^{-s_1} \sum_{n_2 \ge 1} n_2^{-s_2} = \sum_{n_1 > n_2 \ge 1} n_1^{-s_1} n_2^{-s_2} + \sum_{n_2 > n_1 \ge 1} n_2^{-s_2} n_1^{-s_1} + \sum_{n_2 \ge n_1 \ge 1} n_2^{-s_2} n_1^{-s_1} + \sum_{n_2 \ge 1} n_2^{-s_2} n_1^{-s_2} + \sum_{n_2 \ge 1} n_2^{-s_2} n_2^{-s_2} + \sum_{n_2 \ge 1} n$ one deduces, for $s_1 \ge 2$ and $s_2 \ge 2$, $\zeta(s_1)\zeta(s_2) = \zeta(s_1, s_2) + \zeta(s_2, s_1) + \zeta(s_1 + s_2)$ with $\zeta(s_1, s_2) = \sum_{n_1 > n_2 \ge 1} n_1^{-s_1} n_2^{-s_2}.$ For k, s_1, \ldots, s_k positive integers with $s_1 \ge 2$, define $\underline{s} = (s_1, \ldots, s_k)$ and $\zeta(\underline{s}) = \sum_{n_1 > n_2 > \dots > n_k \ge 1} \frac{1}{n_1^{s_1} \cdots n_k^{s_k}} \cdot$ **Fact:** These Multiple Zeta Values are periods Example: $\zeta(2,1) = \int_{1 > t_1 > t_2 > t_3 > 0} \frac{dt_1}{t_1} \cdot \frac{dt_2}{1 - t_2} \cdot \frac{dt_3}{1 - t_3}.$

For $k,\ s_1,\ldots,s_k$ positive integers with $s_1\geq 2,$ define $\underline{s}=(s_1,\ldots,s_k)$ and

$$\zeta(\underline{s}) = \sum_{n_1 > n_2 > \dots > n_k \ge 1} \frac{1}{n_1^{s_1} \cdots n_k^{s_k}}$$

For k = 1 one recovers Euler's numbers $\zeta(s)$.

Chen Iterated Integrals

For a holomorphic 1-form φ ,

$$\int_0^z \varphi$$

is the primitive of φ which vanishes at z = 0. For 1-forms $\varphi_1, \ldots, \varphi_k$, define inductively

$$\int_0^z \varphi_1 \cdots \varphi_k := \int_0^z \varphi_1(t) \int_0^t \varphi_2 \cdots \varphi_k.$$

Chen Iterated Integrals

$$\int_0^z \varphi_1 \cdots \varphi_k := \int_0^z \varphi_1(t) \int_0^t \varphi_2 \cdots \varphi_k.$$

If $\varphi_1(t) = \psi_1(t)dt$, then

$$\frac{d}{dz}\int_0^z \varphi_1 \cdots \varphi_k = \psi_1(z)\int_0^z \varphi_2 \cdots \varphi_k.$$

Main Fact: The product of two Multiple Zeta Values is a linear combination, with integer coefficients, of Multiple Zeta Values.

Moreover there are two kinds of such quadratic equations: one arising from the definition as series

$$\zeta(\underline{s}) = \sum_{n_1 > n_2 > \dots > n_k \ge 1} \frac{1}{n_1^{s_1} \cdots n_k^{s_k}},$$

the other from the integrals

$$\zeta(\underline{s}) = \int_0^1 \omega_{\underline{s}}.$$

For
$$\underline{s} = (s_1, \ldots, s_k)$$
, define

 $\omega_{\underline{s}} = \omega_{s_1} \cdots \omega_{s_k} = \omega_0^{s_1 - 1} \omega_1 \cdots \omega_0^{s_k - 1} \omega_1.$

. .

Then

$$\zeta(\underline{s}) = \int_0^1 \omega_{\underline{s}}.$$

Remark on $\omega_0^{s_1-1}\omega_1\cdots\omega_0^{s_k-1}\omega_1$:

• Ends with ω_1

• Starts with ω_0 ($s_1 \ge 2$).

These two collections of quadratic equations are essentially distinct. Consequently the Multiple Zeta Values satisfy many linear relations with rational coefficients.

Example:

Product of series:	$\zeta(2)^2 = 2\zeta(2,2) + \zeta(4)$
Product of integrals:	$\zeta(2)^2 = 2\zeta(2,2) + 4\zeta(3,1)$
Hence	$\zeta(4) = 4\zeta(3, 1).$

For $\underline{s} = (s_1, \ldots, s_k)$, define $\omega_{\underline{s}} = \omega_{s_1} \cdots \omega_{s_k} = \omega_0^{s_1-1} \omega_1 \cdots \omega_0^{s_k-1} \omega_1.$

Then

$$\zeta(\underline{s}) = \int_0^1 \omega_{\underline{s}}.$$

Example:

$$\zeta(2,1) = \int_{1 > t_1 > t_2 > t_3 > 0} \frac{dt_1}{t_1} \cdot \frac{dt_2}{1 - t_2} \cdot \frac{dt_3}{1 - t_3} = \int_0^1 \omega_0 \omega_1^2 \cdot$$

Hence the Multiple Zeta Values $\zeta(\underline{s})$ are periods.

These two collections of quadratic equations are essentially distinct. Consequently the Multiple Zeta Values satisfy many linear relations with rational coefficients.

A complete description of these relations would in principle settle the problem of the algebraic independence of

```
\pi, \zeta(3), \zeta(5), \dots, \zeta(2k+1).
```

Goal: Describe all linear relations among Multiple Zeta Values.

Further example of linear relation.
Euler:

$$\zeta(2,1) = \zeta(3).$$

$$\begin{cases} \zeta(2,1) = \int_{1>t_1>t_2>t_3>0} \frac{dt_1}{t_1} \cdot \frac{dt_2}{1-t_2} \cdot \frac{dt_3}{1-t_3}.$$

$$\zeta(3) = \int_{1>t_1>t_2>t_3>0} \frac{dt_1}{t_1} \cdot \frac{dt_2}{t_2} \cdot \frac{dt_3}{1-t_3}.$$
Euler's result follows from $(t_1, t_2, t_3) \mapsto (1 - t_3, 1 - t_2, 1 - t_3)$.
Euler's result follows from $(t_1, t_2, t_3) \mapsto (1 - t_3, 1 - t_2, 1 - t_3)$.
Euler's result follows from $(t_1, t_2, t_3) \mapsto (1 - t_3, 1 - t_2, 1 - t_3)$.
We store:

$$\begin{cases} \zeta(2, 1, 1, 1) = \zeta(5), \\ \zeta(3, 1, 1) = \zeta(4, 1) = 2\zeta(5) - \zeta(2)\zeta(3), \\ \zeta(2, 1, 2) = \zeta(2, 3) = \frac{9}{2}\zeta(5) - 2\zeta(2)\zeta(3), \\ \zeta(2, 2, 1) = \zeta(3, 2) = 3\zeta(2)\zeta(3) - \frac{11}{2}\zeta(5), \end{cases}$$
we have $d_5 \in \{1, 2\}$.
Further, $d_5 = 2$ if and only if the number $\zeta(2)\zeta(3)/\zeta(5)$ is irrational.

Denote by \mathfrak{Z}_p the Q-vector subspace of \mathbb{R} spanned by the real numbers $\zeta(\underline{s})$ with \underline{s} of weight $s_1 + \cdots + s_k = p$, with $\mathfrak{Z}_0 = \mathbb{Q}$ and $\mathfrak{Z}_1 = \{0\}$.

Here is Zagier's conjecture on the dimension d_p of \mathfrak{Z}_p . Conjecture (Zagier). For $p \geq 3$ we have

 $d_p = d_{p-2} + d_{p-3}.$

$(d_0, d_1, d_2, \ldots) = (1, 0, 1, 1, 1, 2, 2, \ldots).$

Zagier's conjecture can be written

$$\sum_{p \ge 0} d_p X^p = \frac{1}{1 - X^2 - X^3}$$

M. Hoffman conjectures: a basis of \mathfrak{Z}_p over \mathbb{Q} is given by the numbers $\zeta(s_1, \ldots, s_k)$, $s_1 + \cdots + s_k = p$, where each s_i is either 2 or 3.

True for $p \leq 16$ (Hoang Ngoc Minh)

Exemples

 $d_0 = 1$ $\zeta(s_1, \dots, s_k) = 1$ for k = 0.

 $d_1 = 0 \qquad \{(s_1, \dots, s_k) ; s_1 + \dots + s_k = 1, s_1 \ge 2\} =$

 $d_2 = 1 \qquad \zeta(2) \neq 0$

 $d_3 = 1$ $\zeta(2, 1) = \zeta(3) \neq 0$

$$\begin{aligned} d_4 &= 1 \qquad \zeta(3,1) = (1/4)\zeta(4), \\ \zeta(2,2) &= (3/4)\zeta(4), \\ \zeta(2,1,1) &= \zeta(4) = (2/5)\zeta(2)^2 \end{aligned}$$

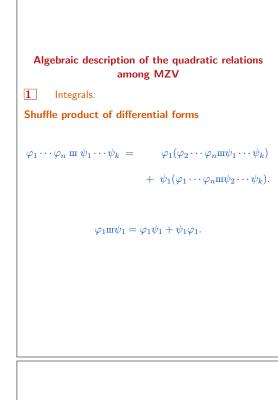
A.G. Goncharov (2000) – Multiple ζ-values, Galois groups and Geometry of Modular Varieties.
T. Terasoma (2002) – Mixed Tate motives and Multiple Zeta Values.

The numbers defined by the recurrence relation of Zagier's Conjecture

$d_p = d_{p-2} + d_{p-3}.$

with initial values $d_0 = 1$, $d_1 = 0$ are actual upper bounds for the actual dimension of \mathfrak{Z}_p . To prove a lower bound is the main Diophantine conjecture!

Nothing is known, even $d_p \ge 2$ for a single p!



Next goal: Extend the definition of Multiple Zeta Values to linear combinations of $\omega_{\underline{s}}$, so that the product of two Multiple Zeta Values is a Multiple Zeta Value.

Write $\widehat{\zeta}(\omega_{\underline{s}})$ in place of $\zeta(\underline{s})$ and define more generally

$$\widehat{\zeta}\left(\sum c_{\underline{s}}\omega_{\underline{s}}\right) = \sum c_{\underline{s}}\zeta(\underline{s})$$

so that

$$\zeta(\underline{s})\zeta(\underline{s}') = \widehat{\zeta} \big(\omega_{\underline{s}} \mathbf{m} \omega_{\underline{s}'} \big).$$

Tool: Free algebra on $\{\omega_0, \omega_1\}$.

Product of iterated integrals:

Let $\varphi_1,\ldots,\varphi_n,\ \psi_1,\ldots,\psi_k$ be differential forms with $n\geq 0$ and $k\geq 0.$ Then

$$\int_0^z \varphi_1 \cdots \varphi_n \int_0^z \psi_1 \cdots \psi_k = \int_0^z \varphi_1 \cdots \varphi_n \mathbf{m} \psi_1 \cdots \psi_k$$

Proof. Assume z > 0. Decompose the Cartesian product $\{\underline{t} \in \mathbf{R}^n ; z \ge t_1 \ge \cdots \ge t_n \ge 0\} \times \{\underline{u} \in \mathbf{R}^k ; z \ge u_1 \ge \cdots \ge u_k \ge 0\}$ into a disjoint union of simplices (up to sets of zero measure)

 $\{\underline{v}\in\mathbf{R}^{n+k}\;;\;z\geq v_1\geq\cdots\geq v_{n+k}\geq 0\}.$

The free monoid X^*

Let $X = \{x_0, x_1\}$ denote the *alphabet* with two letters x_0, x_1 and X^* the free monoid on X. The elements of X^* are *words*. A word can be written

$x_{\epsilon_1}\cdots x_{\epsilon_k}$

with $k \geq 0$ and where each ϵ_j is 0 or 1. This law is called *concatenation*. It is not commutative: $x_0x_1 \neq x_1x_0$. Its unit is the *empty word* $e \in X^*$: the word for which k = 0.

Example.

 $ab \verb||| cd = abcd + acbd + acdb + cabd + cadb + cdab$

$$\omega_0 \omega_1 \mathbf{m} \omega_0 \omega_1 = 4\omega_0^2 \omega_1^2 + 2\omega_0 \omega_1 \omega_0 \omega_1$$

$$\int_{0}^{1} \omega_{0}\omega_{1} \cdot \int_{0}^{1} \omega_{0}\omega_{1} = 4 \int_{0}^{1} \omega_{0}^{2}\omega_{1}^{2} + 2 \int_{0}^{1} \omega_{0}\omega_{1}\omega_{0}\omega_{1}$$
$$\zeta(2)^{2} = 4\zeta(3,1) + 2\zeta(2,2).$$

The Algebra $\mathfrak{H} = \mathbf{Q}\langle x_0, x_1 \rangle$

The free Q-vector space with basis X^* is the free algebra on X, denoted by $\mathfrak{H} = \mathbf{Q}\langle X \rangle$. Its elements are non commutative polynomials in the two variables x_0, x_1 .

Its unit is the empty word e.

The words which end with x_1 are the elements of X^*x_1 .

Let $w \in X^*x_1$. Write $w = x_{\epsilon_1} \cdots x_{\epsilon_p}$ where each ϵ_i is 0 or 1 and $\epsilon_p = 1$. If k is the number of x_1 , we define positive integers s_1, \ldots, s_k by

 $w = x_0^{s_1 - 1} x_1 \cdots x_0^{s_k - 1} x_1.$

For $s\geq 1$ define $y_s=x_0^{s-1}x_1.$ For $\underline{s}=(s_1,\ldots,s_k)$ with $s_i\geq 1,$ set

 $y_{\underline{s}} = y_{s_1} \cdots y_{s_k} = x_0^{s_1 - 1} x_1 \cdots x_0^{s_k - 1} x_1.$

The Subalgebra $\mathfrak{H}^0=\mathbf{Q} e+x_0\mathfrak{H} x_1$ of \mathfrak{H}

The set of words in X^* which start with x_0 and end with x_1 is $x_0 X^* x_1$.

The set of words in X^* which do not start with x_1 and do not end with x_0 is $\{e\}\cup x_0X^*x_1.$

This is NOT the same as the free monoid on the infinite alphabet $\{y_2, y_3, \ldots\}$. Example: $y_2y_1 \in x_0X^*x_1$.

$y_{\underline{s}}$ is a word on the alphabet

 $Y = \{y_1, y_2, \ldots, y_s, \ldots\}.$

The free monoid Y^\ast on Y

 $Y^* = \{ y_{\underline{s}} \; ; \; \underline{s} = (s_1, \dots, s_k), \; k \ge 0, \; s_j \ge 1 \; (1 \le j \le k) \}$

is the set $\{e\} \cup X^* x_1$ of words which do not end with x_0 , hence Y^* is a submonoid of X^* .

Any message can be coded with only two letters.

The Subalgebra $\mathfrak{H}^0 = \mathbf{Q}e + x_0\mathfrak{H}x_1$ of \mathfrak{H}

The set of words in X^\ast which start with x_0 and end with x_1 is $x_0X^\ast x_1.$

The set of words in X^* which do not start with x_1 and do not end with x_0 is $\{e\}\cup x_0X^*x_1.$

The Q-vector subspace of \mathfrak{H}^1 spanned by $\{e\}\cup x_0X^*x_1$ is the sub-algebra

 $\mathfrak{H}^0 = \mathbf{Q}e + x_0\mathfrak{H}x_1 \subset \mathfrak{H}^1 \subset \mathfrak{H}.$

The Subalgebra $\mathfrak{H}^1 = \mathbf{Q}e + \mathfrak{H}x_1$ of \mathfrak{H}

The free Q-vector space with basis Y^* is the free algebra

 $\mathfrak{H}^1 = \mathbf{Q} \langle Y \rangle$

on Y. Its elements are non commutative polynomials in the variables $\{y_1, \ldots, y_s, \ldots\}$. It is a subalgebra of \mathfrak{H} .

Multizeta values associated to words

For $w \in x_0 X^* x_1$, write $w = y_{\underline{s}}$ with $\underline{s} = (s_1, \dots, s_k)$ and $s_1 \ge 1$, and define

$\widehat{\zeta}(w) = \zeta(\underline{s}).$

Define also $\widehat{\zeta}(e) = 1$ and extend by **Q**-linearity the definition of $\widehat{\zeta}$ to \mathfrak{H}^0 . Hence we get a mapping

 $\widehat{\zeta}:\mathfrak{H}^{0}\longrightarrow\mathbf{R}.$

Shuffle relations among MZV	
For w and w' in \mathfrak{H}^0 , the shuffle product $w \mathbf{m} w'$ belongs to \mathfrak{H}^0 . Furthermore,	
$\widehat{\zeta}(w)\widehat{\zeta}(w')=\widehat{\zeta}(w{ m m} w')$	
for any w and w' in \mathfrak{H}^0 .	
Proposition. The map $\widehat{\zeta} : \mathfrak{H}^0 \to \mathbf{R}$ is a morphism of algebras of $\mathfrak{H}^0_{\mathfrak{m}}$ into \mathbf{R} .	
Quadratic relations arising from the product of series	
The map $\widehat{\zeta}: \mathfrak{H}^0 \to \mathbf{R}$ is a morphism of algebras of \mathfrak{H}^0_{\star}	
into R : $\widehat{\zeta}(u \star v) = \widehat{\zeta}(u)\widehat{\zeta}(v).$	
for u and v in \mathfrak{H}^0 . Consequence of the two sets of quadratic	
relations:	
$\widehat{\zeta}(u m v - u \star v) = 0$ for u and v in $\mathfrak{H}^0.$	

2 Series:

The Harmonic Algebra

The product $\zeta(\underline{s}) \cdot \zeta(\underline{s}')$:

 $\sum_{n_1 > n_2 > \cdots > n_k \geq 1} \frac{1}{n_1^{s_1} \cdots n_k^{s_k}} \cdot \sum_{n_1' > n_2' > \cdots > n_{\prime \prime}' \geq 1} \frac{1}{n_1'^{s_1'} \cdots n_l'^{s_{\prime \prime}'}}$

is a linear combination of MZV. Shuffle like product (*stuffle*) on the alphabet Y.

Hoffman Third Standard Relations For any $w \in \mathfrak{H}^0$, we have $x_1 m w - x_1 \star w \in \mathfrak{H}^0$ and $\widehat{\zeta}(x_1 \mathrm{m} w - x_1 \star w) = 0.$ Example. For $w = x_0 x_1$, $x_1 \equiv x_0 x_1 = x_1 x_0 x_1 + 2x_0 x_1^2 = y_1 y_2 + 2y_2 y_1,$ $x_1 \star x_0 x_1 = y_1 \star y_2 = y_1 y_2 + y_2 y_1 + y_3,$ hence $y_2 y_1 - y_3 \in \ker \widehat{\zeta}$ $\zeta(2,1) = \zeta(3).$ and (Euler)

The map $\star:Y^*\times Y^*\to\mathfrak{H}$ is defined by induction

 $y_s u \star y_t v = y_s (u \star y_t v) + y_t (y_s u \star v) + y_{s+t} (u \star v)$

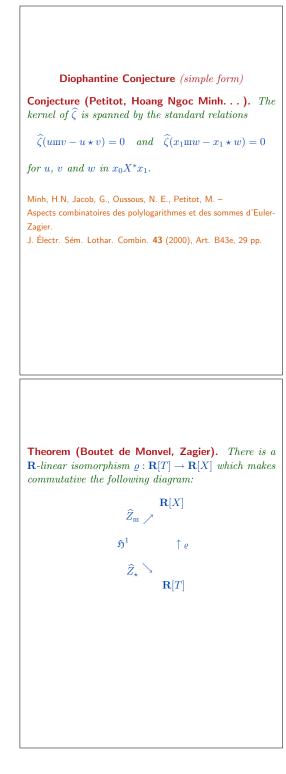
for u and v in Y^* , s and t positive integers.

This defines $\mathit{Hoffman's}$ harmonic algebra denoted by $\mathfrak{H}_{\star}.$

Examples. $y_2^{\star 2} = y_2 \star y_2 = 2y_2^2 + y_4.$ $y_2^{\star 3} = y_2 \star y_2 \star y_2 = 6y_2^3 + 3y_2y_4 + 3y_4y_2 + y_6.$

Euler's proof with divergent series:

Product of series: $\zeta(1)\zeta(2) = \zeta(1,2) + \zeta(2,1) + \zeta(3,1) +$ Product of integrals: $\zeta(1)\zeta(2) = \zeta(1,2) + 2\zeta(2,1)$ $\zeta(3) = \zeta(2, 1).$ Hence



Regularized Double Shuffle Relations The map $\widehat{\zeta} : \mathfrak{H}^0 \to \mathbf{R}$ is a morphism of algebras for \mathbf{m} and for \star : $\widehat{\zeta}(u \equiv v) = \widehat{\zeta}(u)\widehat{\zeta}(v)$ and $\widehat{\zeta}(u \star v) = \widehat{\zeta}(u)\widehat{\zeta}(v).$ Question: Is-it possible to extend $\hat{\zeta}$ to \mathfrak{H}^1 into a morphism of algebras both for \mathbf{m} and \star ? Answer: NO! $x_1 = 2x_1^2, \qquad x_1 \star x_1 = y_1 \star y_1 = 2x_1^2 + y_2$ $\widehat{\zeta}(y_2) = \zeta(2) \neq 0.$ An explicit formula for ρ is given by means of the generating series $\sum_{\ell > 0} \varrho(T^{\ell}) \frac{t^{\ell}}{\ell!} = \exp\left(Xt + \sum_{n=2}^{\infty} (-1)^n \frac{\zeta(n)}{n} t^n\right).$ Compare with the formula giving the expansion of the logarithm of Euler Gamma function: $\Gamma(1+t) = \exp\left(-\gamma t + \sum_{n=2}^{\infty} (-1)^n \frac{\zeta(n)}{n} t^n\right).$

One may see ρ as the differential operator of infinite order

$$\exp\left(\sum_{n=2}^{\infty} (-1)^n \frac{\zeta(n)}{n} \left(\frac{\partial}{\partial T}\right)^n\right)$$

(just consider the image of e^{tT}).

Radford's Theorem:

 $\mathfrak{H}_{\mathrm{m}} = \mathfrak{H}_{\mathrm{m}}^{1}[x_{0}]_{\mathrm{m}} = \mathfrak{H}_{\mathrm{m}}^{0}[x_{0}, x_{1}]_{\mathrm{m}} \quad and \quad \mathfrak{H}_{\mathrm{m}}^{1} = \mathfrak{H}_{\mathrm{m}}^{0}[x_{1}]_{\mathrm{m}}.$

Hoffman's Theorem:

 $\mathfrak{H}_{\star} = \mathfrak{H}_{\star}^{1}[x_{0}]_{\star} = \mathfrak{H}_{\star}^{0}[x_{0}, x_{1}]_{\star} \quad and \quad \mathfrak{H}_{\star}^{1} = \mathfrak{H}_{\star}^{0}[x_{1}]_{\star}.$

From $\mathfrak{H}_{\mathfrak{m}}^{1} = \mathfrak{H}_{\mathfrak{m}}^{0}[x_{1}]_{\mathfrak{m}}$ and $\mathfrak{H}_{\star}^{1} = \mathfrak{H}_{\star}^{0}[x_{1}]_{\star}$ we deduce that there are two uniquely determined algebra morphisms

$$\widehat{Z}_{\mathrm{III}} : \mathfrak{H}^1_{\mathrm{III}} \longrightarrow \mathbf{R}[T] \quad \text{and} \quad \widehat{Z}_{\star} : \mathfrak{H}^1_{\star} \longrightarrow \mathbf{R}[T]$$

which extend $\hat{\zeta}$ and map x_1 to T.

Denote by $\operatorname{reg}_{\mathrm{III}}$ the Q-linear map $\mathfrak{H} \to \mathfrak{H}^0$ which maps $w \in \mathfrak{H}$ onto its constant term when w is written as a polynomial in x_0, x_1 in the shuffle algebra $\mathfrak{H}^0[x_0, x_1]_{\mathrm{III}}$. Then $\operatorname{reg}_{\mathrm{III}}$ is a morphism of algebras $\mathfrak{H}_{\mathrm{III}} \to \mathfrak{H}_{\mathrm{IIII}}^0$.

Theorem. (Regularized Double Shuffle Relations – Ihara and Kaneko). For $w \in \mathfrak{H}^1$ and $w_0 \in \mathfrak{H}^0$,

 $\operatorname{reg}_{\mathrm{m}}(w \mathrm{m} w_0 - w \star w_0) \in \ker \widehat{\zeta}.$

Example. Take $w = x_1$. Since $x_1 m w_0 - x_1 \star w_0 \in \mathfrak{H}^0$ for any $w_0 \in \mathfrak{H}^0$, one recovers the third standard relations of Hoffman.

For a graded Lie algebra C_{\bullet} denote by $\mathfrak{U}C_{\bullet}$ its universal envelopping algebra and by

 $\mathfrak{U}C_{\bullet}^{\vee}=\bigoplus_{n\geq 0}(\mathfrak{U}C)_{n}^{\vee}$

its graded dual, which is a commutative Hopf algebra.

Conjecture (Goncharov). There exists a free graded Lie algebra C_{\bullet} and an isomorphism of algebras

$\mathfrak{Z}\simeq\mathfrak{U}C_{\bullet}^{\vee}$

filtered by the weight on the left and by the degree on the right.

Diophantine Conjectures

Conjecture (Zagier, Cartier, Ihara-Kaneko,...). All existing algebraic relations between the real numbers $\zeta(\underline{s})$ are in the ideal generated by the ones described above.

Petitot and Hoang Ngoc Minh: up to weight $s_1 + \cdots s_k \leq 16$, the three standard relations for u, v and w in $x_0 X^* x_1$

 $\widehat{\zeta}(u)\widehat{\zeta}(v) = \widehat{\zeta}(u m v), \quad \widehat{\zeta}(u)\widehat{\zeta}(v) = \widehat{\zeta}(u \star v),$

 $\widehat{\zeta}(x_1 \mathrm{m} w - x_1 \star w) = 0$

suffice.

References:

Goncharov A.B. – Multiple polylogarithms, cyclotomy and modular complexes. *Math. Research Letter* **5** (1998), 497–516.

References on Multiple Zeta Values and Euler sums compiled by Michael Hoffman

http://www.usna.edu/Users/math/meh/biblio.htm

Goncharov's Conjecture

Let $\mathfrak Z$ denote the ${\bf Q}\text{-vector}$ space spanned in ${\bf C}$ by the numbers

$(2i\pi)^{-|s|}\zeta(\underline{s})$

 $\underline{s} = (s_1, \dots, s_k) \in \mathbf{N}^k \quad \text{with} \quad k \ge 1, \quad s_1 \ge 2, \quad s_i \ge 1$ $(2 \le i \le k).$

Hence \mathfrak{Z} is a Q-subalgebra of C bifiltered by the weight and by the depth.