TIFR, Mumbai
October 5-9, 2009
International conference on "Analytic Number Theory" www.math.tifr.res.in/~ant2009

Criteria for irrationality, linear independence, transcendence and algebraic independence

Michel Waldschmidt

Institut de Mathématiques de Jussieu \& Paris VI http://www.math.jussieu.fr/~miw/

Lecture given on October 8, 2009.

Abstract

Most irrationality proofs rest on the following criterion :
A real number x is irrational if and only if, for any
$\epsilon>0$, there exist two rational integers p and q with
$q>0$, such that

$$
0<|q x-p|<\epsilon .
$$

We survey generalisations of this criterion to linear independence, transcendence and algebraic independence.

Table of contents

(1) Irrationality results : Euler, Fourier, Beukers, Apéry...
(2) Irrationality criteria : Dirichlet, Minkowski, Hurwitz
(3) Linear independence : Hermite, Siegel, Nesterenko
(4) Transcendence : Liouville, Gel'fond, Durand, Laurent, Roy...
(5) Algebraic independence : Lang, Philippon, Chudnovsky, Nesterenko, Schanuel, Roy...

Leonhard Euler (1707-1783)

1748 : Irrationality of the number
$e=2.7182818284590 \ldots$
The number

$$
e=\sum_{n \geq 0} \frac{1}{n!}
$$

is irrational
Continued fractions expansions.
http://www-history.mcs.st-andrews.ac.uk/

Joseph Fourier (1768-1830)

Proof of Euler's 1748 result on the irrationality of the number e by truncating the series

$$
e=\sum_{n \geq 0} \frac{1}{n!}
$$

Course of analysis at the École Polytechnique Paris, 1815.

Frits Beukers (2008) : irrationality of e^{-1}

$$
N!e^{-1}=\sum_{n=0}^{N} \frac{(-1)^{n} N!}{n!}+\sum_{m \geq N+1} \frac{(-1)^{m} N!}{m!}
$$

Take for N a large odd integer and set

$$
A_{N}=\sum_{n=0}^{N} \frac{(-1)^{n} N!}{n!}
$$

Then $A_{N} \in \mathbf{Z}$ and
$A_{N}<N!e^{-1}<A_{N}+\frac{1}{N+1}$.
Hence e^{-1} is irrational.

Irrationality proof

Let $\vartheta \in \mathbf{Q}$, say $\vartheta=a / b$. Then for any $p / q \in \mathbf{Q}$ with $p / q \neq \vartheta$ we have

$$
|q \vartheta-p| \geq \frac{1}{b} .
$$

Proof : $|q a-p b| \geq 1$.

Consequence. Let $\vartheta \in \mathrm{R}$. Assume that for any $\epsilon>0$, there exists $p / q \in \mathrm{Q}$ with

Then v is irrational.

Irrationality proof

Let $\vartheta \in \mathbf{Q}$, say $\vartheta=a / b$. Then for any $p / q \in \mathbf{Q}$ with $p / q \neq \vartheta$ we have

$$
|q \vartheta-p| \geq \frac{1}{b}
$$

Proof : $|q a-p b| \geq 1$.

Consequence. Let $\vartheta \in \mathrm{R}$. Assume that for any $\epsilon>0$, there exists $p / q \in \mathrm{Q}$ with

Then ϑ is irrational.

Irrationality proof

Let $\vartheta \in \mathbf{Q}$, say $\vartheta=a / b$. Then for any $p / q \in \mathbf{Q}$ with $p / q \neq \vartheta$ we have

$$
|q \vartheta-p| \geq \frac{1}{b} .
$$

Proof : $|q a-p b| \geq 1$.

Consequence. Let $\vartheta \in \mathbf{R}$. Assume that for any $\epsilon>0$, there exists $p / q \in \mathbf{Q}$ with

$$
0<|q \vartheta-p|<\epsilon .
$$

Then ϑ is irrational.

Irrationality of $\zeta(3)$, following Apéry (1978)

There exist two sequences of rational numbers $\left(a_{n}\right)_{n \geq 0}$ and $\left(b_{n}\right)_{n \geq 0}$, such that $a_{n} \in \mathbf{Z}$ and $d_{n}^{3} b_{n} \in \mathbf{Z}$ for all $n \geq 0$, with

$$
\lim _{n \rightarrow \infty}\left|2 a_{n} \zeta(3)-b_{n}\right|^{1 / n}=(\sqrt{2}-1)^{4}
$$

where d_{n} is the Icm of $1,2, \ldots, n$.
We have $d_{n}=e^{n+o(n)}$ and $e^{3}(\sqrt{2}-1)^{4}<1$.

$$
\text { Set } q_{n}=d_{n}^{3} b_{n}, p_{n}=2 d_{n}^{3} a_{n} \text {, so that }
$$

Irrationality of $\zeta(3)$, following Apéry (1978)

There exist two sequences of rational numbers $\left(a_{n}\right)_{n \geq 0}$ and $\left(b_{n}\right)_{n \geq 0}$, such that $a_{n} \in \mathbf{Z}$ and $d_{n}^{3} b_{n} \in \mathbf{Z}$ for all $n \geq 0$, with

$$
\lim _{n \rightarrow \infty}\left|2 a_{n} \zeta(3)-b_{n}\right|^{1 / n}=(\sqrt{2}-1)^{4}
$$

where d_{n} is the Icm of $1,2, \ldots, n$.
We have $d_{n}=e^{n+o(n)}$ and $e^{3}(\sqrt{2}-1)^{4}<1$.

$$
\text { Set } q_{n}=d_{n}^{3} b_{n}, p_{n}=2 d_{n}^{3} a_{n} \text {, so that }
$$

Irrationality of $\zeta(3)$, following Apéry (1978)

There exist two sequences of rational numbers $\left(a_{n}\right)_{n \geq 0}$ and $\left(b_{n}\right)_{n \geq 0}$, such that $a_{n} \in \mathbf{Z}$ and $d_{n}^{3} b_{n} \in \mathbf{Z}$ for all $n \geq 0$, with

$$
\lim _{n \rightarrow \infty}\left|2 a_{n} \zeta(3)-b_{n}\right|^{1 / n}=(\sqrt{2}-1)^{4},
$$

where d_{n} is the Icm of $1,2, \ldots, n$.
We have $d_{n}=e^{n+o(n)}$ and $e^{3}(\sqrt{2}-1)^{4}<1$.

Set $q_{n}=d_{n}^{3} b_{n}, p_{n}=2 d_{n}^{3} a_{n}$, so that

$$
0<\left|q_{n} \zeta(3)-p_{n}\right|<\epsilon_{n} \quad \text { with } \quad \epsilon_{n} \rightarrow 0 .
$$

Infinitely many odd zeta are irrational

Tanguy Rivoal (2000)

Let $\epsilon>0$. For any sufficiently large odd integer a, the dimension of the Q-vector space spanned by the numbers $1, \zeta(3), \zeta(5), \cdots, \zeta(a)$ is at least

$$
\frac{1-\epsilon}{1+\log 2} \log a
$$

References

Stéphane Fischler
Irrationalité de valeurs de zêta,
(d'après Apéry, Rivoal, ...),
Sém. Nicolas Bourbaki, 2002-2003,
N ${ }^{\circ} 910$ (Novembre 2002).
http://www.math.u-psud.fr/~fischler/publi.html

Christian Krattenthaler and Tanguy Rivoal

 http://www-fourier.ujf-grenoble.fr/~rivoal/articles.html
C. Krattenthaler et T. Rivoal, Hypergéométrie et fonction zêta de Riemann, Mem. Amer. Math. Soc. 186 (2007), 93 p.

Criterion : necessary and sufficient condition

We saw that any $\vartheta \in \mathbf{R}$ for which there exists a sequence $\left(p_{n} / q_{n}\right)_{n \geq 0}$ of rational numbers with

$$
0<\left|q_{n} \vartheta-p_{n}\right|<\epsilon_{n} \quad \text { with } \quad \epsilon_{n} \rightarrow 0
$$

is irrational.
Conversely, given $\vartheta \in \mathrm{R} \backslash \mathrm{Q}$, there exists a sequence $\left(p_{n} / q_{n}\right)_{n>0}$ with

More precisely, given $\vartheta \in \mathrm{R}$, for each real number $Q>1$, there exists $p / q \in \mathrm{Q}$ with

Hence, for $\vartheta \notin \mathrm{Q}$, there exists a sequence $\left(p_{n} / q_{n}\right)_{n \geq 0}$ with

Criterion : necessary and sufficient condition

We saw that any $\vartheta \in \mathbf{R}$ for which there exists a sequence $\left(p_{n} / q_{n}\right)_{n \geq 0}$ of rational numbers with

$$
0<\left|q_{n} \vartheta-p_{n}\right|<\epsilon_{n} \quad \text { with } \quad \epsilon_{n} \rightarrow 0
$$

is irrational.
Conversely, given $\vartheta \in \mathbf{R} \backslash \mathbf{Q}$, there exists a sequence $\left(p_{n} / q_{n}\right)_{n \geq 0}$ with

$$
0<\left|q_{n} \vartheta-p_{n}\right|<\epsilon_{n} \quad \text { and } \quad \epsilon_{n} \rightarrow 0 .
$$

More precisely, given $\vartheta \in R$, for each real number $Q>1$, there exists $p / q \in \mathrm{Q}$ with

Hence, for $\vartheta \notin Q$, there exists a sequence $\left(p_{n} / q_{n}\right)_{n \geq 0}$ with

Criterion : necessary and sufficient condition

We saw that any $\vartheta \in \mathbf{R}$ for which there exists a sequence $\left(p_{n} / q_{n}\right)_{n \geq 0}$ of rational numbers with

$$
0<\left|q_{n} \vartheta-p_{n}\right|<\epsilon_{n} \quad \text { with } \quad \epsilon_{n} \rightarrow 0
$$

is irrational.
Conversely, given $\vartheta \in \mathbf{R} \backslash \mathbf{Q}$, there exists a sequence $\left(p_{n} / q_{n}\right)_{n \geq 0}$ with

$$
0<\left|q_{n} \vartheta-p_{n}\right|<\epsilon_{n} \quad \text { and } \quad \epsilon_{n} \rightarrow 0 .
$$

More precisely, given $\vartheta \in \mathbf{R}$, for each real number $Q>1$, there exists $p / q \in \mathbf{Q}$ with

$$
|q \vartheta-p| \leq \frac{1}{Q} \quad \text { and } \quad 0<q<Q
$$

Hence, for $\vartheta \notin \mathrm{Q}$, there exists a sequence

Criterion : necessary and sufficient condition

We saw that any $\vartheta \in \mathbf{R}$ for which there exists a sequence $\left(p_{n} / q_{n}\right)_{n \geq 0}$ of rational numbers with

$$
0<\left|q_{n} \vartheta-p_{n}\right|<\epsilon_{n} \quad \text { with } \quad \epsilon_{n} \rightarrow 0
$$

is irrational.
Conversely, given $\vartheta \in \mathbf{R} \backslash \mathbf{Q}$, there exists a sequence $\left(p_{n} / q_{n}\right)_{n \geq 0}$ with

$$
0<\left|q_{n} \vartheta-p_{n}\right|<\epsilon_{n} \quad \text { and } \quad \epsilon_{n} \rightarrow 0 .
$$

More precisely, given $\vartheta \in \mathbf{R}$, for each real number $Q>1$, there exists $p / q \in \mathbf{Q}$ with

$$
|q \vartheta-p| \leq \frac{1}{Q} \quad \text { and } \quad 0<q<Q
$$

Hence, for $\vartheta \notin \mathbf{Q}$, there exists a sequence $\left(p_{n} / q_{n}\right)_{n \geq 0}$ with

$$
0<\left|q_{n} \vartheta-p_{n}\right|<\frac{1}{q_{n}} \quad \text { and } \quad q_{n} \rightarrow \infty .
$$

Gustave Lejeune-Dirichlet (1805-1859)

G. Dirichlet

1842 : Box (pigeonhole) principle
A map $f: E \rightarrow F$ with $\operatorname{Card} E>\operatorname{Card} F$ is not injective.
A map $f: E \rightarrow F$ with $\operatorname{Card} E<\operatorname{Card} F$ is not surjective.

Pigeonhole Principle

More holes than pigeons

More pigeons than holes

Existence of rational approximations

For any $\vartheta \in \mathbf{R}$ and any real number $Q>1$, there exists $p / q \in \mathbf{Q}$ with

$$
|q \vartheta-p| \leq \frac{1}{Q}
$$

and $0<q<Q$.
Proof. For simplicity assume $Q \in \mathbb{Z}$. Take

$$
E=\{0,\{\vartheta\},\{2 \vartheta\}, \ldots,\{(Q-1) \vartheta\}, 1\} \subset[0,1],
$$

where $\{x\}$ denotes the fractional part of x, F is the partition

of $[0,1]$, so that

Existence of rational approximations

For any $\vartheta \in \mathbf{R}$ and any real number $Q>1$, there exists $p / q \in \mathbf{Q}$ with

$$
|q \vartheta-p| \leq \frac{1}{Q}
$$

and $0<q<Q$.
Proof. For simplicity assume $Q \in \mathbf{Z}$. Take

$$
E=\{0,\{\vartheta\},\{2 \vartheta\}, \ldots,\{(Q-1) \vartheta\}, 1\} \subset[0,1],
$$

where $\{x\}$ denotes the fractional part of x, F is the partition

$$
\left[0, \frac{1}{Q}\right),\left[\frac{1}{Q}, \frac{2}{Q}\right), \ldots,\left[\frac{Q-2}{Q}, \frac{Q-1}{Q}\right),\left[\frac{Q-1}{Q}, 1\right],
$$

of $[0,1]$, so that

$$
\operatorname{Card} E=Q+1>Q=\operatorname{Card} F,
$$

and $f: E \rightarrow F$ maps $x \in E$ to $I \in F$ with $I \ni_{-} x$.

Hermann Minkowski (1864-1909)

1896 : Geometry of numbers.
The set
$\mathcal{C}=\left\{(u, v) \in \mathbf{R}^{2} ;|v| \leq Q\right.$,

$$
|v \vartheta-u| \leq 1 / Q\}
$$

is convex, symmetric, compact, with volume 4 . Hence $\mathcal{C} \cap \mathbf{Z}^{2} \neq\{(0,0)\}$.
H. Minkowski

Adolf Hurwitz (1859-1919)

A. Hurwitz

1891
For any $\vartheta \in \mathbf{R} \backslash \mathbf{Q}$, there exists a sequence $\left(p_{n} / q_{n}\right)_{n \geq 0}$ of rational numbers with

$$
0<\left|q_{n} \vartheta-p_{n}\right|<\frac{1}{\sqrt{5} q_{n}}
$$

and $q_{n} \rightarrow \infty$.
Methods : Continued fractions, Farey sections.

Best possible for the Golden ratio

$$
\frac{1+\sqrt{5}}{2}=1.6180339887499 \ldots
$$

Irrationality criterion

Let ϑ be a real number. The following conditions are equivalent.
(i) ϑ is irrational.
(ii) For any $\epsilon>0$, there exists $p / q \in \mathbf{Q}$ such that

$$
0<\left|\vartheta-\frac{p}{q}\right|<\frac{\epsilon}{q} .
$$

(iii) For any real number $Q>1$, there exists an integer q in the interval $1 \leq q<Q$ and there exists an integer p such that

$$
0<\left|\vartheta-\frac{p}{q}\right|<\frac{1}{q Q} .
$$

(iv) There exist infinitely many $p / q \in \mathbf{Q}$ satisfying

$$
\left|\vartheta-\frac{p}{q}\right|<\frac{1}{\sqrt{5} q^{2}} .
$$

Irrationality criterion (continued)

Let ϑ be a real number. The following conditions are equivalent.
(i) ϑ is irrational.
(ii)' For any $\epsilon>0$, there exist two linearly independent linear forms
$L_{0}\left(X_{0}, X_{1}\right)=a_{0} X_{0}+b_{0} X_{1} \quad$ and $\quad L_{1}\left(X_{0}, X_{1}\right)=a_{1} X_{0}+b_{1} X_{1}$,
with rational integer coefficients, such that

$$
\max \left\{\left|L_{0}(1, \vartheta)\right|,\left|L_{1}(1, \vartheta)\right|\right\}<\epsilon .
$$

Proof of $(\mathrm{ii}) \Longleftrightarrow(\mathrm{ii})^{\prime}$

(ii) For any $\epsilon>0$, there exists $p / q \in \mathbf{Q}$ such that

$$
0<\left|\vartheta-\frac{p}{q}\right|<\frac{\epsilon}{q}
$$

(ii)' For any $\epsilon>0$, there exist two linearly independent linear forms L_{0}, L_{1} in $\mathbf{Z} X_{0}+\mathbf{Z} X_{1}$ such that

$$
\max \left\{\left|L_{0}(1, \vartheta)\right|,\left|L_{1}(1, \vartheta)\right|\right\}<\epsilon
$$

Proof of (ii) ${ }^{2}$
Since L_{0}, L_{1} are linearly independent, one at least of them does not vanish at $(1, \vartheta)$. Write it $p X_{0}-q X_{1}$.

Using (ii), set $L_{0}\left(X_{0}, X_{1}\right)=p X_{0}-q X_{1}$, and use (ii) again with ϵ replaced by

Proof of $(\mathrm{ii}) \Longleftrightarrow(\mathrm{ii})^{\prime}$

(ii) For any $\epsilon>0$, there exists $p / q \in \mathbf{Q}$ such that

$$
0<\left|\vartheta-\frac{p}{q}\right|<\frac{\epsilon}{q}
$$

(ii)' For any $\epsilon>0$, there exist two linearly independent linear forms L_{0}, L_{1} in $\mathbf{Z} X_{0}+\mathbf{Z} X_{1}$ such that

$$
\max \left\{\left|L_{0}(1, \vartheta)\right|,\left|L_{1}(1, \vartheta)\right|\right\}<\epsilon
$$

Proof of (ii) ${ }^{\prime} \Longrightarrow$ (ii)
Since L_{0}, L_{1} are linearly independent, one at least of them does not vanish at $(1, \vartheta)$. Write it $p X_{0}-q X_{1}$.

Using (ii), set

Proof of $(\mathrm{ii}) \Longleftrightarrow(\mathrm{ii})^{\prime}$

(ii) For any $\epsilon>0$, there exists $p / q \in \mathbf{Q}$ such that

$$
0<\left|\vartheta-\frac{p}{q}\right|<\frac{\epsilon}{q}
$$

(ii)' For any $\epsilon>0$, there exist two linearly independent linear forms L_{0}, L_{1} in $\mathbf{Z} X_{0}+\mathbf{Z} X_{1}$ such that

$$
\max \left\{\left|L_{0}(1, \vartheta)\right|,\left|L_{1}(1, \vartheta)\right|\right\}<\epsilon
$$

Proof of (ii) ${ }^{\prime} \Longrightarrow$ (ii)
Since L_{0}, L_{1} are linearly independent, one at least of them does not vanish at $(1, \vartheta)$. Write it $p X_{0}-q X_{1}$.
Proof of (ii) \Longrightarrow (ii')
Using (ii), set $L_{0}\left(X_{0}, X_{1}\right)=p X_{0}-q X_{1}$, and use (ii) again with ϵ replaced by $|q \vartheta-p|$.

Irrationality of at least one number

Let $\vartheta_{1}, \ldots, \vartheta_{m}$ be real numbers. The following conditions are equivalent
(i) One at least of $\vartheta_{1}, \ldots, \vartheta_{m}$ is irrational.
(ii) For any $\epsilon>0$, there exist p_{1}, \ldots, p_{m}, q in \mathbf{Z} with $q>0$ such that

$$
0<\max _{1 \leq i \leq m}\left|\vartheta_{i}-\frac{p_{i}}{q}\right|<\frac{\epsilon}{q} .
$$

(iii) For any $\epsilon>0$, there exist $m+1$ linearly independent linear forms L_{0}, \ldots, L_{m} with coefficients in \mathbf{Z} in $m+1$ variables X_{0}, \ldots, X_{m}, such that

$$
\max _{0 \leq k \leq m}\left|L_{k}\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)\right|<\epsilon .
$$

(iv) For any real number $Q>1$, there exists $\left(p_{1}, \ldots, p_{m}, q\right)$ in \mathbf{Z}^{m+1} such that $1 \leq q \leq Q$ and

$$
0<\max _{1 \leq i \leq m}\left|\vartheta_{i}-\frac{p_{i}}{q}\right| \leq \frac{1}{q Q^{1 / m}}
$$

Linear independence

Irrationality of ϑ : means that $1, \vartheta$ are linearly independent over Q.

Irrationality of at least one of $\vartheta_{1}, \ldots, \vartheta_{m}$: means
$\left(\vartheta_{1}, \ldots, \vartheta_{m}\right) \notin \mathrm{Q}^{m}$. Also : means that the dimension of the Q-vector space spanned by $1, \vartheta_{1}, \ldots, \vartheta_{m}$ is ≥ 2.

Linear independence of $1, \vartheta_{1}, \ldots, \vartheta_{m}$ over Q : means that for any hyperplane $H: a_{0} z_{0}+\cdots+a_{m} z_{m}=0$ of \mathbf{R}^{m+1} rational over $\mathrm{Q}\left(\right.$ i.e. $\left.a_{i} \in \mathrm{Q}\right)$, the point $\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)$ does not belong to H.

Transcendence of ϑ : means that $1, \vartheta, \vartheta^{2}, \ldots, \vartheta^{n} \ldots$ are linearly independent over Q.

Linear independence

Irrationality of ϑ : means that $1, \vartheta$ are linearly independent over Q.

Irrationality of at least one of $\vartheta_{1}, \ldots, \vartheta_{m}$: means
$\left(\vartheta_{1}, \ldots, \vartheta_{m}\right) \notin \mathbf{Q}^{m}$. Also : means that the dimension of the Q-vector space spanned by $1, \vartheta_{1}, \ldots, \vartheta_{m}$ is ≥ 2.

Linear independence of $1, \vartheta_{1}, \ldots, \vartheta_{m}$ over Q : means that for
any hyperplane $H: a_{0} z_{0}+\cdots+a_{m} z_{m}=0$ of R^{m+1} rational
over Q (i.e. $\left.a_{i} \in \mathrm{Q}\right)$, the point $\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)$ does not belong to H.

Transcendence of ϑ : means that $1, \vartheta, \vartheta^{2}, \ldots, \vartheta^{n} \ldots$ are linearly independent over Q.

Linear independence

Irrationality of ϑ : means that $1, \vartheta$ are linearly independent over Q.

Irrationality of at least one of $\vartheta_{1}, \ldots, \vartheta_{m}$: means
$\left(\vartheta_{1}, \ldots, \vartheta_{m}\right) \notin \mathbf{Q}^{m}$. Also : means that the dimension of the Q-vector space spanned by $1, \vartheta_{1}, \ldots, \vartheta_{m}$ is ≥ 2.

Linear independence of $1, \vartheta_{1}, \ldots, \vartheta_{m}$ over \mathbf{Q} : means that for any hyperplane $H: a_{0} z_{0}+\cdots+a_{m} z_{m}=0$ of \mathbf{R}^{m+1} rational over \mathbf{Q} (i.e. $a_{i} \in \mathbf{Q}$), the point $\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)$ does not belong to H.

Transcendence of ϑ : means that

Linear independence

Irrationality of ϑ : means that $1, \vartheta$ are linearly independent over Q.

Irrationality of at least one of $\vartheta_{1}, \ldots, \vartheta_{m}$: means
$\left(\vartheta_{1}, \ldots, \vartheta_{m}\right) \notin \mathbf{Q}^{m}$. Also : means that the dimension of the Q-vector space spanned by $1, \vartheta_{1}, \ldots, \vartheta_{m}$ is ≥ 2.

Linear independence of $1, \vartheta_{1}, \ldots, \vartheta_{m}$ over \mathbf{Q} : means that for any hyperplane $H: a_{0} z_{0}+\cdots+a_{m} z_{m}=0$ of \mathbf{R}^{m+1} rational over \mathbf{Q} (i.e. $a_{i} \in \mathbf{Q}$), the point $\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)$ does not belong to H.

Transcendence of ϑ : means that $1, \vartheta, \vartheta^{2}, \ldots, \vartheta^{n} \ldots$ are linearly independent over \mathbf{Q}.

Charles Hermite (1822-1901)

Charles Hermite

1873 : Hermite's method for proving linear independence. Let $\vartheta_{1}, \ldots, \vartheta_{m}$ be real numbers and $a_{0}, a_{1}, \ldots, a_{m}$ rational integers, not all of which are 0 . The goal is to prove that the number

$$
L=a_{0}+a_{1} \vartheta_{1}+\cdots+a_{m} \vartheta_{m}
$$

is not 0 .

Hermite's idea is to approximate simultaneously $\vartheta_{1}, \ldots, \vartheta_{m}$ by rational numbers $p_{1} / q, \ldots, p_{m} / q$ with the same denominator $q>0$.

$$
L=a_{0}+a_{1} \vartheta_{1}+\cdots+a_{m} \vartheta_{m}
$$

Let q, p_{1}, \ldots, p_{m} be rational integers with $q>0$. For $1 \leq k \leq m$, set

$$
\epsilon_{k}=q \vartheta_{k}-p_{k} .
$$

Then $q L=M+R$ with

$$
M=a_{0} q+a_{1} p_{1}+\cdots+a_{m} p_{m} \in \mathbf{Z}
$$

and

$$
R=a_{1} \epsilon_{1}+\cdots+a_{m} \epsilon_{m} \in \mathbf{R} .
$$

If $M \neq 0$ and $|R|<1$ we deduce $L \neq 0$.

Zero estimate

Main difficulty : to check $M \neq 0$.
We wish to find a simultaneous rational approximation $\left(q, p_{1}, \ldots, p_{m}\right)$ to $\left(\vartheta_{1}, \ldots, \vartheta_{m}\right)$ outside the hyperplane $a_{0} z_{0}+a_{1} z_{1}+\cdots+a_{m} z_{m}=0$ of Q^{m+1}.

This needs to be checked for all hyperplanes.
Solution : to construct not only one tuple $\mathrm{u}=\left(q, p_{1}, \ldots, p_{m}\right)$ in $\mathbb{Z}^{m+1} \backslash\{0\}$, but $m+1$ such tuples which are linearly independent.

This yields $m+1$ pairs $\left(M_{k}, R_{k}\right), k=0, \ldots, m$ in place of a single pair (M, R), and from $\left(a_{0}, \ldots, a_{m}\right) \neq 0$ one deduces that one at least of M_{0}, \ldots, M_{m} is not 0 .

Zero estimate

Main difficulty : to check $M \neq 0$.
We wish to find a simultaneous rational approximation $\left(q, p_{1}, \ldots, p_{m}\right)$ to $\left(\vartheta_{1}, \ldots, \vartheta_{m}\right)$ outside the hyperplane $a_{0} z_{0}+a_{1} z_{1}+\cdots+a_{m} z_{m}=0$ of \mathbf{Q}^{m+1}.

This needs to be checked for all hyperplanes.
Solution : to construct not only one tuple $\mathrm{u}=\left(q, p_{1}, \ldots, p_{m}\right)$ in $\mathbb{Z}^{m+1} \backslash\{0\}$, but $m+1$ such tuples which are linearly independent.

This yields $m+1$ pairs $\left(M_{k}, R_{k}\right), k=0, \ldots, m$ in place of a single pair (M, R), and from $\left(a_{0}, \ldots, a_{m}\right) \neq 0$ one deduces that one at least of M_{0}, \ldots, M_{m} is not 0 .

Zero estimate

Main difficulty : to check $M \neq 0$.
We wish to find a simultaneous rational approximation $\left(q, p_{1}, \ldots, p_{m}\right)$ to $\left(\vartheta_{1}, \ldots, \vartheta_{m}\right)$ outside the hyperplane $a_{0} z_{0}+a_{1} z_{1}+\cdots+a_{m} z_{m}=0$ of \mathbf{Q}^{m+1}.

This needs to be checked for all hyperplanes.
Solution : to construct not only one tuple $\mathrm{u}=\left(q, p_{1}, \ldots, p_{m}\right)$ in $\mathbb{Z}^{m+1} \backslash\{0\}$, but $m+1$ such tuples which are linearly independent.

This yields $m+1$ pairs $\left(M_{k}, R_{k}\right), k=0, \ldots, m$ in place of a single pair (M, R), and from $\left(a_{0}, \ldots, a_{m}\right) \neq 0$ one deduces that one at least of M_{0}, \ldots, M_{m} is not 0 .

Zero estimate

Main difficulty : to check $M \neq 0$.
We wish to find a simultaneous rational approximation $\left(q, p_{1}, \ldots, p_{m}\right)$ to $\left(\vartheta_{1}, \ldots, \vartheta_{m}\right)$ outside the hyperplane $a_{0} z_{0}+a_{1} z_{1}+\cdots+a_{m} z_{m}=0$ of \mathbf{Q}^{m+1}.

This needs to be checked for all hyperplanes.
Solution : to construct not only one tuple $\mathbf{u}=\left(q, p_{1}, \ldots, p_{m}\right)$ in $\mathbf{Z}^{m+1} \backslash\{0\}$, but $m+1$ such tuples which are linearly independent.

> This yields $m+1$ pairs $\left(M_{k}, R_{k}\right), k=0, \ldots, m$ in place of a single pair (M, R), and from $\left(a_{0}, \ldots, a_{m}\right) \neq 0$ one deduces that one at least of M_{0}, \ldots, M_{m} is not 0 .

Zero estimate

Main difficulty : to check $M \neq 0$.
We wish to find a simultaneous rational approximation $\left(q, p_{1}, \ldots, p_{m}\right)$ to $\left(\vartheta_{1}, \ldots, \vartheta_{m}\right)$ outside the hyperplane $a_{0} z_{0}+a_{1} z_{1}+\cdots+a_{m} z_{m}=0$ of \mathbf{Q}^{m+1}.

This needs to be checked for all hyperplanes.
Solution : to construct not only one tuple $\mathbf{u}=\left(q, p_{1}, \ldots, p_{m}\right)$ in $\mathbf{Z}^{m+1} \backslash\{0\}$, but $m+1$ such tuples which are linearly independent.

This yields $m+1$ pairs $\left(M_{k}, R_{k}\right), k=0, \ldots, m$ in place of a single pair (M, R), and from $\left(a_{0}, \ldots, a_{m}\right) \neq 0$ one deduces that one at least of M_{0}, \ldots, M_{m} is not 0 .

Rational approximations (following Michel Laurent)

$\operatorname{Let}\left(\vartheta_{1}, \ldots, \vartheta_{m}\right) \in \mathbf{R}^{m}$.
Then the following conditions are equivalent.

(i) The numbers $1, \vartheta_{1}, \ldots, \vartheta_{m}$ are linearly independent over \mathbf{Q}.
(ii) For any $\epsilon>0$, there exist $m+1$ linearly independent elements $\mathbf{u}_{0}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{m}$ in \mathbf{Z}^{m+1}, say

$$
\mathbf{u}_{i}=\left(q_{i}, p_{1 i}, \ldots, p_{m i}\right) \quad(0 \leq i \leq m)
$$

with $q_{i}>0$, such that

$$
\max _{1 \leq k \leq m}\left|\vartheta_{k}-\frac{p_{k i}}{q_{i}}\right| \leq \frac{\epsilon}{q_{i}} \quad(0 \leq i \leq m) .
$$

Hermite - Lindemann Theorem

Hermite (1873) : transcendence of e.

Lindemann (1882) : transcendence of π.

Hermite - Lindemann Theorem
For any non-zero complex number z, at least one of the two numbers z, e^{z} is transcendental.

Corollaries : transcendence of $\log \alpha$ and e^{β} for α and β non-zero algebraic numbers with $\log \alpha \neq 0$.

Hermite - Lindemann Theorem

Hermite (1873) : transcendence of e.

Lindemann (1882) : transcendence of π.

Hermite - Lindemann Theorem
For any non-zero complex number z, at least one of the two numbers z, e^{z} is transcendental.

Corollaries : transcendence of $\log \alpha$ and e^{β} for α and β non-zero algebraic numbers with $\log \alpha \neq 0$.

Hermite - Lindemann Theorem

Hermite (1873) : transcendence of e.

Lindemann (1882) : transcendence of π.

Hermite - Lindemann Theorem

For any non-zero complex number z, at least one of the two numbers z, e^{z} is transcendental.

Corollaries : transcendence of $\log \alpha$ and e^{β} for α and β non-zero algebraic numbers with $\log \alpha \neq 0$.

Lindemann - Weierstraß Theorem

Let $\beta_{1}, \ldots, \beta_{n}$ be algebraic numbers which are linearly independent over \mathbf{Q}. Then the numbers $e^{\beta_{1}}, \ldots, e^{\beta_{n}}$ are algebraically independent over Q.

Equivalent to
Let $\alpha_{1}, \ldots, \alpha_{m}$ be distinct algebraic numbers. Then the numbers are linearly independent over Q.

Lindemann - Weierstraß Theorem

Let $\beta_{1}, \ldots, \beta_{n}$ be algebraic numbers which are linearly independent over \mathbf{Q}. Then the numbers $e^{\beta_{1}}, \ldots, e^{\beta_{n}}$ are algebraically independent over Q.

Equivalent to :
Let $\alpha_{1}, \ldots, \alpha_{m}$ be distinct algebraic numbers. Then the numbers $e^{\alpha_{1}}, \ldots, e^{\alpha_{m}}$ are linearly independent over \mathbf{Q}.

Carl Ludwig Siegel (1896-1981)

Siegel's method for proving linear independence.
Let $\vartheta_{1}, \ldots, \vartheta_{m}$ be complex numbers.

C.L. Siegel

1929 :
Assume that, for any $\epsilon>0$, there exists $m+1$ linearly independent linear forms L_{0}, \ldots, L_{m}, with coefficients in Z, such that

$$
\max _{0 \leq k \leq m}\left|L_{k}\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)\right|<\frac{\epsilon}{H^{m-1}}
$$

where $H=\max _{0 \leq k \leq m} H\left(L_{k}\right)$.

Then $1, \vartheta_{1}, \ldots, \vartheta_{m}$ are linearly independent over \mathbf{Q}.

Linear independence, following Siegel (1929)

Height of a linear form : $H(L)=\max \mid$ coefficients of $L \mid$.
Example : $m=1$ (irrationality criterion). A real number v is irrational if and only, for any $\epsilon>0$, if there exists two linearly independent linear forms $L_{0}\left(X_{0}, X_{1}\right)$ and $L_{1}\left(X_{0}, X_{1}\right)$ in
$Z X_{0}+\mathbb{Z} X_{1}$ such that
Sketch of proof of Siegel's criterion. Assume $1, \vartheta_{1}, \ldots, \vartheta_{m}$ are linearly dependent over Q . Let $L \in \mathrm{Z} X_{0}+\cdots+\mathrm{Z} X_{m}$ be a non-zero linear form vanishing at $\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)$. Among $L_{0} \ldots, L_{m}$, select m linear forms, say L_{1}, \ldots, L_{m}, which constitute with L a complete system of linearly independent forms in $m+1$ variables. The determinant Δ of L, L_{1} is a non-zero integer, hence its absolute value is ≥ 1. Inverting the matrix, write Δ as a linear combination with integer coefficients of the $L_{i}\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)(1 \leq i \leq m)$ and estimate the coefficients.

Linear independence, following Siegel (1929)

Height of a linear form : $H(L)=\max \mid$ coefficients of $L \mid$.
Example : $m=1$ (irrationality criterion). A real number ϑ is irrational if and only, for any $\epsilon>0$, if there exists two linearly independent linear forms $L_{0}\left(X_{0}, X_{1}\right)$ and $L_{1}\left(X_{0}, X_{1}\right)$ in $\mathbf{Z} X_{0}+\mathbf{Z} X_{1}$ such that $\left|L_{i}(1, \vartheta)\right|<\epsilon$.

constitute with L a complete system of linearly independent forms in $m+1$ variables. The determinant Δ of L, L_{1}
is a non-zero integer, hence its absolute value is ≥ 1. Inverting the matrix, write Δ as a linear combination with integer
coefficients of the $L_{i}\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)(1 \leq i \leq m)$ and estimate the coefficients.

Linear independence, following Siegel (1929)

Height of a linear form : $H(L)=\max \mid c o e f f i c i e n t s$ of $L \mid$.
Example : $m=1$ (irrationality criterion). A real number ϑ is irrational if and only, for any $\epsilon>0$, if there exists two linearly independent linear forms $L_{0}\left(X_{0}, X_{1}\right)$ and $L_{1}\left(X_{0}, X_{1}\right)$ in $\mathbf{Z} X_{0}+\mathbf{Z} X_{1}$ such that $\left|L_{i}(1, \vartheta)\right|<\epsilon$.
Sketch of proof of Siegel's criterion. Assume $1, \vartheta_{1}, \ldots, \vartheta_{m}$ are linearly dependent over \mathbf{Q}. Let $L \in \mathbb{Z X} X_{0}+\cdots+Z X_{m}$ be a non-zero linear form vanishing at Among select m linear forms, say L_{1}, \ldots, L_{m}, which
constitute with L a complete system of linearly independent forms in $m+1$ variables. The determinant Δ of
is a non-zero integer, hence its absolute value is ≥ 1. Inverting the matrix, write Δ as a linear combination with integer
coefficients of the $L_{i}\left(1, v_{1}, \ldots, \vartheta_{m}\right)(1 \leq i \leq m)$ and estimate the coefficients.

Linear independence, following Siegel (1929)

Height of a linear form : $H(L)=\max \mid$ coefficients of $L \mid$.
Example : $m=1$ (irrationality criterion). A real number ϑ is irrational if and only, for any $\epsilon>0$, if there exists two linearly independent linear forms $L_{0}\left(X_{0}, X_{1}\right)$ and $L_{1}\left(X_{0}, X_{1}\right)$ in $\mathbf{Z} X_{0}+\mathbf{Z} X_{1}$ such that $\left|L_{i}(1, \vartheta)\right|<\epsilon$.
Sketch of proof of Siegel's criterion. Assume $1, \vartheta_{1}, \ldots, \vartheta_{m}$ are linearly dependent over \mathbf{Q}. Let $L \in \mathbf{Z} X_{0}+\cdots+\mathbf{Z} X_{m}$ be a non-zero linear form vanishing at $\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)$. Among select m linear forms, say L_{1}, \ldots, L_{m}, which
constitute with L a complete system of linearly independent forms in $m+1$ variables. The determinant Δ of L
is a non-zero integer, hence its absolute value is ≥ 1. Inverting the matrix, write Δ as a linear combination with integer coefficients of the $L_{i}\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)(1 \leq i \leq m)$ and estimate the coefficients.

Linear independence, following Siegel (1929)

Height of a linear form : $H(L)=\max \mid$ coefficients of $L \mid$.
Example : $m=1$ (irrationality criterion). A real number ϑ is irrational if and only, for any $\epsilon>0$, if there exists two linearly independent linear forms $L_{0}\left(X_{0}, X_{1}\right)$ and $L_{1}\left(X_{0}, X_{1}\right)$ in $\mathbf{Z} X_{0}+\mathbf{Z} X_{1}$ such that $\left|L_{i}(1, \vartheta)\right|<\epsilon$.
Sketch of proof of Siegel's criterion. Assume $1, \vartheta_{1}, \ldots, \vartheta_{m}$ are linearly dependent over \mathbf{Q}. Let $L \in \mathbf{Z} X_{0}+\cdots+\mathbf{Z} X_{m}$ be a non-zero linear form vanishing at $\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)$. Among L_{0}, \ldots, L_{m}, select m linear forms, say L_{1}, \ldots, L_{m}, which constitute with L a complete system of linearly independent forms in $m+1$ variables. The determinant Δ of
is a non-zero integer, hence its absolute value is ≥ 1. Inverting the matrix, write Δ as a linear combination with integer coefficients of the $L_{i}\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)(1 \leq i \leq m)$ and estimate the coefficients.

Linear independence, following Siegel (1929)

Height of a linear form : $H(L)=\max \mid$ coefficients of $L \mid$.
Example : $m=1$ (irrationality criterion). A real number ϑ is irrational if and only, for any $\epsilon>0$, if there exists two linearly independent linear forms $L_{0}\left(X_{0}, X_{1}\right)$ and $L_{1}\left(X_{0}, X_{1}\right)$ in $\mathbf{Z} X_{0}+\mathbf{Z} X_{1}$ such that $\left|L_{i}(1, \vartheta)\right|<\epsilon$.
Sketch of proof of Siegel's criterion. Assume $1, \vartheta_{1}, \ldots, \vartheta_{m}$ are linearly dependent over \mathbf{Q}. Let $L \in \mathbf{Z} X_{0}+\cdots+\mathbf{Z} X_{m}$ be a non-zero linear form vanishing at $\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)$. Among L_{0}, \ldots, L_{m}, select m linear forms, say L_{1}, \ldots, L_{m}, which constitute with L a complete system of linearly independent forms in $m+1$ variables. The determinant Δ of L, L_{1}, \ldots, L_{m} is a non-zero integer, hence its absolute value is ≥ 1. Inverting the matrix, write Δ as a linear combination with integer coefficients of the

Linear independence, following Siegel (1929)

Height of a linear form : $H(L)=\max \mid$ coefficients of $L \mid$.
Example : $m=1$ (irrationality criterion). A real number ϑ is irrational if and only, for any $\epsilon>0$, if there exists two linearly independent linear forms $L_{0}\left(X_{0}, X_{1}\right)$ and $L_{1}\left(X_{0}, X_{1}\right)$ in $\mathbf{Z} X_{0}+\mathbf{Z} X_{1}$ such that $\left|L_{i}(1, \vartheta)\right|<\epsilon$.
Sketch of proof of Siegel's criterion. Assume $1, \vartheta_{1}, \ldots, \vartheta_{m}$ are linearly dependent over \mathbf{Q}. Let $L \in \mathbf{Z} X_{0}+\cdots+\mathbf{Z} X_{m}$ be a non-zero linear form vanishing at $\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)$. Among L_{0}, \ldots, L_{m}, select m linear forms, say L_{1}, \ldots, L_{m}, which constitute with L a complete system of linearly independent forms in $m+1$ variables. The determinant Δ of L, L_{1}, \ldots, L_{m} is a non-zero integer, hence its absolute value is ≥ 1. Inverting the matrix, write Δ as a linear combination with integer coefficients of the $L_{i}\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)(1 \leq i \leq m)$ and estimate the coefficients.

Criterion of Yu. V. Nesterenko

Let $\vartheta_{1}, \ldots, \vartheta_{m}$ be complex numbers.

Yu.V.Nesterenko (1985)

Let α and β be two positive numbers satisfying
$\alpha>\beta(m-1)$. Assume there is a sequence $\left(L_{n}\right)_{n \geq 0}$ of linear forms in
$\mathbf{Z} X_{0}+\mathbf{Z} X_{1}+\ldots+\mathbf{Z} X_{m}$ of height $\leq e^{\beta n}$ such that

$$
\left|L_{n}\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)\right|=e^{-\alpha n+o(n)} .
$$

Then $1, \vartheta_{1}, \ldots, \vartheta_{m}$ are linearly independent over \mathbf{Q}.
Example : $m=1$ - irrationality criterion.

Simplified proof of Nesterenko's Theorem

Francesco Amoroso

Pierre Colmez

Refinements : Raffaele Marcovecchio, Pierre Bel.

Irrationality measure for $\log 2$: history

$$
\left|\log 2-\frac{p}{q}\right|>\frac{1}{q^{\mu}}
$$

Hermite-Lindemann, Mahler, Baker, Gel'fond, Feldman,... :
transcendence measures
G. Rhin 1987
$\mu(\log 2)<4.07$
$\mu(\log 2)<3.89$
$\mu(\log 2)<3.57$

Recent developments

Stéphane Fischler and Wadim Zudilin, A refinement of Nesterenko's linear independence criterion with applications to zeta values. Preprint MPIM 2009-35.

Recent developments

Stéphane Fischler and Tanguy Rivoal, Irrationality exponent and rational approximations with prescribed growth.
Trans. Amer. Math. Soc. , to appear.

J. Liouville (1809-1882)

Liouville's inequalities
easiest : integers
$a \in \mathbf{Z}, a \neq 0 \Rightarrow|a| \geq 1$.
rational numbers :
$r=a / b \in \mathbf{Q}, r \neq 0 \Rightarrow$
$|r| \geq 1 / b$.
algebraic numbers :
$\alpha \in \overline{\mathbf{Q}}, \alpha \neq 0 \Rightarrow$
$|\alpha| \geq \frac{1}{H(\alpha)+1}$.
1844
Existence of transcendental numbers

Criteria for transcendence and algebraic

 independenceA complex number ϑ is transcendental if and only if $1, \vartheta, \vartheta^{2}, \ldots, \vartheta^{n} \ldots$ are linearly independent (over \mathbf{Q}).

Complex numbers are algebraically independent
 linearly independent.

Hence, criteria for linear independence yield criteria for transcendence and for algebraic independence.

Furthermore, criteria for transcendence are special case ($m=1$) of criteria for algebraic independence.

Criteria for transcendence and algebraic

 independenceA complex number ϑ is transcendental if and only if $1, \vartheta, \vartheta^{2}, \ldots, \vartheta^{n} \ldots$ are linearly independent (over \mathbf{Q}).

Complex numbers $\vartheta_{1}, \ldots, \vartheta_{m}$ are algebraically independent if and only if the numbers $\vartheta_{1}^{i_{1}} \cdots \vartheta_{m}^{i_{m}},\left(\left(i_{1}, \ldots, i_{m}\right) \in \mathbf{Z}_{\geq 0}^{m}\right.$ are linearly independent.

Hence, criteria for linear independence yield criteria for transcendence and for algebraic independence.

Furthermore, criteria for transcendence are special case ($m=1$) of criteria for algebraic independence.

Criteria for transcendence and algebraic independence

A complex number ϑ is transcendental if and only if $1, \vartheta, \vartheta^{2}, \ldots, \vartheta^{n} \ldots$ are linearly independent (over \mathbf{Q}).

Complex numbers $\vartheta_{1}, \ldots, \vartheta_{m}$ are algebraically independent if and only if the numbers $\vartheta_{1}^{i_{1}} \cdots \vartheta_{m}^{i_{m}},\left(\left(i_{1}, \ldots, i_{m}\right) \in \mathbf{Z}_{\geq 0}^{m}\right.$ are linearly independent.

Hence, criteria for linear independence yield criteria for transcendence and for algebraic independence.

Furthermore, criteria for transcendence are special case ($m=1$) of criteria for algebraic independence.

Criteria for transcendence and algebraic independence

A complex number ϑ is transcendental if and only if $1, \vartheta, \vartheta^{2}, \ldots, \vartheta^{n} \ldots$ are linearly independent (over \mathbf{Q}).

Complex numbers $\vartheta_{1}, \ldots, \vartheta_{m}$ are algebraically independent if and only if the numbers $\vartheta_{1}^{i_{1}} \cdots \vartheta_{m}^{i_{m}},\left(\left(i_{1}, \ldots, i_{m}\right) \in \mathbf{Z}_{\geq 0}^{m}\right.$ are linearly independent.

Hence, criteria for linear independence yield criteria for transcendence and for algebraic independence.

Furthermore, criteria for transcendence are special case ($m=1$) of criteria for algebraic independence.

Transcendence and Diophantine approximation by algebraic numbers

Recall : Criterion for irrationality. A real number ϑ is irrational if and only if there is a sequence of good rational approximations $\left(p_{n} / q_{n}\right)_{n \geq 0}$ with $p_{n} / q_{n} \neq \vartheta$.

Generalization for fixed degree : given a positive integer d, a complex number ϑ is not algebraic of degree $\leq d$ if and only if there is a sequence of good algebraic approximations $\left(\alpha_{n}\right)_{n \geq 0}$ with α_{n} algebraic of degree $\leq d$ and $\alpha_{n} \neq \vartheta$.

Durand's criterion for transcendence (1974) : a complex number ϑ is transcendental if and only if there is a sequence of good algebraic approximations $\left(\alpha_{n}\right)_{n>0}$ with α_{n} algebraic and $\alpha_{n} \neq \vartheta$.

Transcendence and Diophantine approximation by algebraic numbers

Recall : Criterion for irrationality. A real number ϑ is irrational if and only if there is a sequence of good rational approximations $\left(p_{n} / q_{n}\right)_{n \geq 0}$ with $p_{n} / q_{n} \neq \vartheta$.

Generalization for fixed degree : given a positive integer d, a complex number ϑ is not algebraic of degree $\leq d$ if and only if there is a sequence of good algebraic approximations $\left(\alpha_{n}\right)_{n \geq 0}$ with α_{n} algebraic of degree $\leq d$ and $\alpha_{n} \neq \vartheta$.

Durand's criterion for transcendence (1974) : a complex number ϑ is transcendental if and only if there is a sequence of good algebraic approximations $\left(\alpha_{n}\right)_{n>0}$ with α_{n} algebraic and

Transcendence and Diophantine approximation by algebraic numbers

Recall : Criterion for irrationality. A real number ϑ is irrational if and only if there is a sequence of good rational approximations $\left(p_{n} / q_{n}\right)_{n \geq 0}$ with $p_{n} / q_{n} \neq \vartheta$.

Generalization for fixed degree : given a positive integer d, a complex number ϑ is not algebraic of degree $\leq d$ if and only if there is a sequence of good algebraic approximations $\left(\alpha_{n}\right)_{n \geq 0}$ with α_{n} algebraic of degree $\leq d$ and $\alpha_{n} \neq \vartheta$.

Durand's criterion for transcendence (1974) : a complex number ϑ is transcendental if and only if there is a sequence of good algebraic approximations $\left(\alpha_{n}\right)_{n \geq 0}$ with α_{n} algebraic and $\alpha_{n} \neq \vartheta$.

Alain Durand (1949-1986)

> Cinquante Ans de Polynômes
> - Fifty Years of Polynomials

> Lecture Notes in
> Mathematics, Springer Verlag 1415 (1990).

Proceedings of a Conference held in honour of Alain Durand at the Institut Henri Poincaré Paris, France, May 26-27, 1988

Transcendence and Diophantine approximation by polynomials

A complex number ϑ is transcendental if and only if there is a sequence $\left(P_{n}\right)_{n \geq 0}$ of polynomials in $\mathbf{Z}[X]$ such that $\left|P_{n}(\vartheta)\right|$ is non-zero and small, in terms of the degree d_{n} and the height (maximum of the absolute values of the coefficients) of P_{n}.

> Existence of a sequence: Dirichlet's box principle. Given $\vartheta \in \mathrm{C}$, there exists $P \in \mathbb{Z}[X] \backslash\{0\}$ such that $\left|P_{n}(\vartheta)\right|$ is small. If ϑ is transcendental, then $\left|P_{n}(\vartheta)\right|$ is non-zero.

Lower bound : Liouville's inequality. If ϑ is algebraic and $\left|P_{n}(\vartheta)\right|$ is non-zero, then $\left|P_{n}(\vartheta)\right|$ cannot be two small.

Transcendence and Diophantine approximation by polynomials

A complex number ϑ is transcendental if and only if there is a sequence $\left(P_{n}\right)_{n \geq 0}$ of polynomials in $\mathbf{Z}[X]$ such that $\left|P_{n}(\vartheta)\right|$ is non-zero and small, in terms of the degree d_{n} and the height (maximum of the absolute values of the coefficients) of P_{n}.

Existence of a sequence : Dirichlet's box principle. Given $\vartheta \in \mathbf{C}$, there exists $P \in \mathbf{Z}[X] \backslash\{0\}$ such that $\left|P_{n}(\vartheta)\right|$ is small. If ϑ is transcendental, then $\left|P_{n}(\vartheta)\right|$ is non-zero.

> Liouville's inequality. If ϑ is algebraic and is non-zero, then $\left|P_{n}(\vartheta)\right|$ cannot be two small.

Transcendence and Diophantine approximation by polynomials

A complex number ϑ is transcendental if and only if there is a sequence $\left(P_{n}\right)_{n \geq 0}$ of polynomials in $\mathbf{Z}[X]$ such that $\left|P_{n}(\vartheta)\right|$ is non-zero and small, in terms of the degree d_{n} and the height (maximum of the absolute values of the coefficients) of P_{n}.

Existence of a sequence : Dirichlet's box principle. Given $\vartheta \in \mathbf{C}$, there exists $P \in \mathbf{Z}[X] \backslash\{0\}$ such that $\left|P_{n}(\vartheta)\right|$ is small. If ϑ is transcendental, then $\left|P_{n}(\vartheta)\right|$ is non-zero.

Lower bound : Liouville's inequality. If ϑ is algebraic and $\left|P_{n}(\vartheta)\right|$ is non-zero, then $\left|P_{n}(\vartheta)\right|$ cannot be two small.

Aleksandr Osipovich Gelfond (1906-1968)

 Dirichlet: Given $\vartheta \in \mathbf{R}, d>0$ and $H>0$, there exists a non-zero polynomial $P \in \mathbb{Z}[X]$ of degree $\leq d$ and height $\leq H$ such that $|P(\vartheta)| \leq c(\vartheta)^{d} H^{-d}$.

For some specific ϑ, d, H, much smaller values for $|P(\vartheta)|$ can be reached.

Of course, this happens when ϑ is algebraic of degree $\leq d$, but also for instance when ϑ is a Liouville number and $d=1$.

Fundamental result by Gel'fond : If there is a "regular" sequence of P_{n} such that $\left|P_{n}(\vartheta)\right|$ is quite small, then ϑ is algebraic and all $P_{n}(\vartheta)$ vanish.

Algebraic independence method of Gel'fond

A.O. Gel'fond (1948)

The two numbers $2 \sqrt[3]{2}$ and
$2 \sqrt[3]{4}$ are algebraically
independent.
More generally, if α is an algebraic number, $\alpha \neq 0$, $\alpha \neq 1$ and if β is a algebraic number of degree $d \geq 3$, then two at least of the numbers

$$
\alpha^{\beta}, \alpha^{\beta^{2}}, \ldots, \alpha^{\beta^{d-1}}
$$

are algebraically independent.

Gel'fond's transcendence criterion (1949)

Simple form : Given a complex number ϑ, if there exists a sequence $\left(P_{n}\right)_{n \geq 1}$ of non-zero polynomials in $\mathbf{Z}[X]$, with P_{n} of degree $\leq n$ and height $\leq e^{n}$, such that

$$
\left|P_{n}(\vartheta)\right| \leq e^{-6 n^{2}}
$$

for all $n \geq 1$, then ϑ is algebraic and $P_{n}(\vartheta)=0$ for all $n \geq 1$.

Rob Tijdeman and Dale Brownawell

70's : Simplification et extensions due to R. Tijdeman, W.D. Brownawell,...

http://www.wiskundemeisjes.nl/20080830/ridder-tijdeman/

Gel'fond's transcendence criterion

First extension : Replace the upper bound for the degree by d_{n}, the upper bound for the height by $e^{h_{n}}$, and the upper bound for $\left|P_{n}(\vartheta)\right|$ by $e^{-\nu_{n}}$.

Assumptions on the sequences $\left(d_{n}\right)_{n \geq 1},\left(h_{n}\right)_{n \geq 1}$ and $\left(\nu_{n}\right)_{n \geq 1}$: $d_{n} \leq d_{n+1} \leq \operatorname{lid} d_{n}, \quad d_{n} \leq h_{n} \leq h_{n+1} \leq \kappa h_{n}$,
with some constant $\kappa \geq 1$ independent of n, and (main
assumption)

Gel'fond's transcendence criterion

First extension : Replace the upper bound for the degree by d_{n}, the upper bound for the height by $e^{h_{n}}$, and the upper bound for $\left|P_{n}(\vartheta)\right|$ by $e^{-\nu_{n}}$.

Assumptions on the sequences $\left(d_{n}\right)_{n \geq 1},\left(h_{n}\right)_{n \geq 1}$ and $\left(\nu_{n}\right)_{n \geq 1}$:

$$
d_{n} \leq d_{n+1} \leq \kappa d_{n}, \quad d_{n} \leq h_{n} \leq h_{n+1} \leq \kappa h_{n}
$$

with some constant $\kappa \geq 1$ independent of n, and (main assumption)

$$
\nu_{n} / d_{n} h_{n} \rightarrow \infty
$$

Transcendence criterion with multiplicities

With derivatives : Given a complex number ϑ, assume that there exists a sequence $\left(P_{n}\right)_{n \geq 1}$ of non-zero polynomials in $\mathbf{Z}[X]$, with P_{n} of degree $\leq d_{n}$ and height $\leq e^{h_{n}}$, such that

$$
\max \left\{\left|P_{n}^{(j)}(\vartheta)\right| ; 0 \leq j<t_{n}\right\} \leq e^{-\nu_{n}}
$$

for all $n \geq 1$. Assume $\nu_{n} t_{n} / d_{n} h_{n} \rightarrow \infty$. Then ϑ is algebraic.

Due to M. Laurent and D. Roy (1999), applications to algebraic independence with interpolation determinants.

Transcendence criterion with multiplicities

With derivatives : Given a complex number ϑ, assume that there exists a sequence $\left(P_{n}\right)_{n \geq 1}$ of non-zero polynomials in $\mathbf{Z}[X]$, with P_{n} of degree $\leq d_{n}$ and height $\leq e^{h_{n}}$, such that

$$
\max \left\{\left|P_{n}^{(j)}(\vartheta)\right| ; 0 \leq j<t_{n}\right\} \leq e^{-\nu_{n}}
$$

for all $n \geq 1$. Assume $\nu_{n} t_{n} / d_{n} h_{n} \rightarrow \infty$. Then ϑ is algebraic.

Due to M. Laurent and D. Roy (1999), applications to algebraic independence with interpolation determinants.

Criterion with several points

Goal : Given a sequence of complex numbers $\left(\vartheta_{i}\right)_{i \geq 1}$, assume that there exists a sequence $\left(P_{n}\right)_{n \geq 1}$ of non-zero polynomials in $\mathbf{Z}[X]$, with P_{n} of degree $\leq d_{n}$ and height $\leq e^{h_{n}}$, such that

$$
\max \left\{\left|P_{n}^{(j)}\left(\vartheta_{i}\right)\right| ; 0 \leq j<t_{n}, 1 \leq i \leq s_{n}\right\} \leq e^{-\nu_{n}}
$$

for all $n \geq 1$. Assume $\nu_{n} t_{n} s_{n} / d_{n} h_{n} \rightarrow \infty$.
We wish to deduce that the numbers ϑ_{i} are algebraic.
D. Roy : Not true in general, but true in some special cases
with a structure on the sequence
Combines the elimination arguments used for criteria of algebraic independence and for zero estimates.

Criterion with several points

Goal : Given a sequence of complex numbers $\left(\vartheta_{i}\right)_{i \geq 1}$, assume that there exists a sequence $\left(P_{n}\right)_{n \geq 1}$ of non-zero polynomials in $\mathbf{Z}[X]$, with P_{n} of degree $\leq d_{n}$ and height $\leq e^{h_{n}}$, such that

$$
\max \left\{\left|P_{n}^{(j)}\left(\vartheta_{i}\right)\right| ; 0 \leq j<t_{n}, 1 \leq i \leq s_{n}\right\} \leq e^{-\nu_{n}}
$$

for all $n \geq 1$. Assume $\nu_{n} t_{n} s_{n} / d_{n} h_{n} \rightarrow \infty$.
We wish to deduce that the numbers ϑ_{i} are algebraic.
D. Roy : Not true in general, but true in some special cases with a structure on the sequence $\left(\vartheta_{i}\right)_{i \geq 1}$.
Combines the elimination arguments used for criteria of algebraic independence and for zero estimates.

Criterion with several points

Goal : Given a sequence of complex numbers $\left(\vartheta_{i}\right)_{i \geq 1}$, assume that there exists a sequence $\left(P_{n}\right)_{n \geq 1}$ of non-zero polynomials in $\mathbf{Z}[X]$, with P_{n} of degree $\leq d_{n}$ and height $\leq e^{h_{n}}$, such that

$$
\max \left\{\left|P_{n}^{(j)}\left(\vartheta_{i}\right)\right| ; 0 \leq j<t_{n}, 1 \leq i \leq s_{n}\right\} \leq e^{-\nu_{n}}
$$

for all $n \geq 1$. Assume $\nu_{n} t_{n} s_{n} / d_{n} h_{n} \rightarrow \infty$.
We wish to deduce that the numbers ϑ_{i} are algebraic.
D. Roy : Not true in general, but true in some special cases with a structure on the sequence $\left(\vartheta_{i}\right)_{i \geq 1}$.
Combines the elimination arguments used for criteria of algebraic independence and for zero estimates.

Schanuel's Conjecture

> Let x_{1}, \ldots, x_{n} be \mathbf{Q}-linearly independent complex numbers.

Then at least n of the $2 n$ numbers $x_{1}, \ldots, x_{n}, e^{x_{1}}, \ldots, e^{x_{n}}$ are algebraically independent.

In other terms, the conclusion is

$$
\operatorname{tr} \operatorname{deg}_{\mathbf{Q}} \mathbf{Q}\left(x_{1}, \ldots, x_{n}, e^{x_{1}}, \ldots, e^{x_{n}}\right) \geq n
$$

Dale Brownawell and Stephen Schanuel

How could we attack Schanuel's Conjecture?

Let x_{1}, \ldots, x_{n} be Q-linearly independent complex numbers. Following the transcendence methods of Hermite, Gel'fond, Schneider..., one may start by introducing an auxiliary function

where $P \in \mathbb{Z}\left[X_{0}, X_{1}\right]$ is a non-zero polynomial. One considers the derivatives of F

at the points

$$
m_{1} x_{1}+\cdots+m_{n} x_{n}
$$

for various values of $\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{Z}^{n}$.

How could we attack Schanuel's Conjecture?

Let x_{1}, \ldots, x_{n} be Q-linearly independent complex numbers. Following the transcendence methods of Hermite, Gel'fond, Schneider..., one may start by introducing an auxiliary function

$$
F(z)=P\left(z, e^{z}\right)
$$

where $P \in \mathbf{Z}\left[X_{0}, X_{1}\right]$ is a non-zero polynomial. One considers the derivatives of F

$$
F^{(k)}=\left(\frac{d}{d z}\right)^{k} F
$$

at the points

$$
m_{1} x_{1}+\cdots+m_{n} x_{n}
$$

for various values of $\left(m_{1}, \ldots, m_{n}\right) \in \mathbf{Z}^{n}$.

The derivation

Let \mathcal{D} denote the derivation

$$
\mathcal{D}=\frac{\partial}{\partial X_{0}}+X_{1} \frac{\partial}{\partial X_{1}}
$$

over the ring $\mathrm{C}\left[X_{0}, X_{1}\right]$, so that for $P \in \mathrm{C}\left[X_{0}, X_{1}\right]$ the derivatives of the function
are given by

The derivation

Let \mathcal{D} denote the derivation

$$
\mathcal{D}=\frac{\partial}{\partial X_{0}}+X_{1} \frac{\partial}{\partial X_{1}}
$$

over the ring $\mathrm{C}\left[X_{0}, X_{1}\right]$, so that for $P \in \mathbf{C}\left[X_{0}, X_{1}\right]$ the derivatives of the function

$$
F(z)=P\left(z, e^{z}\right)
$$

are given by

$$
\left(\frac{d}{d z}\right)^{k} F=\left(\mathcal{D}^{k} P\right)\left(z, e^{z}\right)
$$

Auxiliary function

Recall that x_{1}, \ldots, x_{n} are Q -linearly independent complex numbers. Let $\alpha_{1}, \ldots, \alpha_{n}$ be non-zero complex numbers.
The transcendence machinery produces a sequence of polynomials with integer coefficients satisfying

for any non-negative integers k, m_{1}
m_{n} with $k \leq N^{s 0}$ and
$\max \left\{m_{1}, \ldots, m_{n}\right\} \leq N^{s_{1}}$.

Auxiliary function

Recall that x_{1}, \ldots, x_{n} are Q -linearly independent complex numbers. Let $\alpha_{1}, \ldots, \alpha_{n}$ be non-zero complex numbers. The transcendence machinery produces a sequence $\left(P_{N}\right)_{N \geq 0}$ of polynomials with integer coefficients satisfying

$$
\left|\left(\mathcal{D}^{k} P_{N}\right)\left(\sum_{j=1}^{n} m_{j} x_{j}, \prod_{j=1}^{n} \alpha_{j}^{m_{j}}\right)\right| \leq \exp \left(-N^{u}\right)
$$

for any non-negative integers k, m_{1}, \ldots, m_{n} with $k \leq N^{s_{0}}$ and $\max \left\{m_{1}, \ldots, m_{n}\right\} \leq N^{s_{1}}$.

Roy's approach to Schanuel's Conjecture (1999)

Following D. Roy, one may expect that the existence of a sequence $\left(P_{N}\right)_{N \geq 0}$ producing sufficiently many such equations will yield the conclusion :

$$
\operatorname{tr} \operatorname{deg}_{\mathbf{Q}} \mathbf{Q}\left(x_{1}, \ldots, x_{n}, \alpha_{1}, \ldots, \alpha_{n}\right) \geq n
$$

New conjecture equivalent to Schanuel's one, in the spirit of known transcendence criteria by Gel'fond (1949),
Chudnovsky, Philippon, Nesterenko, Laurent. . .
D. Roy. An arithmetic criterion for the values of the exponential function. Acta Arith., $97 \mathrm{~N}^{\circ} 2$ (2001), 183-194.

TIFR, Mumbai
October 5-9, 2009
International conference on "Analytic Number Theory" www.math.tifr.res.in/~ant2009

Criteria for irrationality, linear independence, transcendence and algebraic independence

Michel Waldschmidt

Institut de Mathématiques de Jussieu \& Paris VI http://www.math.jussieu.fr/~miw/

Lecture given on October 8, 2009.

