Most irrationality proofs rest on the following criterion:
A real number x is irrational if and only if, for any
$\epsilon>0$, there exist two rational integers p and q with
$q>0$, such that

$$
0<|q x-p|<\epsilon .
$$

We survey generalisations of this criterion to linear
independence, transcendence and algebraic independence.

1783)
http://www.math.jussieu.fr/~miw/

Criteria for irrationality, linear independence,
transcendence and algebraic independence
International conference on "Analytic Number Theory"

ұр!шчэsрІеМ ןәчว!W

əว七риədəpu. . .

‘еио！ұел！！s！凤 иәч」
$0<|q \vartheta-p|<\epsilon$.
exists $p / q \in \mathbf{Q}$ with

I $\overline{<}|q d-n b|:$ fooxd
Irrationality proof

Course of analysis at the École Polytechnique Paris， 1815

（0ع8I－89LI）גə！！no」 чdəso「

Christian Krattenthaler and Tanguy Rivoal

Gustave Lejeune－Dirichlet（1805－1859）

（606I－七98I）！ysмоуи！W ииешдə

－ $\boldsymbol{O}>b>0$ pue

$\frac{O}{I}>\left|d-{ }^{\circ} b\right|$

$p / q \in \mathbf{Q}$ with
For any $\vartheta \in \mathbf{R}$ and any real number $Q>1$ ，there exists
Existence of rational approximations

[^0]亿̀ дәло ұиәриәdәри! Кןеәи!! Transcendence of $\vartheta:$ means that $1, \vartheta, \vartheta^{2}, \ldots, \vartheta^{n} \ldots$ are over $\mathbf{Q}\left(\right.$ i.e. $\left.a_{i} \in \mathbf{Q}\right)$, the point $\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)$ does not
belong to H. any hyperplane $H: a_{0} z_{0}+\cdots+a_{m} z_{m}=0$ of \mathbf{R}^{m+1} rational
over \mathbf{Q} (i.e. $a_{i} \in \mathbf{Q}$), the point $\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)$ does not Linear independence of $1, \vartheta_{1}, \ldots, \vartheta_{m}$ over Q : means that for $\left(\vartheta_{1}, \ldots, \vartheta_{m}\right) \notin \mathbf{Q}^{m}$. Also : means that the dimension of the
Q -vector space spanned by $1, \vartheta_{1}, \ldots, \vartheta_{m}$ is ≥ 2. Irrationality of at least one of $\vartheta_{1}, \ldots, \vartheta_{m}$: means О дәло

Irrationality of ϑ : means that $1, \vartheta$ are linearly independent Linear independence
Irrationality of at least one number
Let $\vartheta_{1}, \ldots, \vartheta_{m}$ be real numbers. The following conditions are
equivalent
(i) One at least of $\vartheta_{1}, \ldots, \vartheta_{m}$ is irrational.
(ii) For any $\epsilon>0$, there exist p_{1}, \ldots, p_{m}, q in Z with $q>0$
such that

$$
0<\max _{1 \leq i \leq m}\left|\vartheta_{i}-\frac{p_{i}}{q}\right|<\frac{\epsilon}{q} .
$$

(iii) For any $\epsilon>0$, there exist $m+1$ linearly independent
linear forms L_{0}, \ldots, L_{m} with coefficients in Z in $m+1$
variables X_{0}, \ldots, X_{m}, such that

$$
\max _{0 \leq k \leq m}\left|L_{k}\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)\right|<\epsilon .
$$

(iv) For any real number $Q>1$, there exists $\left(p_{1}, \ldots, p_{m}, q\right)$ in
\mathbf{Z}^{m+1} such that $1 \leq q \leq Q$ and
$\quad 0<\max _{1 \leq i \leq m}\left|\vartheta_{i}-\frac{p_{i}}{q}\right| \leq \frac{1}{q Q^{1 / m} .}$

Irrationality of at least one number Hermite's idea is to approximate simultaneously $\vartheta_{1}, \ldots, \vartheta_{m}$ by - 0 fou s!
${ }^{u_{0}}{ }^{u}{ }^{u} p+\cdots+{ }_{6}{ }^{\mathrm{L}} \mathrm{I}^{\prime} p+{ }^{0} p=T$ ләqunu әч7 деч7 әлол
 rational integers, not all of $u_{D}{ }^{\prime \cdots}{ }^{\prime} I_{D}{ }^{\prime} 0 D$ pue sıəquinu Let $\vartheta_{1}, \ldots, \vartheta_{m}$ be real proving linear independence.
 (t06I
Rational approximations
(following Michel Laurent)
Let $\left(\vartheta_{1}, \ldots, \vartheta_{m}\right) \in \mathbf{R}^{m}$.
Then the following conditions are equivalent.
(i) The numbers $1, \vartheta_{1}, \ldots, \vartheta_{m}$ are linearly independent over Q .
(ii) For any $\epsilon>0$, there exist $m+1$ linearly independent
elements $\mathbf{u}_{0}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{m}$ in \mathbf{Z}^{m+1}, say

$$
\mathbf{u}_{i}=\left(q_{i}, p_{1 i}, \ldots, p_{m i}\right) \quad(0 \leq i \leq m)
$$

with $q_{i}>0, \operatorname{such}$ that
$\max _{1 \leq k \leq m}\left|\vartheta_{k}-\frac{p_{k i}}{q_{i}}\right| \leq \frac{\epsilon}{q_{i}} \quad(0 \leq i \leq m)$.

[^1]Simplified proof of Nesterenko's Theorem

-•••
 Example : $m=1$ - irrationality criterion.

$(u) o+u \wp-\partial=\left|\left(w_{\ell^{\prime}}{ }^{\prime} \cdot{ }^{\prime} \mathrm{L}_{\Omega}{ }^{\prime} T\right)^{u^{\prime}} T\right|$

fo ${ }^{u} \mathbf{X Z}+{ }^{\cdots}+{ }^{\mathrm{t}} \mathbf{X Z}+{ }^{0} \mathbf{X Z}$
u! swגof גеәu!! is a sequence $\left(L_{n}\right)_{n \geq 0}$ of

$\left.\begin{array}{l}\text { Carl Ludwig Siegel }(1896-1981) \\ \text { Siegel's method for proving linear independence. } \\ \text { Let } \vartheta_{1}, \ldots, \vartheta_{m} \text { be complex numbers. }\end{array} \quad \begin{array}{l}\text { 1929: } \\ \text { Assume that, for any } \epsilon>0, \\ \text { there exists } m+1 \text { linearly } \\ \text { independent linear forms } \\ L_{0}, \ldots, L_{m}, \text { with coefficients } \\ \text { in } \mathbf{Z}, \text { such that }\end{array}\right\} \begin{aligned} & \max _{0 \leq k \leq m}\left|L_{k}\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)\right|<\frac{\epsilon}{H^{m-1}} \\ & \text { Where } H=\max _{0 \leq k \leq m} H\left(L_{k}\right) .\end{aligned}$ Carl Ludwig Siegel (1896-1981)
Siegel's method for proving linear independence.
Let $\vartheta_{1}, \ldots, \vartheta_{m}$ be complex numbers. $\left.\begin{array}{l}\text { Carl Ludwig Siegel }(1896-1981) \\ \text { Siegel's method for proving linear independence. } \\ \text { Let } \vartheta_{1}, \ldots, \vartheta_{m} \text { be complex numbers. }\end{array} \quad \begin{array}{l}\text { 1929: } \\ \text { Assume that, for any } \epsilon>0, \\ \text { there exists } m+1 \text { linearly } \\ \text { independent linear forms } \\ L_{0}, \ldots, L_{m}, \text { with coefficients } \\ \text { in } \mathbf{Z}, \text { such that }\end{array}\right\} \begin{aligned} & \max _{0 \leq k \leq m}\left|L_{k}\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)\right|<\frac{\epsilon}{H^{m-1}} \\ & \text { Where } H=\max _{0 \leq k \leq m} H\left(L_{k}\right) .\end{aligned}$ $\left.\begin{array}{l}\text { Carl Ludwig Siegel }(1896-1981) \\ \text { Siegel's method for proving linear independence. } \\ \text { Let } \vartheta_{1}, \ldots, \vartheta_{m} \text { be complex numbers. }\end{array} \quad \begin{array}{l}\text { 1929: } \\ \text { Assume that, for any } \epsilon>0, \\ \text { there exists } m+1 \text { linearly } \\ \text { independent linear forms } \\ L_{0}, \ldots, L_{m}, \text { with coefficients } \\ \text { in } \mathbf{Z}, \text { such that }\end{array}\right\} \begin{aligned} & \max _{0 \leq k \leq m}\left|L_{k}\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)\right|<\frac{\epsilon}{H^{m-1}} \\ & \text { Where } H=\max _{0 \leq k \leq m} H\left(L_{k}\right) .\end{aligned}$ $\left.\begin{array}{l}\text { Carl Ludwig Siegel }(1896-1981) \\ \text { Siegel's method for proving linear independence. } \\ \text { Let } \vartheta_{1}, \ldots, \vartheta_{m} \text { be complex numbers. }\end{array} \quad \begin{array}{l}\text { 1929: } \\ \text { Assume that, for any } \epsilon>0, \\ \text { there exists } m+1 \text { linearly } \\ \text { independent linear forms } \\ L_{0}, \ldots, L_{m}, \text { with coefficients } \\ \text { in } \mathbf{Z}, \text { such that }\end{array}\right\} \begin{aligned} & \max _{0 \leq k \leq m}\left|L_{k}\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)\right|<\frac{\epsilon}{H^{m-1}} \\ & \text { Where } H=\max _{0 \leq k \leq m} H\left(L_{k}\right) .\end{aligned}$ $\left.\begin{array}{l}\text { Carl Ludwig Siegel }(1896-1981) \\ \text { Siegel's method for proving linear independence. } \\ \text { Let } \vartheta_{1}, \ldots, \vartheta_{m} \text { be complex numbers. }\end{array} \quad \begin{array}{l}\text { 1929: } \\ \text { Assume that, for any } \epsilon>0, \\ \text { there exists } m+1 \text { linearly } \\ \text { independent linear forms } \\ L_{0}, \ldots, L_{m}, \text { with coefficients } \\ \text { in } \mathbf{Z}, \text { such that }\end{array}\right\} \begin{aligned} & \max _{0 \leq k \leq m}\left|L_{k}\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)\right|<\frac{\epsilon}{H^{m-1}} \\ & \text { Where } H=\max _{0 \leq k \leq m} H\left(L_{k}\right) .\end{aligned}$ $\left.\begin{array}{l}\text { Carl Ludwig Siegel }(1896-1981) \\ \text { Siegel's method for proving linear independence. } \\ \text { Let } \vartheta_{1}, \ldots, \vartheta_{m} \text { be complex numbers. }\end{array} \quad \begin{array}{l}\text { 1929: } \\ \text { Assume that, for any } \epsilon>0, \\ \text { there exists } m+1 \text { linearly } \\ \text { independent linear forms } \\ L_{0}, \ldots, L_{m}, \text { with coefficients } \\ \text { in } \mathbf{Z}, \text { such that }\end{array}\right\} \begin{aligned} & \max _{0 \leq k \leq m}\left|L_{k}\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)\right|<\frac{\epsilon}{H^{m-1}} \\ & \text { Where } H=\max _{0 \leq k \leq m} H\left(L_{k}\right) .\end{aligned}$ $\left.\begin{array}{l}\text { Carl Ludwig Siegel }(1896-1981) \\ \text { Siegel's method for proving linear independence. } \\ \text { Let } \vartheta_{1}, \ldots, \vartheta_{m} \text { be complex numbers. }\end{array} \quad \begin{array}{l}\text { 1929: } \\ \text { Assume that, for any } \epsilon>0, \\ \text { there exists } m+1 \text { linearly } \\ \text { independent linear forms } \\ L_{0}, \ldots, L_{m}, \text { with coefficients } \\ \text { in } \mathbf{Z}, \text { such that }\end{array}\right\} \begin{aligned} & \max _{0 \leq k \leq m}\left|L_{k}\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)\right|<\frac{\epsilon}{H^{m-1}} \\ & \text { Where } H=\max _{0 \leq k \leq m} H\left(L_{k}\right) .\end{aligned}$ $\left.\begin{array}{l}\text { Carl Ludwig Siegel }(1896-1981) \\ \text { Siegel's method for proving linear independence. } \\ \text { Let } \vartheta_{1}, \ldots, \vartheta_{m} \text { be complex numbers. }\end{array} \quad \begin{array}{l}\text { 1929: } \\ \text { Assume that, for any } \epsilon>0, \\ \text { there exists } m+1 \text { linearly } \\ \text { independent linear forms } \\ L_{0}, \ldots, L_{m}, \text { with coefficients } \\ \text { in } \mathbf{Z}, \text { such that }\end{array}\right\} \begin{aligned} & \max _{0 \leq k \leq m}\left|L_{k}\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)\right|<\frac{\epsilon}{H^{m-1}} \\ & \text { Where } H=\max _{0 \leq k \leq m} H\left(L_{k}\right) .\end{aligned}$ $\left.\begin{array}{l}\text { Carl Ludwig Siegel }(1896-1981) \\ \text { Siegel's method for proving linear independence. } \\ \text { Let } \vartheta_{1}, \ldots, \vartheta_{m} \text { be complex numbers. }\end{array} \quad \begin{array}{l}\text { 1929: } \\ \text { Assume that, for any } \epsilon>0, \\ \text { there exists } m+1 \text { linearly } \\ \text { independent linear forms } \\ L_{0}, \ldots, L_{m}, \text { with coefficients } \\ \text { in } \mathbf{Z}, \text { such that }\end{array}\right\} \begin{aligned} & \max _{0 \leq k \leq m}\left|L_{k}\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)\right|<\frac{\epsilon}{H^{m-1}} \\ & \text { Where } H=\max _{0 \leq k \leq m} H\left(L_{k}\right) .\end{aligned}$ $\left.\begin{array}{l}\text { Carl Ludwig Siegel }(1896-1981) \\ \text { Siegel's method for proving linear independence. } \\ \text { Let } \vartheta_{1}, \ldots, \vartheta_{m} \text { be complex numbers. }\end{array} \quad \begin{array}{l}\text { 1929: } \\ \text { Assume that, for any } \epsilon>0, \\ \text { there exists } m+1 \text { linearly } \\ \text { independent linear forms } \\ L_{0}, \ldots, L_{m}, \text { with coefficients } \\ \text { in } \mathbf{Z}, \text { such that }\end{array}\right\} \begin{aligned} & \max _{0 \leq k \leq m}\left|L_{k}\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)\right|<\frac{\epsilon}{H^{m-1}} \\ & \text { Where } H=\max _{0 \leq k \leq m} H\left(L_{k}\right) .\end{aligned}$
 $\left.\begin{array}{l}\text { Carl Ludwig Siegel }(1896-1981) \\ \text { Siegel's method for proving linear independence. } \\ \text { Let } \vartheta_{1}, \ldots, \vartheta_{m} \text { be complex numbers. }\end{array} \quad \begin{array}{l}\text { 1929: } \\ \text { Assume that, for any } \epsilon>0, \\ \text { there exists } m+1 \text { linearly } \\ \text { independent linear forms } \\ L_{0}, \ldots, L_{m}, \text { with coefficients } \\ \text { in } \mathbf{Z}, \text { such that }\end{array}\right\} \begin{aligned} & \max _{0 \leq k \leq m}\left|L_{k}\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)\right|<\frac{\epsilon}{H^{m-1}} \\ & \text { Where } H=\max _{0 \leq k \leq m} H\left(L_{k}\right) .\end{aligned}$
 $\left.\begin{array}{l}\text { Carl Ludwig Siegel }(1896-1981) \\ \text { Siegel's method for proving linear independence. } \\ \text { Let } \vartheta_{1}, \ldots, \vartheta_{m} \text { be complex numbers. }\end{array} \quad \begin{array}{l}\text { 1929: } \\ \text { Assume that, for any } \epsilon>0, \\ \text { there exists } m+1 \text { linearly } \\ \text { independent linear forms } \\ L_{0}, \ldots, L_{m}, \text { with coefficients } \\ \text { in } \mathbf{Z}, \text { such that }\end{array}\right\} \begin{aligned} & \max _{0 \leq k \leq m}\left|L_{k}\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)\right|<\frac{\epsilon}{H^{m-1}} \\ & \text { Where } H=\max _{0 \leq k \leq m} H\left(L_{k}\right) .\end{aligned}$
Linear independence, following Siegel (1929)
Height of a linear form : $H(L)=\max \mid$ coefficients of $L \mid$.
Example : $m=1$ (irrationality criterion). A real number is
irrational if and only, for any $\epsilon>0$, if there exists two linearly
independent linear forms $L_{0}\left(X_{0}, X_{1}\right)$ and $L_{1}\left(X_{0}, X_{1}\right)$ in
$\mathbf{Z} X_{0}+\mathbf{Z} X_{1}$ such that $\left|L_{i}(1, \vartheta)\right|<\epsilon$.
Sketch of proof of Siegel's criterion. Assume $1, \vartheta_{1}, \ldots, \vartheta_{m}$ are
linearly dependent over \mathbf{Q}. Let $L \in \mathbf{Z} X_{0}+\cdots+\mathbf{Z} X_{m}$ be a
non-zero linear form vanishing at $\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)$. Among
L_{0}, \ldots, L_{m}, select m linear forms, say L_{1}, \ldots, L_{m}, which
constitute with L a complete system of linearly independent
forms in $m+1$ variables. The determinant Δ of L, L_{1}, \ldots, L_{m}
is a non-zero integer, hence its absolute value is ≥ 1. Inverting
the matrix, write Δ as a linear combination with integer
coefficients of the $L_{i}\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)(1 \leq i \leq m)$ and estimate
the coefficients.

Recent developments

$\qquad\left\|\log 2-\frac{p}{q}\right\|>\frac{1}{q^{\mu}}$	
Hermite-Lindemann, Mahler, Baker, Gel'fond, Feldman,... :	
transcendence measures	$\mu(\log 2)<4.07$
G. Rhin 1987	$\mu(\log 2)<3.89$
E.A. Rukhadze 1987	$\mu(\log 2)<3.57$
R. Marcovecchio 2008	

Transcendence and Diophantine approximation by
algebraic numbers
Recall : Criterion for irrationality. A real number ϑ is
irrational if and only if there is a sequence of good rational
approximations $\left(p_{n} / q_{n}\right)_{n \geq 0}$ with $p_{n} / q_{n} \neq \vartheta$.
Generalization for fixed degree : given a positive integer d, a
complex number ϑ is not algebraic of degree $\leq d$ if and only
if there is a sequence of good algebraic approximations
$\left(\alpha_{n}\right)_{n \geq 0}$ with α_{n} algebraic of degree $\leq d$ and $\alpha_{n} \neq \vartheta$.
Durand's criterion for transcendence $(1974):$ a complex
number ϑ is transcendental if and only if there is a sequence
of good algebraic approximations $\left(\alpha_{n}\right)_{n \geq 0}$ with α_{n} algebraic
and $\alpha_{n} \neq \vartheta$.

[^2] Proceedings of a Conference held in honour of Alain Durand

Alain Durand (1949-1986)
polynomials Transcendence and Diophantine approximation by A complex number ϑ is transcendental if and only if there is a
sequence $\left(P_{n}\right)_{n \geq 0}$ of polynomials in $\mathrm{Z}[X]$ such that $\left|P_{n}(\vartheta)\right|$ is
non-zero and small, in terms of the degree d_{n} and the height
(maximum of the absolute values of the coefficients) of P_{n}. A Existence of a sequence : Dirichlet's box principle. Given
$\vartheta \in \mathbf{C}$, there exists $P \in \mathbf{Z}[X] \backslash\{0\}$ such that $\left|P_{n}(\vartheta)\right|$ is
small. If ϑ is transcendental, then $\left|P_{n}(\vartheta)\right|$ is non-zero.
Lower bound: Liouville's inequality. If ϑ is algebraic and

$\left|P_{n}(\vartheta)\right|$ is non-zero, then $\left|P_{n}(\vartheta)\right|$ cannot be two small. | 748 |
| :--- |
| $5!$ |
| e |

Algebraic independence method of Gel'fond algebraic and all $P_{n}(\vartheta)$ vanish. sequence of P_{n} such that $\left|P_{n}(\vartheta)\right|$ is quite small, then ϑ is

$-H_{p}(\Omega) \supset>|(a) d|$ 7eyz yวns
non-zero polynomial $P \in \mathbf{Z}[X]$ of degree $\leq d$ and height $\leq H$
Aleksandr Osipovich Gelfond (1906-1968)
but also for instance when ϑ is
a Liouville number and $d=1$.
Of course, this happens when
ϑ is algebraic of degree $\leq d$,
$|P(\vartheta)|$ can be reached.

H

] of degree $\leq d$ and height \leq Dirichlet : Given $\vartheta \in \mathbf{R}, d>0$ and $H>0$, there exists a

for all $n \geq 1$, then ϑ is algebraic and $P_{n}(\vartheta)=0$ for all $n \geq 1$
of degree $\leq n$ and height $\leq e^{n}$, such that
sequence $\left(P_{n}\right)_{n>1}$ of non-zero polynomials in $\mathbf{Z}[X]$, with P_{n} Simple form : Given a complex number ϑ, if there exists a

Gel'fond's transcendence criterion (1949)
 of suolfeว!!dde '(666I) Koy 'ด pue 子uәıne7 'W of ən马

for all $n \geq 1$. Assume $\nu_{n} t_{n} / d_{n} h_{n} \rightarrow \infty$. Then ϑ is algebraic. ${ }_{u_{\text {__ }}}>\left\{{ }^{u_{f}}>!>0!\mid\left(\sigma_{(!)}{ }_{(!)}^{u} d \mid\right\}\right.$ xew
Transcendence criterion with multiplicities

Assumptions on the sequences $\left(d_{n}\right)_{n \geq 1},\left(h_{n}\right)_{n \geq 1}$ and $\left(\nu_{n}\right)_{n \geq 1}$

$\nu_{n} / d_{n} h_{n} \rightarrow \infty$.
Gel'fond's transcendence criterion
ұиәриәдәри! кןееэ!елqә:яе але

sıəquinu
 хәдмио ұиәриәдәри!

 algebraic independence and for zero estimates. Combines the elimination arguments used for criteria of D. Roy: Not true in general, but true in some special cases
with a structure on the sequence $\left(\vartheta_{i}\right)_{i \geq 1}$.

Criterion with several points

${ }^{u} x^{u} u+\cdots+{ }^{\mathrm{I}} x^{\mathrm{L}} u$
How could we attack Schanuel's Conjecture?
Let x_{1}, \ldots, x_{n} be Q-linearly independent complex numbers.
Following the transcendence methods of Hermite, Gel'fond,
Schneider..., one may start by introducing an auxiliary
function

$$
F(z)=P\left(z, e^{z}\right)
$$

where $P \in \mathrm{Z}\left[X_{0}, X_{1}\right]$ is a non-zero polynomial. One considers
the derivatives of F

$$
F^{(k)}=\left(\frac{d}{d z}\right)^{k} F
$$

$$
\begin{aligned}
& \left({ }_{n} N-\right) \text { dxə }>|(c_{u}^{c_{u}} \coprod_{u}^{\mathrm{I}=!} \cdot{ }^{c} x^{c} \cdot u \underbrace{\stackrel{\mathrm{I}=!}{\zeta}}_{u})\left(N_{d} d\right)|
\end{aligned}
$$

uoltounf Kıe!!xn \forall

$\cdot\left(z{ }^{\prime} z\right)\left(d_{y} \mathscr{C}\right)=J_{y}\left(\frac{z p}{p}\right)$
Kq uәл!® әле
$\left(z{ }^{`} z\right)_{d}=(z) H$
uo!łวunf әч7 до รәл!ұел!иәр
$\frac{{ }^{\mathrm{I}} X \varrho}{\varrho}{ }^{\mathrm{I}} X+\frac{{ }^{0} X \varrho}{\varrho}=\mathbb{a}$
ио!ұел!дәр әч7 әұоиәр \mathbb{C} ұәך

The derivation
Institut de Mathématiques de Jussieu \& Paris VI

exponential function. Acta Arith., 97 Nํ 2 (2001), 183-194

 by Gel'fond (1949) known transcendence criteria Schanuel's one, in the spirit of New conjecture equivalent to

$u<\left(u_{0} \cdot\right.$

suo!łenbə чวns Kuew К|ұuә!כ! Following D. Roy, one may expect that the existence of a
Roy's approach to Schanuel's Conjecture (1999)

[^0]: $\frac{1+\sqrt{5}}{2}=1.6180339887499$
 Best possible for the Golden ratio

 ${ }^{u_{b} \underline{q}} \Omega>\left|u_{d} \quad n^{u} b\right|>0$
 (6i6t

[^1]: that one at least of M_{0}, \ldots, M_{m} is not 0 .
 This yields $m+1$ pairs $\left(M_{k}, R_{k}\right), k=0, \ldots, m$ in place of a
 single pair (M, R), and from $\left(a_{0}, \ldots, a_{m}\right) \neq 0$ one deduces independent.

 This needs to be checked for all hyperplanes.
 $\left(q, p_{1}, \ldots, p_{m}\right)$ to $\left(\vartheta_{1}, \ldots, \vartheta_{m}\right)$ outside the hyperplane
 $a_{0} z_{0}+a_{1} z_{1}+\cdots+a_{m} z_{m}=0$ of \mathbf{Q}^{m+1}.
 We wish to find a simultaneous rational approximation
 Main difficulty : to check $M \neq 0$.

 ## Zero estimate

[^2]: Furthermore, criteria for transcendence are special case
 $(m=1)$ of criteria for algebraic independence.

 Hence, criteria for linear independence yield criteria for
 transcendence and for algebraic independence. and only if the numbers $\vartheta_{1}^{i_{1}} \cdots \vartheta_{m}^{i_{m}},\left(\left(i_{1}, \ldots, i_{m}\right) \in \mathbf{Z}_{\geq 0}^{m}\right.$ are
 linearly independent. Complex numbers $\vartheta_{1}, \ldots, \vartheta_{m}$ are algebraically independent if
 independence

 Criteria for transcendence and algebraic

