
9th Canadian Number Theory conference
(CNTA 9)

University of British Columbia, Vancouver
July 9-14, 2006

http://www.pims.math.ca/science/2006/06cnta/

Report on recent progress in
Diophantine approximation

Michel Waldschmidt
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Abstract

After the works by J. Liouville, A. Thue, C.L. Siegel,
F.J. Dyson, A.O. Gel’fond, Th. Schneider and K.F. Roth, the
question of approximation of a single real algebraic irrational
number by rational numbers is better understood; however
many questions are not yet answered.

We first introduce some of them.
Next we consider simultaneous Diophantine

approximation.
The pioneer work of W.M. Schmidt and his subspace

theorem provide a lot of information on this subject when one
considers algebraic numbers.

Several recent progress have been made by D. Roy,
M. Laurent, Y. Bugeaud, T. Rivoal and S. Fischler, among
others. We review some of these works.
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Hilbert’s seventh problem and some of its
developments

• Hilbert’s seventh problem (1900): transcendence of αβ

for algebraic α and β with α "= 0, α "= 1, β "∈ Q.
• Solution by A.O. Gel’fond and Th. Schneider in 1934.
• Consequences: transcendence of

2
√

2, eπ = (eiπ)−i, eπ
√

163 = a− 10−12b

where

a = 262 537 412 640 768 744 ∈ Z, b = 0.7499274 · · ·
and of

log 2

log 3
·

Hint: 3log 2/ log 3 = 2.
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Arithmetic tool: Liouville’s inequality
• Let n be a non-zero rational integer. Then |n| ≥ 1.
• Let x be a non-zero rational number and let q ∈ Z>0 be

such that qx ∈ Z. Then |x| ≥ 1/q.
• Let γ be a non-zero algebraic integer with conjugates

γ1, . . . , γd. Then |γ1| ≥ (|γ2 · · · γd|)−1.

• Liouville’s inequality. Let α be an algebraic number of
degree d; there exists c = c(α) > 0 such that, for any
rational number p/q "= α,∣∣∣∣α− p

q

∣∣∣∣ ≥ c

qd
·

• More generally, Liouville’s argument yields a lower bound
for |P (α)| when α is an algebraic number and P ∈ Z[X]
a polynomial such that P (α) "= 0.
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Problem of Gel’fond and Schneider

• Algebraic independence of numbers of the form αβ: raised
by A.O. Gel’fond in 1948 and Th. Schneider in 1952.

• Conjecture: if α is an algebraic number, α "= 0, α "= 1
and if β is an irrational algebraic number of degree d,
then the d− 1 numbers

αβ, αβ2
, . . . , αβd−1

are algebraically independent.
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Schanuel’s Conjecture

• Let x1, . . . , xn be Q-linearly independent complex
numbers. Then n at least of the 2n numbers
x1, . . . , xn, ex1 , . . . , exn are algebraically independent.

• The conclusion can be phrased in terms of the
transcendence degree over Q:

trdegQQ
(
x1, . . . , xn, ex1 , . . . , exn

) ≥ n.

• Special case: take xi = βi−1 log α. The conclusion is, for
β algebraic number of degree d,

trdegQQ
(
log α, αβ, αβ2

, . . . , αβd−1)
= d.
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Algebraic independence method of A.O. Gel’fond
(1948)

• A.O. Gel’fond (1948): algebraic independence of 2
3√2

and 2
3√4.

• More generally (Gel’fond again) if β has degree d ≥ 3,
then at least 2 among the d− 1 numbers

αβ, αβ2
, . . . , αβd−1

are algebraically independent.
• Best known result to date (after work by A.O. Gel’fond,

A.A. Smelev, W.D. Brownawell, G.V. Chudnovskii,
P. Philippon, Yu.V. Nesterenko, G. Diaz and others):
for β algebraic number of degree d ≥ 2, among the
numbers

αβ, αβ2
, . . . , αβd−1

,

at least [(d + 1)/2] are algebraically independent.
8 / 56



Tools of Gel’fond’s algebraic independence method
• Gel’fond–Schneider transcendence method (based on

Hermite–Lindemann-Siegel earlier work)
• A zero estimate for exponential polynomials (earlier

results were due to G. Pòlya, K. Mahler. . . )
• A so-called transcendence criterion.

• One needs a replacement for Liouville’s inequality,
namely a lower bound for |P (x)| where now x is
transcendental.

• But there is no such lower bound for a non-zero
transcendental number!

• One of Gel’fond’s main ideas here is that the
transcendence proof yields not only one non-zero
number |P (x)| , but a sequence of |Pn(x)|, n ≥ 0.

• There is no non-trivial uniform sequence of
polynomials taking small values at a given
transcendental number.
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§ 2. Rational approximation to a real number
• Since Q is dense in R, for any ξ ∈ R and any ε > 0 there

exists b/a ∈ Q such that∣∣∣∣ξ − b

a

∣∣∣∣ < ε.

• Write the conclusion

|aξ − b| < εa.

• It is easy to improve this estimate: let a ∈ Z>0 and let b
be the nearest integer to aξ. Then

|aξ − b| ≤ 1/2.
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Existence of good rational approximations
Let ξ be a real number.

• From Dirichlet’s box principle (or from Minkowski’s
Theorem in the geometry of numbers) one deduces that
for each real number H > 1, there exists q ∈ Z and
p ∈ Z with 1 ≤ q < H such that

|qξ − p| <
1

H
· (1)

• As a consequence, if ξ is irrational, then there exist
infinitely many p/q ∈ Q such that∣∣∣∣ξ − p

q

∣∣∣∣ <
1

q2
· (2)

• Is it possible to improve (1) (uniform)?
Same question for (2) (asymptotic)?
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Irrationality measures
Let ξ be a real number.

• (Asymptotic) irrationality measure of ξ :

ω(ξ) = sup
{

w; there exist infinitely many (p, q) ∈ Z2,

q ≥ 1, |qξ − p| ≤ q−w
}

.

• An upper bound for ω(ξ) is an irrationality measure for
ξ, namely a lower bound for |ξ − p/q| when p/q ∈ Q.

• Irrationality exponent of ξ :

µ(ξ) = ω(ξ) + 1 = sup
{

µ; there exist infinitely many

(p, q) ∈ Z2, q ≥ 1,

∣∣∣∣ξ − p

q

∣∣∣∣ ≤ q−µ
}

.

• Hence for any ξ ∈ R \ Q,

1 ≤ ω(ξ) ≤ +∞ and 2 ≤ µ(ξ) ≤ +∞.

• Capelli: for almost all ξ, ω(ξ) = 1 and µ(ξ) = 2.
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Uniform irrationality measures
Let ξ be a real number.

• Uniform irrationality measure of ξ :

ω̂(ξ) = sup
{

w; for any H ≥ 1, there exists (p, q) ∈ Z2,

1 ≤ q ≤ H and |qξ − p| ≤ H−w
}

.

• Hence for any ξ ∈ R \ Q,

ω(ξ) ≥ ω̂(ξ) ≥ 1.

• Khintchine and Roth: for almost all ξ ∈ R and for all
algebraic ξ ∈ R \ Q,

ω(ξ) = ω̂(ξ) = 1.
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Hurwitz, Markoff et al.

• Continued fractions or Farey series yield: for any irrational
real number ξ there exist infinitely many p/q ∈ Q such
that ∣∣∣∣ξ − p

q

∣∣∣∣ <
1√
5q2

and this is best possible
– for instance for the Golden Number (1 +

√
5)/2.

• Markoff Spectrum:
√

5,
√

8,
√

221/5,
√

1517/13, . . .

• Liouville (1844): there exist real numbers ξ such that, for
any m ≥ 1, there is a rational approximation p/q with

0 <

∣∣∣∣ξ − p

q

∣∣∣∣ <
1

qm
·
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Spectrum of
(
ω(ξ), ω̂(ξ)

)
• The exponent ω(ξ) for (2) and asymptotic rational

approximation can take any value in the range [1, +∞].

• Khintchine: for any ξ ∈ R \ Q, the exponent ω̂(ξ) for (1)
and uniform rational approximation satisfies

ω̂(ξ) = 1.

• Hence{(
ω(ξ), ŵ(ξ)

)
; ξ ∈ R \ Q

}
= [1, +∞]× {1}.

15 / 56

ω̂(ξ) = 1

• Recall (1):
Let ξ ∈ R. For each real number H > 1, there exists
a ∈ Z and b ∈ Z with 1 ≤ a < H such that

|aξ − b| <
1

H
·

Hence ω̂(ξ) ≥ 1 for any ξ ∈ R \ Q.

• Let ξ be a real number. Assume that for each sufficiently
large integer H, there exists a ∈ Z and b ∈ Z with
1 ≤ a < H and

|aξ − b| <
1

2H
·

Then ξ is rational and aξ = b for each H ≥ H0.
Hence ω̂(ξ) ≤ 1 for any ξ ∈ R \ Q.
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Proof of ω̂(ξ) ≤ 1
• Goal: Let ξ be a real number. Assume that there exists

H0 such that, for each integer H ≥ H0, there exists
aH ∈ Z and bH ∈ Z with 1 ≤ aH < H and

|aHξ − bH | <
1

2H
·

Then ξ is rational and aHξ = bH for each H ≥ H0.
• Proof. Let H ≥ H0. Write (a, b) for (aH , bH) and (a′, b′)

for (aH+1, bH+1):

|aξ − b| <
1

2H
, |a′ξ − b′| <

1

2H + 2
,

1 ≤ a ≤ H − 1, 1 ≤ a′ ≤ H

and
ab′ − a′b = a(b′ − a′ξ) + a′(aξ − b).
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Proof of ω̂(ξ) ≤ 1 (continued)
• From 1 ≤ a ≤ H, 1 ≤ a′ ≤ H,

|aξ − b| <
1

2H
, |a′ξ − b′| <

1

2H
,

and
ab′ − a′b = a(b′ − a′ξ) + a′(aξ − b)

one deduces |ab′ − a′b| < 1, hence ab′ = a′b.
• Therefore aH/bH = aH+1/bH+1 does not depend on

H ≥ H0. Since

lim
H→∞

aH

bH
= ξ,

it follows that ξ is rational and ξ = aH/bH for all
H ≥ H0.

• Consequence: for any irrational number ξ , ω̂(ξ) = 1.
• Alternative argument for ω̂(ξ) = 1 (M. Laurent): use

continued fraction expansions.
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The exponent ν(ξ) of S. Fischler and T. Rivoal
Let ξ ∈ R \ Q.

• When u = (un)n≥1 is an increasing sequence of positive
integers, define v = (vn)n≥1 by |unξ − vn| < 1/2 and set

αξ(u) = lim sup
n→∞

|un+1ξ − vn+1|
|unξ − vn|

,

β(u) = lim sup
n→∞

un+1

un
·

• Set

ν(ξ) = inf log
√

αξ(u)β(u),

where u ranges over the sequences which satisfy
αξ(u) < 1 and β(u) < +∞.
With inf∅ = +∞.
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Properties of ν(ξ)

• Connection with the irrationality exponent:

µ(ξ) ≤ 1− log β(u)

log αξ(u)
·

• Corollary: if ν(ξ) < +∞, then µ(ξ) < +∞.
Apéry like – proofs of irrationality + measures.

• If ξ is quadratic, Fischler and Rivoal produce a sequence
u with αξ(u)β(u) = 1, hence ν(ξ) = 0.

• Works of R. Apéry, A. Baker, F. Beukers, M. Hata, . . .
and S. Fischler– T. Rivoal:

ν(21/3) ≤ (3/2) log 2, ν(ζ(3)) ≤ 3, ν(π2) ≤ 2, ν(log 2) ≤ 1.

Also ν(π) ≤ 21.
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Spectrum of ν(ξ)

• For any ξ ∈ R \ Q, the inequalities 0 ≤ ν(ξ) ≤ +∞ hold.

• Fischler & Rivoal: for almost all ξ ∈ R, ν(ξ) = 0.

• B. Adamczewski , S. Fischler and T. Rivoal: any
irrational algebraic real number ξ has ν(ξ) < +∞.

• There are examples of ξ ∈ R \ Q for which ν(ξ) = +∞.
All known examples so far have µ(ξ) = +∞.

• Is it true that ν(ξ) < +∞ implies µ(ξ) = 2?
Are there numbers ξ with 0 < ν(ξ) < +∞?
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§ 3. Polynomial approximations
Let ξ be a complex number.

• From Dirichlet’s box principle one deduces that there
exists a constant c(ξ) such that, for each positive integer
n and each real number H > 1, there exists a non zero
polynomial P ∈ Z[X] of degree ≤ n and usual height
≤ H such that

|P (ξ)| ≤ H−c(ξ)n.

• Two main special cases: either n fixed (bounded) as
above, or require the same upper bound N for n and
log H:
For each positive integer N ≥ 1 there exists a non zero
polynomial P ∈ Z[X] of degree ≤ N and height ≤ eN

with
|P (ξ)| ≤ e−c(ξ)N2

.
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Approximation of a complex number by an
algebraic number

Let ξ be a complex number.
Connection between

• polynomial approximation and study of |P (ξ)| for
P ∈ Z[X] (of degree ≤ n)

and

• approximation by algebraic numbers and study of |ξ − α|
for α algebraic number (of degree ≤ n).

Roughly speaking,

• If |P (ξ)| is small then ξ is close to a root α of P ,

Conversely,

• if |ξ − α| is small then the minimal polynomial of α
assumes a small value at ξ.
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Existence of algebraic approximations

Let ξ be a real number and n a positive integer. Assume ξ is
not algebraic of degree ≤ n.

• E. Wirsing (1960): There exist infinitely many algebraic
numbers α of degree ≤ n with

|ξ − α| ≤ c(ξ, n)H(α)−(n+3)/2.

• H. Davenport and W.M. Schmidt (1967): for n = 2
replace (n + 3)/2 = 5/2 by 3.
This is optimal for the approximation of a real number by
quadratic algebraic numbers.
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Wirsing’s Conjecture

• Wirsing’s Conjecture: For any ε > 0 there exists
c(ξ, n, ε) > 0 for which there are infinitely many algebraic
numbers α of degree ≤ n with

|ξ − α| ≤ c(ξ, n, ε)H(α)−n−1+ε.

• Recent work by V. Bernik, K. Tishchenko,. . .
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Tijdeman’s version of Gel’fond’s criterion

• Let ξ ∈ C. Assume there is a sequence PN of non-zero
polynomials in Z[X], where PN has degree ≤ N and
(usual) height ≤ eN , such that

|PN(ξ)| ≤ e−7N2
.

Then ξ is algebraic and PN(ξ) = 0 for all N ≥ N0.

• Sketch of proof. Fix H ≥ H0. Since |PH(ξ)| is small, ξ
is close to a root αH of PH , hence PH is divisible by a
power QH of the irreducible polynomial of αH and
|QH(ξ)| is small. The resultant of the two polynomials
QH and QH+1 has absolute value < 1, hence it vanishes,
and therefore αH does not depend on H.

26 / 56



Gel’fond’s transcendence criterion with fixed degree

Let ξ be a complex number and n a positive integer.

• Assume that for each positive integer H ≥ H0 there
exists a non zero polynomial PH ∈ Z[X] of degree ≤ n
and usual height ≤ H such that

|PH(ξ)| ≤ H−7n.

Then ξ is algebraic and PH(ξ) = 0 for each H ≥ H0.

• Sketch of proof: the same!

• Refinement by H. Davenport and W.M. Schmidt (1969):
exponent 2n− 1 in place of 7n.

• Sketch of proof: refined elimination argument.
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Transcendence measures: wn(ξ) and ŵn(ξ)
Let ξ be a real number and n a positive integer. Assume ξ is
not algebraic of degree ≤ n.

• Denote by wn(ξ) the supremum of w ∈ R such that there
exist infinitely many positive integers H for which the
system

|x0 + x1ξ + · · · + xnξ
n| ≤ H−w, 0 < max

0≤i≤n
|xi| ≤ H

has a solution in rational integers x0, x1, . . . , xn.

• Upper bound for wn(ξ) = transcendence measure for ξ.

• Denote by ŵn(ξ) the supremum of w ∈ R such that, for
any sufficiently large integer H, the same system has a
solution.

• An upper bound for ŵn(ξ) is a uniform transcendence
measure for ξ.
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Spectrum of exponents wn(ξ) and ŵn(ξ)
• For n = 1, w1(ξ) = ω(ξ) and ŵ1(ξ) = ω̂(ξ).
• From the definition: wn(ξ) ≥ ŵn(ξ).
• From Dirichlet’s box principle one deduces ŵn(ξ) ≥ n.
• The above mentioned result by Davenport and Schmidt

can be read:
ŵn(ξ) ≤ 2n− 1.

• Liouville numbers have wn(ξ) = +∞ for n = 1, hence for
all n ≥ 1 (since wn ≤ wn+1).

• Sprindzuck: For almost all numbers ξ ∈ R,

wn(ξ) = ŵn(ξ) = n for all n ≥ 1.

• Consequence of W.M. Schmidt’s subspace Theorem: For
all n ≥ 1 and all irrational algebraic numbers of degree
> n,

wn(ξ) = ŵn(ξ) = n.
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Simultaneous approximation measure: w′
n(ξ)

Let ξ be a real number and n a positive integer. Assume ξ is
not algebraic of degree ≤ n.

• Denote by w′n(ξ) the supremum of w ∈ R such that there
exist infinitely many positive integers H for which the
system

max
0≤i≤n

|xi − x0ξ
i| ≤ H−w, 0 < max

0≤i≤n
|xi| ≤ H

has a solution in rational integers x0, x1, . . . , xn.

• An upper bound for w′n(ξ) is a simultaneous
approximation measure for ξ, ξ2, . . . , ξn.
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Uniform simultaneous approximation measure:
ŵ′

n(ξ)

Let ξ be a real number and n a positive integer. Assume ξ is
not algebraic of degree ≤ n.

• Denote by ŵ′n(ξ) the supremum of w ∈ R such that, for
any sufficiently large integer H, the same system

max
0≤i≤n

|xi − x0ξ
i| ≤ H−w, 0 < max

0≤i≤n
|xi| ≤ H

has a solution in rational integers x0, x1, . . . , xn.

• For n = 1, w′1(ξ) = ω(ξ) and ŵ′1(ξ) = ω̂(ξ).
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Spectrum of w′
n(ξ) and ŵ′

n(ξ)

• Dirichlet’s box principle: for all ξ and n,
w′n(ξ) ≥ ŵ′n(ξ) ≥ 1/n.

• Sprindzuck: for almost all real numbers ξ,
w′n(ξ) = ŵ′n(ξ) = 1/n for all n.

• Consequence of W.M. Schmidt’s subspace Theorem: for
all n and for all algebraic real numbers ξ of degree > n,
w′n(ξ) = ŵ′n(ξ) = 1/n.
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Transfer principle: polar convex bodies
Let ξ be a real number and n a positive integer. Assume ξ is
not algebraic of degree ≤ n.
H. Davenport and W.M. Schmidt (1969), with a refinement by
Y. Bugeaud and O. Teulié (2000):
Let ξ ∈ R \ Q and n ≥ 1.
Assume ŵ′n(ξ) ≤ λ. Then there exists c(n, ξ) > 0 such that
there are infinitely many

• algebraic numbers α of degree n
• algebraic integers α of degree n + 1
• algebraic units α of degree n + 2
• . . .

such that

|ξ − α| ≤ c(n, ξ)H(α)−κ with κ =
1

λ
+ 1.
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Upper bounds for ŵ′
n(ξ)

Let ξ be a real number and n a positive integer. Assume ξ is
not algebraic of degree ≤ n.

• H. Davenport and W.M. Schmidt (1969).
Let ξ ∈ R \ Q and n ≥ 2.
Assume ξ is not algebraic of degree ≤ [n/2]. Then

ŵ′n(ξ) ≤ [n/2]−1 =

{
2/n if n is even,

2/(n− 1) if n is odd.

• Refinement by M. Laurent (2003): replaces [n/2] (twice)
by +n/2,: for not algebraic of degree ≤ +n/2,,

ŵ′n(ξ) ≤ +n/2,−1 =

{
2/n if n is even,

2/(n + 1) if n is odd.
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Quadratic approximation: estimates for ŵ′
2

Consider the special case n = 2. Let ξ ∈ R which is neither
rational nor quadratic.

• Dirichlet’s box principle: for all such ξ, ŵ′2(ξ) ≥ 1/2.

• Khintchine: for almost all ξ, ŵ′2(ξ) = 1/2.

• Consequence of W.M. Schmidt’s subspace Theorem:
for all algebraic ξ (of degree ≥ 3), ŵ′2(ξ) = 1/2.

• Davenport and Schmidt (1969): for all ξ,

ŵ′2(ξ) ≤ 1/γ = 0.618 . . . .

• Comment by H. Davenport and W.M. Schmidt in their
1969 paper:
We have no reason to think that the exponents in these
theorems are best possible.
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Simultaneous approximation of a number and its
square

• D. Roy (2003): Examples of transcendental numbers ξ for
which

ŵ′2(ξ) = 1/γ = 0.618 . . .

• Start with f1 = b and f2 = a and define (concatenation):
fn = fn−1fn−2.

• Hence f3 = ab f4 = aba f5 = abaab
f6 = abaababa f7 = abaababaabaab
f8 = abaababaabaababaababa . . .

• The Fibonacci word

w = abaababaabaababaababaabaababaabaab . . .

is the fixed point of the morphism a -→ ab, b -→ a.
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Result of D. Roy (2003)

• Let A and B be two distinct positive integers. Let
ξ ∈ (0, 1) be the real number whose continued fraction
expansion is obtained from the Fibonacci word w by
replacing the letters a and b by A and B:

[0; A, B, A,A, B, A, B, A,A, B, A, A,B,A,B, A, A, . . . ]

Then ŵ′2(ξ) = 1/γ.

• Further more recent results on simultaneous
approximation of a number and its square (hence on
approximation of real numbers by quadratic integers) and
on quadratic approximation of numbers associated with
Sturmian words by M. Laurent, Y. Bugeaud, S. Fischler,
D. Roy. . .
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Quadratic approximation: the four exponents
(w2(ξ), ŵ2(ξ), w′

2(ξ), ŵ′
2(ξ))

Problem: describe the spectrum of the 4-tuples

(w2(ξ), ŵ2(ξ), w
′
2(ξ), ŵ

′
2(ξ))

when ξ ranges over the set of non quadratic irrational real
numbers.

• Jarnik’s formula:

ŵ′2(ξ) = 1− 1

ŵ2(ξ)
·

• Hence for any irrational number ξ which is not quadratic,

2 ≤ ŵ2(ξ) ≤ 3 +
√

5

2
·
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Transcendence criterion for quadratic polynomials

Recall ŵ2(ξ) ≤ γ + 1. An explicit transcendence criterion due
to B. Arbour and D. Roy (2004) is the following:

Let ξ be a real number. Assume that for any sufficiently large
H there exist a polynomial P ∈ Z[X] of degree ≤ 2 and
height ≤ H such that

|P (ξ)| ≤ 1

4
H−γ−1,

where γ denotes the Golden Number (1 +
√

5)/2. Then ξ is
algebraic and all these values P (ξ) are zero.
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Cubic approximation (following D. Roy)

Laurent’s refined inequality (for ξ not algebraic of degree
≤ +n/2,)

1

n
≤ ŵ′n(ξ) ≤ +n/2,−1 =

{
2/n if n is even,

2/(n + 1) if n is odd,

valid for all n ≥ 2 was already known by Davenport and
Schmidt in the special case n = 3 and yields

1

3
≤ ŵ′3(ξ) ≤

1

2
·

The lower bound is optimal. The upper bound has very
recently been improved by D. Roy (cf. his lecture at 11:25 this
morning).
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§ 4. Simultaneous rational approximation of
several numbers

• Polynomial approximation to a complex number ξ is the
study of |P (ξ)| for P ∈ Z[X]. Negative results on the
existence of polynomial approximations lead to
transcendence measures.

• This is a special case of the study of linear combinations
in ξ1, . . . , ξn where ξi = ξi−1 (1 ≤ i ≤ n).

• Another (less) special case is the simultaneous
approximation to

ξa1
1 · · · ξam

m

which is related to measures of algebraic independence of
ξ1, . . . , ξm.

• Further special cases: simultaneous approximation of
dependent quantities, approximation on a manifold.
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Connection with algebraic independence

• Simultaneous approximation and algebraic independence

• Criteria of algebraic independence: “Cassels’
counterexample” (due to Khintchine, 1926), criteria of
G.V. Chudnovskii, P. Philippon, Yu.V. Neterenko,
M. Ably, C. Jadot. . .

• May include multiplicities

• More recent work by M. Laurent, D. Roy (1999):
approximation by algebraic sets

• New approach to Schanuel’s conjecture by D. Roy (2000).
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Four exponents
Given θ = (ξ1, . . . , ξn) ∈ Rn, there are (at least) two points
of view for studying simultaneous approximation to ξ1, . . . , ξn.

• On the one hand one may consider linear forms

|x0 + x1ξ1 + · · · + xnξn|
• On the other hand one may investigate the existence of

simultaneous approximation by rational numbers

max
0≤i≤n

∣∣∣∣ξi − xi

x0

∣∣∣∣ .

• Since each of these question has two versions, an
asymptotic one (with w) and a uniform one (with ŵ),
that makes 4 exponents

ω(θ), ω̂(θ), ω(tθ), ω̂(tθ).

• Special case ξi = ξi, 1 ≤ i ≤ n: for θ = (ξ, ξ2, . . . , ξn),

ω(θ) = wn(ξ), ω̂(θ) = ŵn(ξ), ω(t(θ)) = w′n(ξ), ω̂(t(θ)) = ŵ′n(ξ).
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Simultaneous approximation by linear forms
Let ξ1, . . . , ξn be real numbers. Set

θ = (ξ1, . . . , ξn)

• Denote by ω(θ) the supremum of w ∈ R such that there
exist infinitely many positive integers H for which the
system

|x0 + x1ξ1 + · · · + xnξn| ≤ H−w, 0 < max
0≤i≤n

|xi| ≤ H

has a solution in rational integers x0, x1, . . . , xn.
• An upper bound for ω(θ) is a linear independence

measure for 1, ξ1, . . . , ξn.
• Denote by ω̂(θ) the supremum of w ∈ R such that, for

any sufficiently large integer H, the same system has a
solution.

• Hence ω̂(θ) ≥ ω(θ).
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Simultaneous approximation by rational numbers

Let ξ1, . . . , ξn be real numbers. Set tθ =

ξ1
...
ξn


• Denote by ω(tθ) the supremum of w ∈ R such that there

exist infinitely many positive integers H for which the
system

max
0≤i≤n

|xi − x0ξi| ≤ H−w, 0 < max
0≤i≤n

|xi| ≤ H

has a solution in rational integers x0, x1, . . . , xn.
• An upper bound for ω(tθ) is a simultaneous

approximation measure for 1, ξ1, . . . , ξn.
• Denote by ω̂(tθ) the supremum of w ∈ R such that, for

any sufficiently large integer H, the same system has a
solution.

• Again ω̂(tθ) ≥ ω(tθ).
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Further exponents (M. Laurent)

For each d in the range 0 ≤ d ≤ n− 1, M. Laurent introduces
two exponents, one for asymptotic approximation ωd(θ) and
one for uniform approximation ω̂d(θ), so that

ω0(θ) = ω(θ), ωn−1(θ) = ω(tθ)

and
ω̂0(θ) = ω̂(θ), ω̂n−1(θ) = ω̂(tθ).
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Definitions for higher dimensional approximation

Rn ⊂ Pn(R)
θ = (ξ1, . . . , ξn) -→ (ξ1 : · · · : ξn : 1)

0 ≤ d ≤ n− 1.

• ωd(θ) = sup
{

ω; there exist infinitely many

vectors X = x0 ∧ · · · ∧ xd ∈ Λd+1(Zn+1) such that

|X ∧ θ| ≤ |X|−ω
}

.

• ω̂d(θ) = sup
{

ω; for any sufficiently large H,

there exists X = x0 ∧ · · · ∧ xd ∈ Λd+1(Zn+1) such that

0 < |X| ≤ H and |X ∧ θ| ≤ H−ω
}

.

Hence ωd(θ) ≥ ω̂d(θ).
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Distances
The multivector X = x0 ∧ · · · ∧ xd is a system of Plücker
coordinates of the linear projective subvariety

L = 〈x0, . . . , xd〉 ⊂ Pn(R).

Then |X ∧ θ|
|X||θ| ∼ d(θ, L) = min

x∈L
d(θ, x).

Equivalent definitions

• ωd(θ) = sup
{

ω; there exist infinitely many L

rational over Q, dim L = d and d(θ, L) ≤ H(L)−ω−1
}

• ω̂d(θ) = sup
{

ω; for any sufficiently large H, there exists L

rational, dim L = d, H(L) ≤ H and d(θ, L) ≤ H(L)−1H−ω
}
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Extremal cases d = 0 and d = n− 1
•

ω0(θ) = ω(tθ), ω̂0(θ) = ω̂(tθ),
ωn−1(θ) = ω(θ), ω̂n−1(θ) = ω̂(θ).

• Minkowski’s convex body Theorem yields lower bounds
(valid for all θ):

ω̂d(θ) ≥ d + 1

n− d
for all d = 0, . . . , n− 1.

• In particular for d = n− 1 and d = 0 respectively, one
recovers

ω(θ) ≥ n and ω(tθ) ≥ 1/n.

• Khintchine (1926): ω(θ) = n if and only if ω(t(θ)) = 1/n.
• Generic: for almost all θ ∈ Rn, for 0 ≤ d ≤ n− 1,

ωd(θ) = ω̂d(θ) =
d + 1

n− d
·
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Devissage of Khintchine transfer principles
• Theorem (M. Laurent). Set

ωd = ωd(ξ1, . . . , ξn), 0 ≤ d ≤ n− 1.

(i) Going up transfer principle.

ωd+1 ≥ (n− d)ωd + 1

n− d− 1
, 0 ≤ d ≤ n− 2.

(ii) Going down transfer principle.

ωd−1 ≥ dωd

ωd + d + 1
, 1 ≤ d ≤ n− 1.

• Corollary (Khintchine transfer principle).

ωn−1 ≥ nω0 + n− 1

ω0 ≥ ωn−1

(n− 1)ωn−1 + n

M. Laurent (2006): these estimates are optimal.
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§ 5. Dimension 2

Let ξ and η be two real numbers with 1, ξ, η linearly
independent over Q.

• Khintchine’s transfert Theorem

ω(ξ, η)

ω(ξ, η) + 2
≤ ω

(
ξ
η

)
≤ ω(ξ, η)− 1

2
·

• Optimal: Jarnik’s formula:

ω̂

(
ξ
η

)
= 1− 1

ω̂(ξ, η)
·
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Spectrum of each exponent in dimension 2

• ω(ξ, η) takes any value in the range [2, +∞].

• ω

(
ξ
η

)
takes any value in the range [1/2, 1].

• ω̂(ξ, η) takes any value in the range [2, +∞].

• ω̂

(
ξ
η

)
takes any value in the range [1/2, 1].

• Generic: for almost all (ξ, η) ∈ R2,

ω(ξ, η) = ω̂(ξ, η) = 2, ω

(
ξ
η

)
= ω̂

(
ξ
η

)
=

1

2
·
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Spectrum of the four exponents in dimension 2
Théorème (M. Laurent) Assume 1, ξ, η are linearly
independent over Q. The four exponents

w = ω(ξ, η), w′ = ω

(
ξ
η

)
, ŵ = ω̂(ξ, η), ŵ′ = ω̂

(
ξ
η

)
are related by

2 ≤ ŵ ≤ +∞, ŵ′ =
ŵ − 1

ŵ
, w(ŵ − 1)

w + ŵ
≤ w′ ≤ w − ŵ + 1

ŵ
·

For w = +∞ this means

ŵ − 1 ≤ w′ ≤ +∞.

Conversely, for any (w, w′, ŵ, ŵ′) in (R>0 ∪ {+∞})4

satisfying the previous inequalities there exists (ξ, η) ∈ R2,
with 1, ξ, η linearly independent over Q, such that

w = ω(ξ, η), w′ = ω

(
ξ
η

)
, ŵ = ω̂(ξ, η), ŵ′ = ω̂

(
ξ
η

)
.
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Consequences
• Corollary 1. The exponents w = ω(ξ, η), ŵ = ω̂(ξ, η) are

related by
w ≥ ŵ(ŵ − 1) and ŵ ≥ 2.

Conversely, for any (w, ŵ) satisfying these conditions, there
exists (ξ, η) such that

(ω(ξ, η), ω̂(ξ, η)) = (w, ŵ).

• Corollary 2. The exponents w′ = ω

(
ξ
η

)
, ŵ′ = ω̂

(
ξ
η

)
are

related by

w′ ≥ ŵ′2

1− ŵ′
and

1
2
≤ ŵ′ ≤ 1.

Conversely, for any (w′, ŵ′) satisfying these conditions, there
exists (ξ, η) with

(ω
(

ξ
η

)
, ω̂

(
ξ
η

)
) = (w′, ŵ′).
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Open problems

• Describe for each n ≥ 2 the spectrum of the set

(wn(ξ), ŵn(ξ), w′n(ξ), ŵ′n(ξ)
)

where ξ ranges over the set of real numbers which are not
algebraic of degree ≤ n.

• Is there an extension of Jarnik’s equality

ω̂

(
ξ
η

)
= 1− 1

ω̂(ξ, η)

in higher dimension relating ω̂(θ) and ω̂′(θ) for θ ∈ Rn?
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