
Recorded with the CIMPA in Nice December 2020

A course on interpolation

Second Course :
Two Points.

Lidstone, Whittaker
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Abstract
A polynomial is determined by its derivatives of even order at
0 and 1. Indeed, there exists a unique sequence of polynomials
Λ0(z),Λ1(z),Λ2(z), . . . (Lidstone polynomials) such that any
polynomial f can be written as a finite sum

f(z) =
∑
n≥0

f (2n)(0)Λn(1− z) +
∑
n≥0

f (2n)(1)Λn(z).

Such an expansion into an infinite series holds for functions of
exponential type < π (Poritsky).

We also investigate the analogous problem for odd derivatives
at 0 and even derivatives at 1 (Whittaker interpolation):

f(z) =
∑
n≥0

f (2n)(1)Mn(z)−
∞∑
n=0

f (2n+1)(0)M ′
n+1(1− z).
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Two interpolation problems

We are going to consider the following interpolation problems:

I (Lidstone):

f (2n)(0) = an, f (2n)(1) = bn for n ≥ 0.

I (Whittaker):

f (2n+1)(0) = an, f (2n)(1) = bn for n ≥ 0.

We also introduce Whittacker classification of complete,
indeterminate and redundant sequences, involving
standard sets of polynomials.

3 / 49



Lidstone interpolation problem

The following interpolation problem was considered by
G.J. Lidstone in 1930.
Given two sequences of complex numbers (an)n≥0 and
(bn)n≥0, does there exist an entire function f satisfying

f (2n)(0) = an, f (2n)(1) = bn for n ≥ 0 ?

Is such a function f unique?

The answer to unicity is plain and negative in general: the
transcendental entire function sin(πz) satisfies these
conditions with an = bn = 0, hence there is no unicity, unless
we restrict to entire functions satisfying some extra condition.
Such a condition is a bound on the growth of f .

We start with unicity (an = bn = 0) and polynomials.
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Even derivatives at 0 and 1: first proof

Lemma. Let f be a polynomial satisfying

f (2n)(0) = f (2n)(1) = 0 for all n ≥ 0.

Then f = 0.

First proof.
By induction on the degree of the polynomial f .
If f has degree ≤ 1, say f(z) = a0z + a1, the conditions
f(0) = f(1) = 0 imply a0 = a1 = 0, hence f = 0.
If f has degree ≤ n with n ≥ 2 and satisfies the hypotheses,
then f ′′ also satisfies the hypotheses and has degree < n,
hence by induction f ′′ = 0 and therefore f has degree ≤ 1.
The result follows.
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Even derivatives at 0 and 1: second proof

Second proof.
Let f be a polynomial satisfying

f (2n)(0) = f (2n)(1) = 0 for all n ≥ 0.

The assumption f (2n)(0) = 0 for all n ≥ 0 means that f is an
odd function: f(−z) = −f(z). The assumption f (2n)(1) = 0
for all n ≥ 0 means that f(1− z) is an odd function:
f(1− z) = −f(1 + z). We deduce
f(z + 2) = f(1 + z + 1) = −f(1− z − 1) = −f(−z) = f(z),
hence the polynomial f is periodic, and therefore it is a
constant. Since f(0) = 0, we conclude f = 0.
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Even derivatives at 0 and 1: third proof

Third proof.
Assume

f (2n)(0) = f (2n)(1) = 0 for all n ≥ 0.

Write

f(z) = a1z + a3z
3 + a5z

5 + a7z
7 + · · ·+ a2n+1z

2n+1 + · · ·

(finite sum). We have f(1) = f ′′(1) = f (ıv)(1) = · · · = 0:

a1 +a3 +a5 +a7 + · · · +a2n+1 + · · · = 0
6a3 +20a5 +42a7 + · · · +2n(2n+ 1)a2n+1 + · · · = 0

120a5 +840a7 + · · · + (2n+1)!
(2n−3)!a2n+1 + · · · = 0

. . .
...

The matrix of this system is triangular with maximal rank.
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Even derivatives at 0 and 1
The fact that this matrix has maximal rank means that a
polynomial f is uniquely determined by the numbers

f (2n)(0) and f (2n)(1) for n ≥ 0.

Given numbers an and bn, all but finitely many of them are 0,
there is a unique polynomial f such that

f (2n)(0) = an and f (2n)(1) = bn for all n ≥ 0.

Involution: z 7→ 1− z:

0 7→ 1, 1 7→ 0, 1− z 7→ z.
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Lidstone expansion of a polynomial
G. J. Lidstone (1930). There exists a unique sequence of
polynomials Λ0(z),Λ1(z),Λ2(z), . . . such that any polynomial
f can be written as a finite sum

f(z) =
∑
n≥0

f (2n)(0)Λn(1− z) +
∑
n≥0

f (2n)(1)Λn(z).

This is equivalent to

Λ(2k)
n (0) = 0 and Λ(2k)

n (1) = δnk for n ≥ 0 and k ≥ 0.

(Kronecker symbol).
A basis of the Q–space of polynomials in Q[z] of degree
≤ 2n+ 1 is given by the 2n+ 2 polynomials

Λ0(z),Λ1(z), . . . ,Λn(z), Λ0(1−z),Λ1(1−z), . . . ,Λn(1−z).
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Analogy with Taylor series

Given a sequence (an)n≥0 of complex numbers, the unique
analytic solution (if it exists) f of the interpolation problem

f (n)(0) = an for all n ≥ 0

is given by the Taylor expansion

f(z) =
∑
n≥0

an
zn

n!
·

The polynomials zn/n! satisfy

dk

dzk

(
zn

n!

)
z=0

= δnk for n ≥ 0 and k ≥ 0.
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Lidstone polynomials
Λ0(z) = z:

Λ0(0) = 0, Λ0(1) = 1, Λ
(2k)
0 = 0 for k ≥ 1.

Induction: the sequence of Lidstone polynomials is determined
by Λ0(z) = z and

Λ′′n = Λn−1 for n ≥ 1

with the initial conditions Λn(0) = Λn(1) = 0 for n ≥ 1.
Let Ln(z) be any solution of

L′′n(z) = Λn−1(z).

Define
Λn(z) = −Ln(1)z + Ln(z).
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Lidstone polynomials
Λ0(z) = z,

Λ′′n = Λn−1, Λn(0) = Λn(1) = 0 for n ≥ 1.

For n ≥ 0, the polynomial Λn is odd, it has degree 2n+ 1 and
leading term 1

(2n+1)!
z2n+1.

For instance

Λ1(z) =
1

6
(z3 − z)

and

Λ2(z) =
1

120
z5 − 1

36
z3 +

7

360
z =

1

360
z(z2 − 1)(3z2 − 7).
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Lidstone polynomials
The polynomial f(z) = z2n+1 satisfies

f (2k)(0) = 0 for k ≥ 0, f (2k)(1) =

{
(2n+1)!

(2n−2k+1)!
for 0 ≤ k ≤ n,

0 for k ≥ n+ 1.

One deduces

z2n+1 =
n−1∑
k=0

(2n+ 1)!

(2n− 2k + 1)!
Λk(z) + (2n+ 1)!Λn(z),

which yields the induction formula

Λn(z) =
1

(2n+ 1)!
z2n+1 −

n−1∑
k=0

1

(2n− 2k + 1)!
Λk(z).
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Lidstone series : exponential type < π

Theorem (H. Poritsky, 1932).
Let f be an entire function of exponential type < π satisfying
f (2n)(0) = f (2n)(1) = 0 for all sufficiently large n. Then f is a
polynomial.

This is best possible: the entire function sin(πz) has
exponential type π and satisfies f (2n)(0) = f (2n)(1) = 0 for all
n ≥ 0.
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Lidstone series : exponential type < π

Let f be an entire function of exponential type < π satisfying
f (2n)(0) = f (2n)(1) = 0 for all sufficiently large n. Then f is a
polynomial.

Proof.
Let f̃ = f − P , where P is the polynomial satisfying

P (2n)(0) = f (2n)(0) and P (2n)(1) = f (2n)(1) for n ≥ 0.

We have f̃
(2n)

(0) = f̃
(2n)

(1) = 0 for all n ≥ 0. The functions
f̃(z) and f̃(1− z) are odd, hence f̃(z) is periodic of period 2.
Therefore there exists a function g analytic in C× such that
f̃(z) = g(eiπz). Hence g(1) = 0. Since f̃(z) has exponential
type < π, we deduce g = 0, f̃ = 0 and f = P .

15 / 49



Some results on entire functions

Lemma. An entire function f is periodic of period ω 6= 0 if
and only if there exists a function g analytic in C× such that
f(z) = g(e2iπz/ω).

Lemma. If g is an analytic function in C× and if the entire
function g(e2iπz/ω) has a type < 2(N + 1)π/|ω|, then tNg(t)
is a polynomial of degree ≤ 2N .

If g(e2iπz/ω) has a type < 2π/|ω|, then g is constant.
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Exponential type < π: Poritsky’s expansion

Theorem (H. Poritsky, 1932).
The expansion

f(z) =
∞∑
n=0

f (2n)(0)Λn(1− z) +
∞∑
n=0

f (2n)(1)Λn(z)

holds for any entire function f of exponential type < π.

We will check Poritsky’s formula for f t(z) = etz with |t| < π,
then deduce the general case.
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Special case: etz for |t| < π
Consider Poritsky’s expansion formula

f(z) =
∞∑
n=0

f (2n)(0)Λn(1− z) +
∞∑
n=0

f (2n)(1)Λn(z)

for the function f t(z) = etz where |t| < π. Since

f
(2n)
t (0) = t2n and f

(2n)
t (1) = t2net it gives

etz =
∞∑
n=0

t2nΛn(1− z) + et
∞∑
n=0

t2nΛn(z).

Replacing t with −t yields

e−tz =
∞∑
n=0

t2nΛn(1− z) + e−t
∞∑
n=0

t2nΛn(z).

Hence

etz − e−tz = (et − e−t)
∞∑
n=0

t2nΛn(z).

18 / 49



Generating series
Let t ∈ C, t 6∈ iπZ. The entire function

f(z) =
sinh(tz)

sinh(t)
=

etz − e−tz

et − e−t

satisfies
f ′′ = t2f, f(0) = 0, f(1) = 1,

hence f (2n)(0) = 0 and f (2n)(1) = t2n for all n ≥ 0.
For 0 < |t| < π and z ∈ C, we deduce

sinh(tz)

sinh(t)
=
∞∑
n=0

t2nΛn(z).

Notice that

etz =
sinh((1− z)t)

sinh(t)
+ et

sinh(tz)

sinh(t)
·
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Special case: etz

From Poritsky’s expansion of an entire function of exponential
type < π we deduced the formula

sinh(tz)

sinh(t)
=
∞∑
n=0

t2nΛn(z).

Let us prove this formula directly.
We will deduce

etz =
∞∑
n=0

t2nΛn(1− z) + et
∞∑
n=0

t2nΛn(z)

for |t| < π.
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Expansion of F (z, t) = sinh(tz)/ sinh(t)

For z ∈ C and |t| < π let

F (z, t) =
sinh(tz)

sinh(t)

with F (z, 0) = z.

Fix z ∈ C. The function t 7→ F (z, t) is analytic in the disc
|t| < π and is an even function: F (z,−t) = F (z, t). Consider
its Taylor series at the origin:

F (z, t) =
∑
n≥0

cn(z)t2n

with c0(z) = z.

We have F (0, t) = 0 and F (1, t) = 1.
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Expansion of F (z, t) = sinh(tz)/ sinh(t)

F (z, t) =
etz − e−tz

et − e−t
=
∑
n≥0

cn(z)t2n.

From

cn(z) =
1

(2n)!

(
∂

∂t

)2n

F (z, 0)

it follows that cn(z) is a polynomial.

From (
∂

∂z

)2

F (z, t) = t2F (z, t)

we deduce
c′′n(z) = cn−1(z) for n ≥ 1.

Since cn(0) = cn(1) = 0 for n ≥ 1 we conclude cn(z) = Λn(z).
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From etz to exponential type < π

Hence a special case of the Poritsky’s expansion formula

f(z) =
∞∑
n=0

f (2n)(0)Λn(1− z) +
∞∑
n=0

f (2n)(1)Λn(z),

which holds for any entire function f of exponential type < π,
is

etz =
∞∑
n=0

t2nΛn(1− z) + et
∞∑
n=0

t2nΛn(z)

for |t| < π.
Conversely, from this special case (that we proved directly) we
are going to deduce the general case by means of Laplace
transform (R.C. Buck, 1955, kernel expansion method).
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Recall Laplace transform
Let

f(z) =
∑
n≥0

an
n!
zn

be an entire function of exponential type τ(f). The Laplace
transform of f , viz.

F (t) =
∑
n≥0

ant
−n−1,

is analytic in the domain |t| > τ(f). The inverse Laplace
transform is given, for r > τ(f), by

f(z) =
1

2πi

∫
|t|=r

etzF (t)dt.

Hence

f (2n)(z) =
1

2πi

∫
|t|=r

t2netzF (t)dt.
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Laplace transform
Assume τ(f) < π. Let r satisfy τ(f) < r < π. For |t| = r we
have

etz =
∞∑
n=0

t2nΛn(1− z) + et
∞∑
n=0

t2nΛn(z).

We deduce

f(z) =
∑
n≥0

Λn(1− z)

(
1

2πi

∫
|t|=r

t2nF (t)dt

)
+

∑
n≥0

Λn(z)

(
1

2πi

∫
|t|=r

t2netF (t)dt

)
and therefore

f(z) =
∑
n≥0

f (2n)(0)Λn(1− z) +
∑
n≥0

f (2n)(1)Λn(z),

where the last series are absolutely and uniformly convergent
for z on any compact in C.
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Integral formula for Lidstone polynomials
Using Cauchy’s residue Theorem, we deduce the integral
formula

Λn(z) = (−1)n
2

π2n+1

S∑
s=1

(−1)s

s2n+1
sin
(
sπz
)

+
1

2πi

∫
|t|=(2S+1)π/2

t−2n−1 sinh(tz)

sinh(t)
dt

for S = 1, 2, . . . and z ∈ C.
In particular, with S = 1 we have

Λn(z) = (−1)n
2

π2n+1
sin(πz)+

1

2πi

∫
|t|=3π/2

t−2n−1 sinh(tz)

sinh(t)
dt.

One deduces that there exists an absolute constant γ > 0 such
that

|Λn|r ≤ γπ−2ne3πr/2.
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Further estimates on Lidstone polynomials
There exist positive absolute constants γ1, γ2, γ3 and γ4 such
that the following holds.
(i) For r ≥ 0 and n ≥ 0, we have

|Λn|r ≤
γ1

(2n+ 1)!
max {r, 2n+ 1}2n+1 .

(ii) For sufficiently large r, we have, for all n ≥ 0,

|Λn|r ≤ γ2
er+1/(4r)

√
2πr

·

(iii) For r ≥ 0 and n ≥ 0,

|Λn|r ≤ γ3π
−2ne3πr/2.

(iv) There exists a constant γ4 > 0 such that, for r
sufficiently large, ∑

n≥γ4r

|Λn|r < 1.
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Solution of the Lidstone interpolation problem
Consequence of Poritsky’s expansion formula:
Let (an)n≥0 and (bn)n≥0 be two sequences of complex
numbers satisfying

lim sup
n→∞

|an|1/n < π2 and lim sup
n→∞

|bn|1/n < π2.

Then the function

f(z) =
∞∑
n=0

anΛn(1− z) +
∞∑
n=0

bnΛn(z)

is the unique entire function of exponential type < π satisfying

f (2n)(0) = an and f (2n)(1) = bn for all n ≥ 0.
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Entire functions of finite exponential type

Proposition (I.J. Schoenberg, 1936).
Let f be an entire function of finite exponential type τ(f).
Then the two following conditions are equivalent.
(i) f (2n)(0) = f (2n)(1) = 0 for all n ≥ 0.
(ii) There exist complex numbers c1, . . . , cL with L ≤ τ(f)/π
such that

f(z) =
L∑
`=1

c` sin(`πz).
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Entire functions of finite exponential type

Proposition (R.C. Buck, 1954).
An entire function f of finite exponential type τ(f) can be
written

f(z) =
∞∑
k=0

(
f (2k)(0)gk(1− z) + f (2k)(1)gk(z)

)
+
m−1∑
j=1

aj sin(πjz)

with mπ ≤ τ , while gk is the sum of Λk and a finite
trigonometric sum.

For |t| < (N + 1)π,

sinh(tz)

sinh(t)
= π

N∑
n=1

(−1)n+1n sin(nπz)

t2 + n2π2
+
∞∑
n=0

gn(z)t2n.
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An expansion of entire functions

Proposition.
Let f be an entire function. The two following conditions are
equivalent.
(i) f (2n)(0) = f (2n)(1) = 0 for all n ≥ 0.
(ii) f is the sum of a series∑

n≥1

an sin(nπz)

which converges normally on any compact.
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Odd derivatives at 0 and 1

A polynomial f is determined up to the addition of a constant
by the numbers

f (2n+1)(0) and f (2n+1)(1).

The interpolation problem related with odd derivatives at 0
and 1 is solved by using Lidstone interpolation for the
derivative of f .
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Odd derivatives at 0 and even derivatives at 1

Lemma. Let f be a polynomial satisfying

f (2n+1)(0) = f (2n)(1) = 0 for all n ≥ 0.

Then f = 0.

Proofs.
1. By induction.
2. f(z + 4) = f(z).
3. Triangular system.
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Whittaker expansion of a polynomial
The Lemma means that a polynomial f is uniquely determined
by the numbers

f (2n+1)(0) and f (2n)(1) for n ≥ 0.

Any polynomial f ∈ C[z] has the finite expansion

f(z) =
∞∑
n=0

(
f (2n)(1)Mn(z)− f (2n+1)(0)M ′

n+1(1− z)
)
,

with only finitely many nonzero terms in the series.
A basis of the Q–space of polynomials in Q[z] of degree ≤ 2n
is given by the 2n+ 1 polynomials

M0(z),M1(z), . . . ,Mn(z), M ′
1(1− z), . . . ,M ′

n(1− z).
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Whittaker polynomials
Following J.M. Whittaker (1935), one defines a sequence
(Mn)n≥0 of even polynomials by induction on n with M0 = 1,

M ′′
n = Mn−1, Mn(1) = M ′

n(0) = 0 for all n ≥ 1.

This is equivalent to

M (2k+1)
n (0) = 0, M (2k)

n (1) = δnk for n ≥ 0 and k ≥ 0.

For instance

M1(z) =
1

2
(z2 − 1), M2(z) =

1

24
(z2 − 1)(z2 − 5),

M3(z) =
1

720
(z2 − 1)(z4 − 14z2 + 61).
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Induction formula for Whittaker polynomials
The polynomial f(z) = z2n satisfies

f (2k+1)(0) = 0 for k ≥ 0, f (2k)(1) =

{
(2n)!

(2n−2k)!
for 0 ≤ k ≤ n,

0 for k ≥ n+ 1.

One deduces

z2n =
n−1∑
k=0

(2n)!

(2n− 2k)!
Mk(z) + (2n)!Mn(z),

which yields the following induction formula

Mn(z) =
1

(2n)!
z2n −

n−1∑
k=0

1

(2n− 2k)!
Mk(z).
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Exponential type < π/2

Theorem (J.M. Whittaker, 1935).
Any entire function f of exponential type < π/2 has a unique
convergent expansion

f(z) =
∞∑
n=0

(
f (2n)(1)Mn(z)− f (2n+1)(0)M ′

n+1(1− z)
)
.

Hence, if such a function satisfies f (2n+1)(0) = f (2n)(1) = 0
for all sufficiently large n, then it is a polynomial.

This is best possible: the entire function cos(π
2
z) has

exponential type π/2 and satisfies f (2n+1)(0) = f (2n)(1) = 0
for all n ≥ 0.
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Generating series

For t ∈ C, t 6∈ iπ + 2iπZ, the entire function

f(z) =
cosh(tz)

cosh(t)
=

etz + e−tz

et + e−t

satisfies
f ′′ = t2f, f(1) = 1, f ′(0) = 0,

hence f (2n)(1) = t2n and f (2n+1)(0) = 0 for all n ≥ 0.

The sequence (Mn)n≥0 is also defined by the expansion

cosh(tz)

cosh(t)
=
∞∑
n=0

t2nMn(z)

for |t| < π/2 and z ∈ C.

38 / 49



Integral formula for Whittaker polynomials
Using Cauchy’s residue Theorem, we deduce the integral
formula

Mn(z) = (−1)n
22n+2

π2n+1

S−1∑
s=0

(−1)s

(2s+ 1)2n+1
cos

(
(2s+ 1)π

2
z

)
+

1

2πi

∫
|t|=Sπ

t−2n−1 cosh(tz)

cosh(t)
dt

for S = 1, 2, . . . and z ∈ C.

In particular, with S = 1 we obtain

Mn(z) = (−1)n
22n+2

π2n+1
cos(πz/2)+

1

2πi

∫
|t|=π

t−2n−1 cosh(tz)

cosh(t)
dt.
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Further estimates on Whittaker polynomials
There exist positive contants γ′1, γ′2, γ′3 and γ′4 such that the
following holds.
(i) For r ≥ 0 and n ≥ 0, we have

|Mn|r ≤
γ′1

(2n)!
max{r, 2n}2n.

(ii) For sufficiently large r and for all n ≥ 0,

|Mn|r ≤ γ′2
er+1/(4r)

√
2πr

·

(iii) For r ≥ 0 and n ≥ 0,

|Mn|r ≤ γ′322nπ−2neπr.

(iv) For r sufficiently large,∑
n≥γ′4r

|Mn|r < 1.
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Solution of the Whittaker interpolation problem
Consequence of Whittaker’s expansion formula:
Let (an)n≥0 and (bn)n≥0 be two sequences of complex
numbers satisfying

lim sup
n→∞

|an|1/n <
π2

4
and lim sup

n→∞
|bn|1/n <

π2

4
·

Then the function

f(z) =
∞∑
n=0

anMn(z)−
∞∑
n=0

bnM
′
n+1(1− z)

is the unique entire function of exponential type < π
2

satisfying

f (2n)(1) = an and f (2n+1)(0) = bn for all n ≥ 0.
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Finite exponential type

Theorem (I.J. Schoenberg, 1936).
Let f be an entire function of finite exponential type τ(f)
satisfying f (2n+1)(0) = f (2n)(1) = 0 for all n ≥ 0. Then there
exist complex numbers c1, . . . , cL with L ≤ 2τ(f)/π such that

f(z) =
L∑
`=0

c` cos

(
(2`+ 1)π

2
z

)
.
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Whittaker classification
Given two sequences p = (pn)n≥0 and q = (qn)n≥0 of nonnegative
integers, does there exist two sequences π = (πn)n≥0 and
ζ = (ζn)n≥0 of polynomials such that, for n, k ≥ 0,

π(pk)
n (1) = δnk, π(qk)

n (0) = 0, and ζ(pk)
n (1) = 0, ζ(qk)

n (0) = δnk?

Such a pair (π, ζ) is called a standard set of polynomials for (p, q).

If the answer is yes and if the solution (π, ζ) is unique, then (p, q)
is called complete, and any polynomial f can be written in a
unique way as a finite sum

f(z) =
∑
n≥0

f (pn)(1)πn(z) +
∑
n≥0

f (qn)(0)ζn(z).

If there are several solutions (π, ζ), then (p, q) is called
indeterminate.

If there is no solution (π, ζ), then (p, q) is called redundant.
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Historical survey and annotated references

George James Lidstone

(1870 – 1952)

Lidstone, G. J. (1930).
Notes on the extension of
Aitken’s theorem (for
polynomial interpolation)
to the Everett types.
Proc. Edinb. Math. Soc.,
II. Ser., 2:16–19.

Interpolation problem for

f (2n)(0) and f (2n)(1), n ≥ 0.

http://www-groups.dcs.st-and.ac.uk/history/Biographies/Lidstone.html
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Historical survey and annotated references

John Macnaghten Whittaker

(1905 – 1984)

Whittaker, J. M. (1933).
On Lidstone’s series and
two-point expansions of
analytic functions.
Proc. Lond. Math. Soc.
(2), 36:451–469.

Standard sets of polynomials: complete, indeterminate,
redundant.

http://www-groups.dcs.st-and.ac.uk/history/Biographies/Whittaker_John.html
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Historical survey and annotated references

John Macnaghten Whittaker

(1905 – 1984)

Whittaker, J. M. (1935).
Interpolatory function
theory, volume 33.
Cambridge University
Press, Cambridge.

Chap. III. Properties of successive derivatives.

http://www-groups.dcs.st-and.ac.uk/history/Biographies/Whittaker_John.html
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Historical survey and annotated references

Isaac Jacob Schoenberg

(1903 – 1990)

Schoenberg, I. J. (1936).
On certain two-point
expansions of integral
functions of exponential
type.
Bull. Am. Math. Soc.,
42:284–288.

Interpolation problem for

f (2n+1)(0) and f (2n)(1), n ≥ 0.

http://www-groups.dcs.st-and.ac.uk/history/Biographies/Schoenberg.html
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M. Waldschmidt. On transcendental entire functions
with infinitely many derivatives taking integer values at
two points.
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arXiv: 1912.00173 [math.NT].

http://www.imj-prg.fr/~michel.waldschmidt/articles/pdf/IntegerValuedDerivativesTwoPoints.pdf
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