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Abstract

A polynomial is determined by its derivatives of even order at
0 and 1. Indeed, there exists a unique sequence of polynomials
Ao(2),A1(2), Aa(2),... (Lidstone polynomials) such that any
polynomial f can be written as a finite sum

Fz) =Y P O0)A(L = 2) + ) fEV(D)A(z).

Such an expansion into an infinite series holds for functions of
exponential type < 7 (Poritsky).

We also investigate the analogous problem for odd derivatives
at 0 and even derivatives at 1 (Whittaker interpolation):

F(2) =) fEOMu(z) = fED0)M, (1 - 2).

n>0



Two interpolation problems

We are going to consider the following interpolation problems:

» (Lidstone):

fe0) = a,, f®(1)=b, for n > 0.

» (Whittaker):
FE0) = a,,  fPV(1) = b, for n > 0.
We also introduce Whittacker classification of complete,

indeterminate and redundant sequences, involving
standard sets of polynomials.

3/49



Lidstone interpolation problem

The following interpolation problem was considered by

G.J. Lidstone in 1930.

Given two sequences of complex numbers (ay,),>o and

(bn)n>0, does there exist an entire function | satisfying

fE0) = a,, fP(1)=b, forn>0 ?

Is such a function f unique?

The answer to unicity is plain and negative in general: the
transcendental entire function sin(7z) satisfies these
conditions with a,, = b, = 0, hence there is no unicity, unless

we restrict to entire functions satisfying some extra condition.

Such a condition is a bound on the growth of f.

We start with unicity (a,, = b, = 0) and polynomials.
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Even derivatives at 0 and 1: first proof

Lemma. Let f be a polynomial satisfying
FEI(0) = fI (1) =0 for all n > 0.
Then f = 0.

First proof.

By induction on the degree of the polynomial f.

If f has degree < 1, say f(z) = apz + ay, the conditions
f(0) = f(1) =0 imply ap = a1 = 0, hence f = 0.

If f has degree < n with n > 2 and satisfies the hypotheses,

then f” also satisfies the hypotheses and has degree < n,
hence by induction f” = 0 and therefore f has degree < 1.
The result follows.
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Even derivatives at 0 and 1: second proof

Second proof.
Let f be a polynomial satisfying

FEM(0) = £ (1) = 0 for all n > 0.

The assumption f"(0) = 0 for all n > 0 means that f is an
odd function: f(—z) = —f(2). The assumption f*"(1) =0
for all n > 0 means that f(1 — z) is an odd function:
f(1—=2)=—f(1+z2). We deduce
fe+2)=fl+24+1)=—f(1-2-1)=—f(=2) = f(2),
hence the polynomial f is periodic, and therefore it is a
constant. Since f(0) = 0, we conclude f = 0. O
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Even derivatives at 0 and 1: third proof
Third proof.

Assume
f(2n)<o) — f(2n)(1) — 0 for all n > 0.

Write

f(z) =mz+ CL323 + CL5Z5 + CL7Z7 + .-+ a2n+122n+1 4.
(finite sum). We have f(1) = f"(1) = f0)(1) = ... = 0:

a1 “as “+as +a7 +-- Fagn+1 +-=
6as +20a5 +42a7 +--- +2n(2n+ Dagpr + -

(2n+1)!

12005 +840a7 +-+ +{prhas i =

The matrix of this system is triangular with maximal rank.
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Even derivatives at 0 and 1

The fact that this matrix has maximal rank means that a
polynomial f is uniquely determined by the numbers

fP0) and V(1) for n > 0.

Given numbers a,, and b,,, all but finitely many of them are 0,

there is a unique polynomial f such that

fe(0) =a, and f@(1) =0, forall n>0.

Involution: z +— 1 — z:

O—1, 1—=0, 1—2z— 2z
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Lidstone expansion of a polynomial

G. J. Lidstone (1930). There exists a unique sequence of
polynomials Ag(2), A1(2), Aa(2), ... such that any polynomial
f can be written as a finite sum

f(z) = Z f(zn)(O)An(l —2)+ Z f(zn)(l)An(z)-

n>0 n>0

This is equivalent to
APD(0)=0 and AP (1) =6, forn>0 and k> 0.

(Kronecker symbol).
A basis of the Q—space of polynomials in Q[z] of degree
< 2n + 1 is given by the 2n + 2 polynomials

Ao(2),A1(2), ., An(2), Ao(1—2),A1(1—2),..., A, (1—2).
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Analogy with Taylor series

Given a sequence (ay),>o of complex numbers, the unique
analytic solution (if it exists) f of the interpolation problem

f™(0) = a, forall n. >0

is given by the Taylor expansion
ZTL
f(z) = Z anm'
n>0

The polynomials 2" /n! satisfy

k n
d (Z > =0, form >0 and
z=0

dzk \ n!
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Lidstone polynomials
Ao(z) = 2

Ag(0) =0, Ag(1)=1, A" =0fork>1.

Induction: the sequence of Lidstone polynomials is determined
by Ag(z) = z and

AN =N, forn>1

with the initial conditions A,,(0) = A, (1) =0 for n > 1.
Let L,,(z) be any solution of

LI(z) = A (2).
Define
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Lidstone polynomials
Ao(Z) -

AN =A,1, A,(0)=A,(1)=0forn>1.

For n > 0, the polynomial A,, is odd, it has degree 2n + 1 and

H 2n+1
leading term on +1),z

For instance

1
M) = 5 -
and
1 1 7 1
A _ - 53t -1 2_7).
2(2) = 1557 ~ 367 T 350° = 36077 ~ VBF =)
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Lidstone polynomials

The polynomial f(z) = 2! satisfies

Q@) g 0<k<n
@ (0) = 0 for k>0, fCO(1) = { @2kt SRksm,
70 N AN 0 fork>n-+1.
One deduces
n—1
1 _ (2n +1)! A on 1 1)IA
: _; (2n — 2k + 1) #(2) + 2n 4 DiA(2),
which yields the induction formula
1 n—1 1
— 2n+1 A ‘
An(z) @n+1)° 2 (2n — 2k + 1)! #(2)

k=0
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Lidstone series : exponential type <

Theorem (H. Poritsky, 1932).

Let f be an entire function of exponential type < w satisfying
f@(0) = f@(1) = 0 for all sufficiently large n. Then f is a
polynomial.

This is best possible: the entire function sin(mz) has
exponential type 7 and satisfies f(>")(0) = f")(1) = 0 for all
n > 0.
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Lidstone series : exponential type <

Let f be an entire function of exponential type < m satisfying
f@(0) = f@(1) = 0 for all sufficiently large n. Then f is a
polynomial.

Proof.
Let f = f — P, where P is the polynomial satisfying

PeV(0) = f®(0) and P@(1) = (1) for n > 0.
We have }'(%)(O) = f(%)(l) = 0 for all n > 0. The functions
f(z) and f(1 — z) are odd, hence f(z) is periodic of period 2.
Therefore there exists a function g analytic in C* such that
f(2) = g(e'™). Hence g(1) = 0. Since f(z) has exponential
type < 7, we deduce g =0, f =0 and f = P. n
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Some results on entire functions

Lemma. An entire function f is periodic of period w # 0 if
and only if there exists a function g analytic in C* such that

f(z) = g(e*™/).

Lemma. If g is an analytic function in C* and if the entire
function g(e?™*/“) has a type < 2(N + 1)7/|w|, then tVg(t)
is a polynomial of degree < 2/V.

If g(e*7%/“) has a type < 27/|w|, then g is constant.
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Exponential type < m: Poritsky's expansion

Theorem (H. Poritsky, 1932).

The expansion

fz) = Zf”"( 1—z+Zf<2"

n=0

holds for any entire function f of exponential type < .

We will check Poritsky's formula for f;(z) = e with |¢| < m,
then deduce the general case.
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Special case: ¢'* for [t| <7
Consider Poritsky's expansion formula

1) = 30 /0 1—z+2f<2”

n=0
for the function f,(z) = e'* where |t| < 7. Since
F(0) = 27 and (1) = t2net it gives

el = ZtQ”An(l —z)+é Z 2"\, (2)
n=0 n=0

Replacing ¢ with —t yields

e ="t A (1 —2) + et Y A (2).
n=0 n=0

Hence

e — e t® e —e ZtQ"A
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Generating series
Let t € C, t & inZ. The entire function
sinh(tz) e* —e**
J(z) = sinh(t) e —e-t

satisfies

fr=ef f0)=0, f1)=1,

hence f"(0) = 0 and 2" (1) = > for all n. > 0.

For 0 < |t| < 7 and z € C, we deduce

sinh(t
2" A (
smh Z

Notice that
ot smh(.(l — 2)t) Lt 81‘nh(tz).
sinh(t) sinh(t)
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Special case: ¢**

From Poritsky's expansion of an entire function of exponential
type < 7 we deduced the formula

(e o]

sinh(tz on
siT&t)) = ;t An(2).

Let us prove this formula directly.
We will deduce

e =) A1 = 2) et Y 1AL (2)
n=0

n=0

for [t| < .
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Expansion of F(z,t) = sinh(tz)/ sinh(¢)

For z € C and |t| < 7 let

sinh(tz)
sinh(t)

F(z,t) =

with F(z,0) = z.

Fix z € C. The function t — F(z,t) is analytic in the disc

|t| < 7 and is an even function: F(z,—t) = F'(z,t). Consider
its Taylor series at the origin:

F(z,t) =Y eal2)t™
with ¢(2) = 2.

We have F'(0,¢) = 0 and F(1,t) = 1.
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Expansion of F(z,t) = sinh(tz)/ sinh(¢)

Fz,t) = ——— = > cal2)t™",

From

cn(2) = (2%)! (%)an(z,())

it follows that ¢, (2) is a polynomial.
From

<%>2 F(z,t) = t*F(z,1)

we deduce
A(z) =cp1(z) forn > 1.

n

Since ¢,(0) = ¢, (1) = 0 for n > 1 we conclude ¢, (2) = A, (2).
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From e to exponential type <

Hence a special case of the Poritsky's expansion formula
f(z) =D PO = 2)+ D P (1)A(2),
n=0 n=0

which holds for any entire function f of exponential type < ,
is

el® = Z A (1 —2) + e Z 2" A (2)
n=0 n=0

for |t| < .

Conversely, from this special case (that we proved directly) we
are going to deduce the general case by means of Laplace
transform (R.C. Buck, 1955, kernel expansion method).
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Recall Laplace transform

Let a
f2)=> e
n>0
be an entire function of exponential type 7(f). The Laplace
transform of f, viz.
F(t)=> apt™""
n>0
is analytic in the domain [t| > 7(f). The inverse Laplace
transform is given, for » > 7(f), by

fo) = — [ R

271 |t|]=r

Hence
1

() = —,/|t_ e F(t)dt.

21
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Laplace transform
Assume 7(f) < m. Let r satisfy 7(f) < r <. For [t| =1 we

have - -
e = ZtQ”An(l —2)+¢e Z A, (2).
n=0 n=0
We deduce

() = ;An(l _ ) (% A . tQ”F(t)dt> +
> Au(z) (% /|t N tQ”etF(t)dt>

n>0
and therefore
f(z) = Z f(2n)(0)An(1 —z)+ Z f(2n)(1)An(Z)a
n>0 n>0

where the last series are absolutely and uniformly convergent
for z on any compact in C.
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Integral formula for Lidstone polynomials
Using Cauchy’s residue Theorem, we deduce the integral

formula
2§~ (D
A (2) = (_1)n7r2n+1 Z po sin(s7z)
s=1
1 _on_18inh(t2)
21 J = @s+1)m/2 sinh(?)

for S=1,2,... and z € C.
In particular, with S = 1 we have

2 1
A, (z) = (—=1)"——sin(mz —i——,/ t
&)= ()" i) b [

271

5,1 Sinh(tz2)
sinh(t)

One deduces that there exists an absolute constant v > 0 such
that
|An|7" < ,y,]T—Qne?ﬂrr/Q‘
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Further estimates on Lidstone polynomials

There exist positive absolute constants vy, 72, 73 and =4 such
that the following holds.
(1) For r > 0 and n > 0, we have

1
m max {7"7 2TL + 1}

(77) For sufficiently large r, we have, for all n > 0,
r+1/(4r)

\27r .

|An|r S 2n+1 )

(§]
|An|7“ S Y2

(7i1) For r > 0 and n > 0,
’An|r < ’)/371'72”637”/2.
(1v) There exists a constant 74 > 0 such that, for r

sufficiently large,
D> [Anl < 1.

n>yar
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Solution of the Lidstone interpolation problem

Consequence of Poritsky's expansion formula:
Let (an)n>0 and (b,),>0 be two sequences of complex
numbers satisfying

1/n 1/n

limsup |a,|"/" < 7* and limsup |b,|"" < =°.

n—oo n—oo

Then the function

Zan (1—2) —l—ZbA

is the unique entire function of exponential type < 7 satisfying

fe(0)=a, and f@(1) =0, forall n>0.
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Entire functions of finite exponential type

Proposition (l.J. Schoenberg, 1936).

Let f be an entire function of finite exponential type 7(f).
Then the two following conditions are equivalent.

(1) f@(0) = f@V(1) =0 for all n > 0.

(7i) There exist complex numbers cy, ..., cp, with L < 7(f)/m
such that

f(z) = Z cosin(fnz).
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Entire functions of finite exponential type
Proposition (R.C. Buck, 1954).

An entire function f of finite exponential type 7(f) can be
written

(FER0)gr(1 = 2) + fEP (1 +Z a; sin(jz)

WE

f(z) =

B
Il

0

with mm < 7, while gy, is the sum of A, and a finite
trigonometric sum.

For |t| < (N + 1),

N . 00
sinh(¢ )" sin(nmz .
=n 3 e e

smh 12 4+ n2yr?
n=0
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An expansion of entire functions

Proposition.

Let f be an entire function. The two following conditions are

equivalent.
(7) f(2n)(0) — f(2n)(1) — 0 forall n>0.
(17) f is the sum of a series

Z a, sin(nmz)

n>1

which converges normally on any compact.
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Odd derivatives at 0 and 1

A polynomial f is determined up to the addition of a constant
by the numbers

f(2n+1) (O) and f(2n+1)(1)

The interpolation problem related with odd derivatives at 0
and 1 is solved by using Lidstone interpolation for the
derivative of f.
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Odd derivatives at 0 and even derivatives at 1

Lemma. Let f be a polynomial satisfying
FED0) = £ (1) = 0 for all n > 0.

Then f = 0.

Proofs.
1. By induction.

2. f(z+4) = f(2).

3. Triangular system. n
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Whittaker expansion of a polynomial

The Lemma means that a polynomial f is uniquely determined
by the numbers

fEHD0) and  f@(1) for n > 0.

Any polynomial f € C|z] has the finite expansion

=> (f (2) = fED )M 44 (1 = 2))

n=0

with only finitely many nonzero terms in the series.
A basis of the Q—space of polynomials in Q[z] of degree < 2n
is given by the 2n 4 1 polynomials

Mo(2), M1(2),...,M,(2), My(1—=2),....,M (1-2z).
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Whittaker polynomials

Following J.M. Whittaker (1935), one defines a sequence
(M,)n>0 of even polynomials by induction on n with M, = 1,

M!'=M, 1, M,(1)= M, (0)=0 foralln>1.

This is equivalent to

M7(12k:+1)<0) —0, M(Qk’)(l) =0, forn>0 and k> 0.

n

For instance
1

M) =52~ 1), Mo(s) = 5 (2

e 1)<Z2 - 5)7
1

720(2 —1)(2* — 142% 4 61).

Mg(Z)
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Induction formula for Whittaker polynomials
The polynomial f(z) = 2%" satisfies
(2n)! for0 <k <n,

(2k+1) 0) =0 for k > 0, (2k) 1) = (2n—2k)!
/ (0) o ) 0 fork>n-+1.

One deduces

n—1

=3 B M) + M),

which yields the following induction formula

n—1

"= G 2n—2k Mi(2).

k:0

M (z) =
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Exponential type < /2

Theorem (J.M. Whittaker, 1935).

Any entire function f of exponential type < /2 has a unique
convergent expansion

= S (SO ()M (2) — FEIO)M (1 - 2))

n=0

Hence, if such a function satisfies f"+Y(0) = f@7(1) =0
for all sufficiently large n, then it is a polynomial.

This is best possible: the entire function cos(5z) has
exponential type 7/2 and satisfies f?"*1(0) = (1) =0
for all n > 0.
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Generating series
Fort € C, t € im + 2inZ, the entire function

cosh(tz) e +e”

/(=)= cosh(t)  ef +e-t

satisfies
fr=2f f=1, f0)=0,
hence f"(1) =" and f?"*+Y(0) = 0 for all n > 0.

The sequence (M,,),>o is also defined by the expansion

cosh(t
2" M., (
cosh Z

for [t| < 7/2 and z € C.

38 /49



Integral formula for Whittaker polynomials

Using Cauchy’s residue Theorem, we deduce the integral

formula
M) = 1)7122"+2521 (—1)® (25 4+ 1)1
n(z)=(— cos z
2n+1 — (25 + 1)2n+1 92
1 t_gn_lcosh(tz)
27 J =g cosh(t)

for S=1,2,... and z € C.

In particular, with S = 1 we obtain

2n—+2 1 h
My(z) = (-1)" 55— COS(?TZ/Q)—I——/ 4—2m—1508 (tz)dt.
[t|=m

7-[-2n+1 2711

cosh(t)
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Further estimates on Whittaker polynomials
There exist positive contants v}, 75, 74 and 7} such that the
following holds.

(1) For r > 0 and n > 0, we have
/

M|, < h max{r,2n}>".

(2n)!
(i7) For sufficiently large r and for all n > 0,
er+1/(4r)

\2Tr '

|Mplr <75
(17i) For r > 0 and n > 0,
|Mn|r < 7522n7r—2ne7rr‘

(1v) For r sufficiently large,

> M, < 1.

n>yyr
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Solution of the Whittaker interpolation problem

Consequence of Whittaker's expansion formula:
Let (an)n>0 and (by,),>0 be two sequences of complex
numbers satisfying

lim sup |a, |Y™ < and  limsup |b,|"/" <
n—00 n—o00 4

Then the function

F(2) =D anMa ZanH 2)

is the unique entire function of exponential type < 7 satisfying

(1) =a, and f@H(0) = b, forall n > 0.
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Finite exponential type

Theorem (l.J. Schoenberg, 1936).

Let f be an entire function of finite exponential type 7(f)
satisfying f"*V(0) = V(1) = 0 for all n > 0. Then there
exist complex numbers ¢y, ..., c;, with L < 27(f)/m such that
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Whittaker classification

Given two sequences p = (p,)n>0 and ¢ = (¢n)n>0 of nonnegative
integers, does there exist two sequences w = (7, )n>0 and
¢ = (Cn)n>0 of polynomials such that, for n,k > 0,

7P (1) = G, TI(0) =0, and ¢PH(1) =0, ¢9(0) =47

is called complete, and any polynomial f c;\n be written in a
unique way as a finite sum

2) =Y fPIWmalz) + Y F9(0)Gu(z)

n>0 n>0

If there are several solutions (r, (), then (p, q) is called
indeterminate.

If there is no solution (, (), then (p, q) is called redundant.
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