

Hermite-Lindemann's Theorem (continued)

- Let α be a nonzero algebraic number and let $\log \alpha$ be any nonzero logarithm of α. Then $\log \alpha$ is transcendental.
- Notations. Denote by $\overline{\mathbb{Q}}$ the field of algebraic numbers and by \mathcal{L} the \mathbb{Q}-vector space of logarithms of algebraic numbers :
$\mathcal{L}=\left\{\lambda \in \mathbb{C} ; e^{\lambda} \in \overline{\mathbb{Q}}^{\times}\right\}=\exp ^{-1}\left(\overline{\mathbb{Q}}^{\times}\right)=\left\{\log \alpha ; \alpha \in \overline{\mathbb{Q}}^{\times}\right\}$.
- Alternative statement of

Hermite-Lindemann's Theorem

$$
\mathcal{L} \cap \overline{\mathbb{Q}}=\{0\} .
$$

Hermite-Lindemann's Theorem : Let β be a nonzero algebraic number. Then e^{β} is transcendental.
Question (G. Diaz) : Let t be a non-zero real number and β a non-zero algebraic number. Is it true that $e^{t \beta}$ is transcendental?

- Answer (G. Diaz) : No!
- First example : assume $\beta \in \mathbb{R}$. Take $t=(\log 2) / \beta$.
- Second example : assume $\beta \in i \mathbb{R}$. Take $t=i \pi / \beta$.

- Let $\beta \in \overline{\mathbb{Q}}$ and $t \in \mathbb{R}^{\times}$. Assume $\beta \notin \mathbb{R} \cup i \mathbb{R}$. Then $e^{t \beta}$ is transcendental.
- Equivalently : for $\lambda \in \mathcal{L}$ with $\lambda \notin \mathbb{R} \cup i \mathbb{R}$,

$$
\mathbb{R} \lambda \cap \overline{\mathbb{Q}}=\{0\} .
$$

- Proof. Set $\alpha=e^{t \beta}$. The complex conjugate $\bar{\alpha}$ of α is $\epsilon^{t \bar{\beta}}=\alpha^{\bar{\beta} / \beta}$. Since $\beta \notin \mathbb{R} \cup i \mathbb{R}$, the algebraic number $\bar{\beta} / \beta$ is not real (its modulus is 1 and it is not +1), β / β is not real (its modulus is 1 and it is not ± 1) implies that α and $\bar{\alpha}$ cannot be both algebraic. Hence they are both transcendental.

- Selberg, Siegel, Lang, Ramachandra
- Theorem: If x_{1}, x_{2} are \mathbb{Q}-linearly independent complex numbers and y_{1}, y_{2}, y_{3} are \mathbb{Q}-linearly independent complex numbers, then one at least of the six numbers

$$
e^{x_{1} y_{1}}, e^{x_{1} y_{2}}, e^{x_{1} y_{3}}, e^{x_{2} y_{1}}, e^{x_{2} y_{2}}, e^{x_{2} y_{3}}
$$

is transcendental.

References

图 S. LANG - Introduction to transcendental numbers Addison-Wesley Publishing Co., Reading,
Mass.-London-Don Mills, Ont., 1966
回 K. Ramachandra - < Contributions to the theory of transcendental numbers. I, II », Acta Arith. 14 (1967/68), 65-72 ; ibid. 14 (1967/1968), p. 73-88.

Corollary

- Example : Take $x_{1}=1, x_{2}=\pi, y_{1}=\log 2, y_{2}=\pi \log 2$, $y_{3}=\pi^{2} \log 2$, the six exponentials are respectively

$$
2,2^{\pi}, 2^{\pi^{2}}, 2^{\pi}, 2^{\pi^{2}}, 2^{\pi^{3}},
$$

hence one at least of the three numbers

$$
2^{\pi}, 2^{\pi^{2}}, 2^{\pi^{3}}
$$

$$
\text { (1967/68), 65-72; ibid. } 14 \text { (1967/1968), p. 73-88. }
$$

is transcendental

- Shorey : lower bound for

$$
\left|2^{\pi}-\alpha_{1}\right|+\left|2^{\pi^{2}}-\alpha_{2}\right|+\left|2^{\pi^{3}}-\alpha_{3}\right|
$$

for algebraic $\alpha_{1}, \alpha_{2}, \alpha_{3}$. The estimate depends on the
heights and degrees of these algebraic numbers.

References：

國 T．N．Shorey－＜On a theorem of Ramachandra» Acta Arith． 20 （1972），p．215－221．

T．N．Shorey－＜On the sum $\sum_{k=1}^{3} 2^{\pi^{k}}-\alpha_{k}, \alpha_{k}$ algebraic numbers »，J．Number Theory 6 （1974）， p．248－260．

S．Srinivasan contributions
Further references
圊 S．SrinivaSAn－＜On algebraic approximations to $2^{\pi^{k}}(k=1,2,3, \ldots) \geqslant$ ，Indian J．Pure Appl．Math． 5 （1974），no．6，p．513－523

固 S．Srinivasan－＜On algebraic approximations to $2^{\pi^{k}}(k=1,2,3, \cdots)$ ．II »，J．Indian Math．Soc．（N．S．） 43 （1979），no．1－4，p．53－60（1980）

目 K．Ramachandra \＆S．Srinivasan－＜A note to a paper：＂Contributions to the theory of transcendental numbers．I，II＂by Ramachandra on transcendental numbers »，Hardy－Ramanujan J． 6 （1983），p．37－44．$\overline{\underline{1}}$ ．acc

Conjectures

The Four Exponentials Conjecture

- Remark : It is unknown whether one of the two numbers

$$
2^{\pi}, 2^{\pi^{2}}
$$

is transcendental. One conjectures (Schanuel) that each of the three numbers $2^{\pi}, 2^{\pi^{2}}, 2^{\pi^{3}}$ is transcendental

- and that the numbers

$$
\pi, \log 2,2^{\pi}, 2^{\pi^{2}}, 2^{\pi^{3}}
$$

are algebraically independent.

- Selberg, Siegel, Schneider, Lang, Ramachandra.
- Conjecture. If x_{1}, x_{2} are \mathbb{Q}-linearly independent complex numbers and y_{1}, y_{2} are \mathbb{Q}-linearly independent complex numbers, then one at least of the four numbers

$$
e^{x_{1} y_{1}}, e^{x_{1} y_{2}}, e^{x_{2} y_{1}}, e^{x_{2} y_{2}}
$$

is transcendental.

Ramachandra's trick

- Remark: Let x and y be two real numbers The following properties are equivalent
(i) one at least of the two numbers x, y is transcendental.
(ii) the complex number $x+i y$ is transcendental.
- Example : (H.W. Lenstra) if γ is Euler's constant, then the number $\gamma+i e^{\gamma}$ is transcendental.
- Proof : check $\gamma \neq 0$ and use Hermite-Lindemann's Theorem.

Other example.

- Let x_{1}, x_{2} be two elements in $\mathbb{R} \cup i \mathbb{R}$ which are
\mathbb{Q}-linearly independent. Let y_{1}, y_{2} be two complex
numbers. Assume that the three numbers $y_{1}, y_{2}, \overline{y_{2}}$ are
\mathbb{Q}-linearly independent. Then one at least of the four
numbers

$$
e^{x_{1} y_{1}}, e^{x_{1} y_{2}}, e^{x_{2} y_{1}}, e^{x_{2} y_{2}}
$$

is transcendental.
Proof: Set $y_{3}=\overline{y_{2}}$. Then $e^{x_{j} y_{3}}=e^{ \pm x_{j} y_{2}}$ for $j=1,2$ and \mathbb{Q} is stable under complex conjugation.

Rank of matrices. An alternate form of the Six
Exponentials Theorem (resp. the Four Exponentials
Conjecture) is the fact that $a 2 \times 3$ (resp. 2×2) matrix with entries in \mathcal{L}

$$
\left(\begin{array}{lll}
\lambda_{11} & \lambda_{12} & \lambda_{13} \\
\lambda_{21} & \lambda_{22} & \lambda_{23}
\end{array}\right) \quad \text { (resp. }\left(\begin{array}{ll}
\lambda_{11} & \lambda_{12} \\
\lambda_{21} & \lambda_{22}
\end{array}\right) \quad \text {), }
$$

the rows of which are linearly independent over \mathbb{Q} and the columns of which are also linearly independent over \mathbb{Q}, has maximal rank 2.

The strong Six Exponentials Theorem

Denote by $\widetilde{\mathcal{L}}$ the $\overline{\mathbb{Q}}$-vector space spanned by 1 and \mathcal{L} : hence $\widetilde{\mathcal{L}}$ is the set of linear combinations with algebraic coefficients of logarithms of algebraic numbers

$$
\widetilde{\mathcal{L}}=\left\{\beta_{0}+\beta_{1} \lambda_{1}+\cdots+\beta_{n} \lambda_{n} ; n \geq 0, \beta_{i} \in \overline{\mathbb{Q}}, \lambda_{i} \in \mathcal{L}\right\} .
$$

Theorem (D.Roy). If x_{1}, x_{2} are $\overline{\mathbb{Q}}$-linearly independent complex numbers and y_{1}, y_{2}, y_{3} are $\overline{\mathbb{Q}}$-linearly independen complex numbers, then one at least of the six numbers
$x_{1} y_{1}, x_{1} y_{2}, x_{1} y_{3}, \quad x_{2} y_{1}, x_{2} y_{2}, x_{2} y_{3}$
is not in $\widetilde{\mathcal{L}}$.

Conjecture. If x_{1}, x_{2} are $\overline{\mathbb{Q}}$-linearly independent complex numbers and y_{1}, y_{2} are $\overline{\mathbb{Q}}$-linearly independent complex numbers, then one at least of the four numbers

$$
x_{1} y_{1}, x_{1} y_{2}, x_{2} y_{1}, x_{2} y_{2}
$$

is not in $\widetilde{\mathcal{L}}$.
Lower bound for the rank of matrices

- Rank of matrices. An alternate form of the strong Si Exponentials Theorem (resp. the strong Four
Exponentials Conjecture) is the fact that $a \times 3$ (resp.
2×2) matrix with entries in \mathcal{L}

$$
\left(\begin{array}{lll}
\Lambda_{11} & \Lambda_{12} & \Lambda_{13} \\
\Lambda_{21} & \Lambda_{22} & \Lambda_{23}
\end{array}\right) \quad\left(\text { resp. }\left(\begin{array}{ll}
\Lambda_{11} & \Lambda_{12} \\
\Lambda_{21} & \Lambda_{22}
\end{array}\right) \quad\right. \text {), }
$$

the rows of which are linearly independent over $\overline{\mathbb{Q}}$ and
the columns of which are also linearly independent over $\overline{\mathbb{Q}}$, has maximal rank 2 .

- Remark : Under suitable conditions one can show that a $d \times \ell$ matrix with entries in $\widetilde{\mathcal{L}}$ has rank $\geq d \ell /(d+\ell)$. This is a consequence of the Linear Subgroup Theorem.

Alternate form of the strong Four Exponentials
Conjecture
References
目 D. Roy - < Matrices whose coefficients are linear forms
in logarithms », J. Number Theory 41 (1992), no. 1,
p. 22-47.
© M. Waldschmidt - Diophantine approximation on linear algebraic groups, Grundlehren der
Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences], vol. 326
Springer-Verlag, Berlin, 2000.

- Conjecture. Let $\Lambda_{1}, \Lambda_{2}, \Lambda_{3}$ be nonzero elements in $\widetilde{\mathcal{L}}$ Assume the numbers $\Lambda_{2} / \Lambda_{1}$ and $\Lambda_{3} / \Lambda_{1}$ are both transcendental. Then the number $\Lambda_{2} \Lambda_{3} / \Lambda_{1}$ is not in $\tilde{\mathcal{L}}$
- Equivalence between both statements : the matrix

$$
\left(\begin{array}{cc}
\Lambda_{1} & \Lambda_{2} \\
\Lambda_{3} & \Lambda_{2} \Lambda_{3} / \Lambda_{1}
\end{array}\right)
$$

has rank 1.
\square

Consequences of the strong Four Exponentials
Example where the strong Four Exponentials
Conjecture
Conjecture is true

Assume the strong Four Exponentials Conjecture

- If Λ is in $\widetilde{\mathcal{L}} \backslash \overline{\mathbb{Q}}$ then the quotient $1 / \Lambda$ is not in $\widetilde{\mathcal{L}}$
- If Λ_{1} and Λ_{2} are in $\widetilde{\mathcal{L}} \backslash \overline{\mathbb{Q}}$, then the product $\Lambda_{1} \Lambda_{2}$ is not in \mathcal{L}
- If Λ_{1} and Λ_{2} are in \mathcal{L} with Λ_{1} and $\Lambda_{2} / \Lambda_{1}$ transcendental, then this quotient $\Lambda_{2} / \Lambda_{1}$ is not in $\widetilde{\mathcal{L}}$.

Example where the strong Four Exponentials
Conjecture is true

- Corollary of Diaz' Theorem. Let $\Lambda_{1}, \Lambda_{2}, \Lambda_{3}$ be three elements in \mathcal{L}. Assume that the three numbers Λ_{1}, Λ_{2} $\overline{\Lambda_{2}}$ are linearly independent over $\overline{\mathbb{Q}}$. Further assume
$\Lambda_{3} / \Lambda_{1} \in(\mathbb{R} \cup i \mathbb{R}) \backslash \mathbb{Q}$. Then
$\Lambda_{2} \Lambda_{3} / \Lambda_{1} \notin \overline{\mathbb{Q}}$.
- Proof : set $x_{1}=1, x_{2}=\Lambda_{3} / \Lambda_{1}, y_{1}=\Lambda_{1}, y_{2}=\Lambda_{2}$.

Hermite-Lindemann $\frac{8 \text { Gelifond-Schneider }}{\text { Six Exponentials }}$

Product of logarithms of algebraic numbers

- Theorem (Diaz). Let λ_{1} and λ_{2} be in $\mathcal{L} \backslash\{0\}_{\tilde{\mathcal{L}}}$ Assume $\lambda_{1} \in \mathbb{R} \cup i \mathbb{R}$ and $\lambda_{2} \notin \mathbb{R} \cup i \mathbb{R}$. Then $\lambda_{1} \lambda_{2} \notin \mathcal{L}$.
- Open problem : is the number $e^{\pi^{2}}$ transcendental?
- More generally : for $\lambda \in \mathcal{L} \backslash\{0\}$, is it true that $\lambda \bar{\lambda} \notin \mathcal{L}$?
- More generally : for λ_{1} and λ_{2} in $\mathcal{L} \backslash\{0\}$, is it true that $\lambda_{1} \lambda_{2} \notin \mathcal{L}$?
- For λ_{1} and λ_{2} in $\mathcal{L} \backslash\{0\}$, is it true that $\lambda_{1} \lambda_{2} \notin \widetilde{\mathcal{L}}$?

Namen wamy
Recent results

R G. Diaz - < Utilisation de la conjugaison complexe dans l'étude de la transcendance de valeurs de la fonction exponentielle », J. Théor. Nombres Bordeaux 16 (2004), p. 535-553.

圁 G. DiAz - < Produits et quotients de combinaisons linéaires de logarithmes de nombres algébriques conjectures et résultats partiels », Submitted (2005), 19 p.

Let M be a 2×3 matrix with entries in $\tilde{\mathcal{L}}$:

$$
M=\left(\begin{array}{lll}
\Lambda_{11} & \Lambda_{12} & \Lambda_{13} \\
\Lambda_{21} & \Lambda_{22} & \Lambda_{23}
\end{array}\right)
$$

Assume that the five rows of the matrix

$$
\binom{M}{I_{3}}=\left(\begin{array}{ccc}
\Lambda_{11} & \Lambda_{12} & \Lambda_{13} \\
\Lambda_{21} & \Lambda_{22} & \Lambda_{23} \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

are linearly independent over $\overline{\mathbb{Q}}$ and that the five columns of the
matrix
$\left(I_{2}, M\right)=\left(\begin{array}{lllll}1 & 0 & \Lambda_{11} & \Lambda_{12} & \Lambda_{13} \\ 0 & 1 & \Lambda_{21} & \Lambda_{22} & \Lambda_{23}\end{array}\right)$
are linearly independent over $\overline{\mathbb{Q}}$.
Then one at least of the three numbers
$\Delta_{1}=\left|\begin{array}{ll}\Lambda_{12} & \Lambda_{13} \\ \Lambda_{22} & \Lambda_{23}\end{array}\right|, \quad \Delta_{2}=\left|\begin{array}{ll}\Lambda_{13} & \Lambda_{11} \\ \Lambda_{23} & \Lambda_{21}\end{array}\right|, \quad \Delta_{3}=\left|\begin{array}{ll}\Lambda_{11} & \Lambda_{12} \\ \Lambda_{21} & \Lambda_{22}\end{array}\right|$
is not in $\widetilde{\mathcal{L}}$.

Let $M=\left(\Lambda_{i j}\right)_{1 \leq i \leq m \cdot 1 \leq j \leq \ell}$ be a $m \times \ell$ matrix with entries in $\widetilde{\mathcal{L}}$. Denote by I_{m} the identity $m \times m$ matrix and assume that the $m+\ell$ column vectors of the matrix $\left(I_{m}, M\right)$ are linearly independent over $\overline{\mathbb{Q}}$. Let $\Lambda_{1}, \ldots, \Lambda_{m}$ be elements of
\mathcal{L}. Assume that the numbers $1, \Lambda_{1}, \ldots, \Lambda_{m}$ are $\overline{\mathbb{Q}}$-linearly independent. Assume further $\ell>m^{2}$. Then one at least of the ℓ numbers

$$
\Lambda_{1} \Lambda_{1 j}+\cdots+\Lambda_{m} \Lambda_{m j} \quad(j=1, \ldots, \ell)
$$

is not in $\widetilde{\mathcal{L}}$.

Janam din diyan wadhayian, Tarlok!

