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Institut de Mathématiques et de Sciences Physiques (IMSP)
http://imsp-benin.com/home/

Centre d’Excellence Africain en Sciences Mathématiques et Applications
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Abstract

Dynamical systems were studied by Henri Poincaré and Carl
Ludwig Siegel, who developed the theory of celestial
mechanics. The behavior of a holomorphic dynamical system
near a fixed point depends on a Diophantine condition.

Along these lines, we give a survey on Diophantine
approximation, culminating with the subspace theorem of
Wolfgang Schmidt.



Abstract

Dynamical systems were studied by Henri Poincaré and Carl
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Celestial mechanics

Classical mechanics :
Sir Isaac Newton
(1643 – 1727)

• The solar system

• The three body problem

• Two body problem
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Edward Norton Lorenz (1917 – 2008)

In chaos theory, the butterfly e↵ect is the sensitive dependency
on initial conditions in which a small change at one place in a
deterministic nonlinear system can result in large di↵erences in
a later state. The name of the e↵ect, coined by Edward
Lorenz, is derived from the theoretical example of the
formation of a hurricane being contingent on whether or not a
distant butterfly had flapped its wings several weeks earlier.



Lorenz’s butterfly e↵ect

Two states di↵ering by imperceptible amounts may eventually
evolve into two considerably di↵erent states. If, then, there is
any error whatever in observing the present state — and in
any real system such errors seem inevitable — an acceptable
prediction of an instantaneous state in the distant future may
well be impossible. In view of the inevitable inaccuracy and
incompleteness of weather observations, precise
very-long-range forecasting seems to be nonexistent.

Lorenz’s description of the butterfly e↵ect followed in 1969.

However, recent research shows that complex systems may not

behave like systems with fewer parameters.
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Henri Poincaré (1854 – 1912)
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Carl Ludwig Siegel (1896 – 1981)



Dynamical System : iteration of a map

Consider a set X and map f : X ! X. We denote by f 2 the
composed map f � f : X ! X.

More generally, we define inductively fn
: X ! X by

fn
= fn�1 � f for n � 1, with f 0 being the identity.

The orbit of a point x 2 X is the sequence

(x, f(x), f 2
(x), . . . )

of elements of X.
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Fixed points, periodic points

A fixed point is an element x 2 X such that f(x) = x. A fixed
point is a point, the orbit of which has one element x.

A periodic point is an element x 2 X for which there exists
n � 1 with fn

(x) = x. The smallest such n is the length of
the period of x, and all such n are multiples of the period
length. The orbit

{x, f(x), . . . , fn�1
(x)}

has n elements.

For instance, a fixed point is a periodic point of period length
1.
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Example 1 : endomorphism of a vector space

Take for X a finite dimensional vector space V over a field K
and for f : V ! V a linear map.

A fixed point of f is an element x 2 V such that f(x) = x,
hence, it is nothing else than an eigenvector with eigenvalue 1.

A periodic point of f is an element x 2 V such that there
exists n � 1 with fn

(x) = x, hence, f has an eigenvalue �
with �n

= 1 (root of unity).

If V has dimension d and if we choose a basis of V , then to f
is associated a d⇥ d matrix A with coe�cients in K.
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Associated matrix

When f is the linear map associated with the d⇥ d matrix A,
then, for n � 1, fn is the linear map associated with the
matrix An.

To compute An, we write the matrix A as a conjugate to
either a diagonal or a Jordan matrix

A = P�1DP,

where P is a regular d⇥ d matrix. Then, for n � 0,

An
= P�1DnP.
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Diagonal form

If D is diagonal with diagonal (�1, . . . ,�d), then Dn is
diagonal with diagonal (�n

1 , . . . ,�
n
d) and

An
= P�1

0

B@
�n
1 0

. . .
0 �n

d

1

CAP.

Exercise : compute An for n � 0 and for each of the two
matrices ✓

1 0

�1 2

◆
and

✓
0 1

1 1

◆
.
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Camille Jordan (1838 – 1922)

If A cannot be diagonalized, it
can be put in Jordan form
with diagonal blocs like

0

BBBBB@

� 1 0 · · · 0

0 � 1 · · · 0

...
...

...
. . .

...
0 0 0 · · · 1

0 0 0 · · · �

1

CCCCCA
.

For instance, for d = 2,

A = P�1DP with D =

✓
� 1

0 �

◆
,

and

An
= P�1

✓
�n n�n�1

0 �n

◆
P.



Example 2 : holomorphic dynamic

Our second and main example of a dynamical system is with
an open set V in C and an analytic (=holomorphic) map
f : V ! V . The main goal will be to investigate the behavior
of f near a fixed point z0 2 V . So we assume f(z0) = z0.

The local behavior of the dynamics defined by f depends on
the derivative f 0

(z0) of f at the fixed point.

If |f 0
(z0)| < 1, then z0 is an attracting point.

If |f 0
(z0)| > 1, then z0 is a repelling point.

The most interesting case is |f 0
(z0)| = 1
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Conjugate holomorphic maps

We wish to mimic the situation of an endomorphism of a
vector space : in place of a regular matrix P , we introduce a
local change of coordinates. Let D be the open unit disc in C

and g : D ! D an analytic map with g(0) = 0. We say that f
and g are conjugate if there exists an analytic map h : V ! D,
with h0

(z0) 6= 0, such that h(z0) = 0 and h � f = g � h.

z0 2 V f���! V 3 z0 f(z0) = z0

h

??y
??y h

0 2 D ���!
g

D 3 0 g(0) = 0
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Local behavior

Assume f : V ! V and g : D ! D are conjugate : there exists
h : D ! D, with h0

(z0) 6= 0 and h � f = g � h.

From h0
(z0) 6= 0, one deduces that h is unique up to a

multiplicative nonzero factor.

Further,

h � f 2
= h � f � f = g � h � f = g � g � h = g2 � h

and, by induction, h � fn
= gn � h for all n � 0.
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Linearization of germs of analytic di↵eomorphisms

of one complex variable

Lemma. If f is conjugate to the homothety g(z) = �z, then
� = f 0

(z0).
Hence, in this case, f is conjugate to its linear part. One says
that f is linearizable.

Proof. Take the derivative of h � f = g � h at z0 :

h0
(z0)f

0
(z0) = �h0

(z0)

and use h0
(z0) 6= 0.
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Johann Samuel König (1712 – 1757)

Define � = f 0
(z0).

Theorem (Königs and
Poincaré). For |�| 62 {0, 1},
f is linearizable.

For � = 0 and z0 = 0, f has a zero of multiplicity n � 2 at 0
and is conjugate to z 7! zn (A. Böttcher).

We are interested in the case |�| = 1. It was conjectured in
1912 by E. Kasner that f is always linearizable. In 1917, G.A.
Pfei↵er produced a counterexample. In 1927, H. Cremer
proved that in the generic case, f is not linearizable.
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The case |�| = 1

Assume |�| = 1. Write � = e2i⇡✓. The real number ✓ is the
rotation number of f at z0.

In 1942, C.L. Siegel proved that if ✓ satisfies a Diophantine
condition, then f is conjugate to the rotation z 7! e2i⇡✓z.

In 1965, A.D. Brjuno relaxed Siegel’s assumption.

In 1988, J.C. Yoccoz showed that if ✓ does not satisfies
Brjuno’s condition, then the dynamic associated with

f(z) = �z + z2

has infinitely many periodic points in any neighborhood of 0,
hence, is not linearizable.
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C.L. Siegel, A.D. Brjuno, J.C. Yoccoz

Carl Ludwig Siegel Jean-Christophe Yoccoz
(1896 – 1981) (1957 — 2016)

Alexander Dmitrijewitsch Brjuno
(1940 – )

1942 1965 1988



KAM Theory

Andrey Nikolaevich Kolmogorov Jürgen Kurt Moser
Vladimir Igorevich Arnold

(1903 – 1987) (1928 – 1999)
(1937 – 2010)



Siegel’s Diophantine condition : Liouville numbers

Siegel’s Diophantine condition on the rotation number ✓ is
that a rational number p/q with a small denominator q cannot
be too good of a rational approximation of ✓.

The same condition was introduced by Liouville, who proved in
1844 that Siegel’s Diophantine condition is satisfied if ✓ is an
algebraic number.
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Algebraic numbers

A complex number ↵ is algebraic if there exists a nonzero
polynomial f 2 Z[X] such that f(↵) = 0. The smallest degree
of such a polynomial is the degree of the algebraic number ↵.

For instance
p
2, i =

p
�1, 3

p
2, e2i⇡a/b (for a and b integers,

b > 0) are algebraic numbers.

The roots of the quintic polynomial

X5 � 6X + 3

are algebraic numbers (but cannot be expressed using radicals).
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Transcendental numbers
A number which is not algebraic is transcendental.
The existence of transcendental numbers was not known
before 1844, when Liouville produced the first examples, like

⇠ =

X

n�0

1

10

n!
·

The idea of Liouville is to prove a Diophantine property of
algebraic numbers, namely that rational numbers with small
denominators do not produce sharp approximations. Hence, a
real number with too good rational approximations cannot be
algebraic.
For instance, with the above number ⇠ and q = 10

N !,

p =

NX

n=0

10

N !�n!, 0 < ⇠ � p

q
<

2

10

(N+1)!
=

2

qN+1
·
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Liouville’s inequality (1844)

Liouville’s inequality. Let ↵
be an algebraic number of

degree d � 2. There exists

c(↵) > 0 such that, for any

p/q 2 Q with q > 0,

����↵� p

q

���� >
c(↵)

qd

Joseph Liouville
(1809 - 1882)



The Diophantine condition of Liouville and Siegel

A real number ✓ satisfies a Diophantine condition if there
exists a constant  > 0 such that

����✓ �
p

q

���� >
1

q

for all p/q 2 Q with q � 2.

A real number is a Liouville number if it does not satisfy a
Diophantine condition.
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Generic vs full measure, Baire vs Lebesgue
René Baire Henri Léon Lebesgue
(1874 – 1932) (1875 – 1941)

In dynamical systems, a property is satisfied for a generic

rotation number ✓ if it is true for all numbers in a countable
intersection of dense open sets – these sets are called G� sets
by Baire who calls meager the complement of a G� set.
The set of numbers which do not satisfy a Diophantine
condition is a generic set. For Lebesgue measure, the set of
Liouville numbers (i.e. the set of numbers which do not satisfy
a Diophantine condition) has measure zero.
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Mathematical genealogy

René Baire (1899)
|

Arnaud Denjoy (1909)
|

Charles Pisot (1938)
|

Yvette Amice (1965)
|

Jean Fresnel (1967)
|

Michel Waldschmidt (1972)

http://genealogy.math.ndsu.nodak.edu

http://genealogy.math.ndsu.nodak.edu


Brjuno’s condition

In terms of continued fraction, the Diophantine condition (of
Liouville and Siegel) can be written

sup

n�1

log qn+1

log qn
< 1.

The condition of Brjuno is

X

n�1

log qn+1

qn
< 1.

If a number ✓ satisfies the Diophantine condition, then it
satisfies Brjuno’s condition. But there are (transcendental)
numbers which do not satisfy the Diophantine condition, but
satisfy Brjuno’s condition.
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Improvements of Liouville’s inequality

In the lower bound
����↵� p

q

���� >
c(↵)

qd

for ↵ real algebraic number of degree d � 3, the exponent d of
q in the denominator of the right hand side was replaced by 
with
• any  > (d/2) + 1 by A. Thue (1909),
• 2

p
d by C.L. Siegel in 1921,

•
p
2d by F.J. Dyson and A.O. Gel’fond in 1947,

• any  > 2 by K.F. Roth in 1955.
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Thue– Siegel– Roth Theorem

Axel Thue
(1863 – 1922)

Carl Ludwig Siegel
(1896 – 1981)

Klaus Friedrich Roth

(1925 – 2015)

For any real algebraic number ↵, for any ✏ > 0, the set of

p/q 2 Q with |↵� p/q| < q�2�✏
is finite.



Thue– Siegel– Roth Theorem

An equivalent statement is that, for any real algebraic
irrational number ↵ and for any ✏ > 0, the set of p/q 2 Q

such that

q|q↵� p| < q�✏

is finite.

The conclusion can be phrased :
the set of (p, q) 2 Z

2
such that

q|q↵� p| < q�✏

is contained in the union of finitely many lines in Z

2 .
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Schmidt’s Subspace Theorem (1970)

For m � 2 let L0, . . . , Lm�1

be m independent linear

forms in m variables with

algebraic coe�cients. Let

✏ > 0. Then the set

{x = (x0, . . . , xm�1) 2 Z

m
;

|L0(x) · · ·Lm�1(x)|  |x|�✏}
is contained in the union of

finitely many proper

subspaces of Q

m
.

Wolfgang M. Schmidt
(1933 – )



Schmidt’s Subspace Theorem

W.M. Schmidt (1970) : For m � 2 let L0, . . . , Lm�1 be m
independent linear forms in m variables with algebraic

coe�cients. Let ✏ > 0. Then the set

{x = (x0, . . . , xm�1) 2 Z

m
; |L0(x) · · ·Lm�1(x)|  |x|�✏}

is contained in the union of finitely many proper subspaces of

Q

m
.

Example : m = 2, L0(x0, x1) = x0, L1(x0, x1) = ↵x0 � x1.

Roth’s Theorem : for any real algebraic irrational number ↵, for

any ✏ > 0, the set of p/q 2 Q with q|↵q � p| < q

�✏
is finite.
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Specialization arguments

The proof of Schmidt’s Subspace Theorem has an arithmetic
nature, the fact that the linear forms have algebraic
coe�cients is crucial.
The subspace Theorem does not hold without this assumption.

However, there are specializations arguments which enable one
to deduce consequences without any arithmetic assumption,
these corollaries ave valid for fields of zero characteristic in
general.
An example is the so–called Theorem of the generalized

S–unit equation.
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The generalized S–unit equation (1982)

Let K be a field of characteristic zero, let G be a finitely
generated multiplicative subgroup of the multiplicative group
K⇥

= K \ {0} and let n � 2.
Theorem (Evertse, van der Poorten, Schlickewei). The
equation

u1 + u2 + · · ·+ un = 1,

where the unknowns u1, u2, · · · , un take their values in G, for

which no nontrivial subsum

X

i2I

ui ; 6= I ⇢ {1, . . . , n}

vanishes, has only finitely many solutions.
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The generalized S–unit equation (1982)

Jan Hendrick Evertse Alf van der Poorten
Hans Peter Schlickewei



Linear recurrence sequences

Given a field K (of zero characteristic), a sequence (un)n�0 is
a linear recurrence sequence if there exist an integer d � 1 and
elements a0, a1, . . . , ad�1 of K such that, for n � 0,

un+d = ad�1un+d�1 + · · ·+ a1un+1 + a0un.

Such a sequence (un)n�0 is determined by the coe�cients
a0, a1, . . . , ad�1 and by the initial values u0, u1, . . . , ud�1.
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Exponential polynomials

If ↵1, . . . ,↵k are the distinct roots of the polynomial

Xd � ad�1X
d�1 � · · ·� a1X � a0

and s1, . . . , sk their multiplicities, then one can write

un =

kX

i=1

Ai(n)↵
n
i ,

where A1, . . . , Ak are polynomials with Ai of degree < si.

Hence, a linear recurrence sequence is given by an exponential
polynomial. Conversely, a sequence given by an exponential
polynomial is a linear recurrence sequence.
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Skolem – Mahler – Lech Theorem

The generalized S–unit Theorem yields the following :
Theorem (Skolem 1934 – Mahler 1935 – Lech 1953). Given a

linear recurrence sequence, the set of indices n � 0 such that

un = 0 is a finite union of arithmetic progressions.

Thoralf Albert Skolem Kurt Mahler Christer Lech
(1887 – 1963) (1903 – 1988)

An arithmetic progression is a set of positive integers of the
form {n0, n0 + k, n0 + 2k, . . .}. Here, we allow k = 0.



Another dynamical system

Let V be a finite dimensional vector space over a field of zero
characteristic, H an hyperplane of V , f : V ! V an
endomorphism (linear map) and x an element in V .

Corollary. If there exist infinitely many n � 1 such that

fn
(x) 2 H, then there is an (infinite) arithmetic progression of

n for which it is so.
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Idea of the proof

Choose a basis of V . The endomorphism f is given by a
square d⇥ d matrix A, where d is the dimension of V .
Consider the characteristic polynomial of A, say

Xd � ad�1X
d�1 � · · ·� a1X � a0.

By the Theorem of Cayley – Hamilton,

Ad
= ad�1A

d�1
+ · · ·+ a1A+ a0Id

where Id is the identity d⇥ d matrix.



Theorem of Cayley – Hamilton

Arthur Cayley Sir William Rowan Hamilton
(1821 – 1895) (1805 – 1865)

Hence, for n � 0,

An+d
= ad�1A

n+d�1
+ · · ·+ a1A

n+1
+ a0A

n.

It follows that each entry a
(n)
ij , 1  i, j  d, satisfies a linear

recurrence sequence, the same for all i, j.
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Hyperplane membership

Let b1x1 + · · ·+ bdxd = 0 be an equation of the hyperplane H
in the selected basis of V . Let tb denote the 1⇥ d matrix
(b1, . . . , bd) (transpose of a column matrix b). Using the
notation v for the d⇥ 1 (column) matrix given by the
coordinates of an element v in V , the condition v 2 H can be
written tb v = 0.

Let x be an element in V and x the d⇥ 1 (column) matrix
given by its coordinates. The condition fn

(x) 2 H can now be
written

tbAnx = 0.

The entry un of the 1⇥ 1 matrix tbAnx satisfies a linear
recurrence sequence, hence, the Skolem – Mahler – Lech
Theorem applies.
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Solution of the exercises

Exercise 1 : compute An
1 for n � 0 and

A1 =

✓
1 0

�1 2

◆
.

By induction one checks

An
1 =

✓
1 0

1� 2

n
2

n

◆
.

The trace of A1 is 3, the determinant is 2, the characteristic
polynomial is X2 � 3X + 2 = (X � 1)(X � 2), the linear
recurrence is

un+2 = 3un+1 � 2un.
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Solution of the second exercise
Exercise 2 : compute An

2 for n � 0, where A2 is the matrix

A2 =

✓
0 1

1 1

◆
.

The trace of A2 is 1, the determinant is �1, the characteristic
polynomial is X2 �X � 1, the linear recurrence is

un+2 = un+1 + un.

It follows that

An
2 =

✓
Fn�1 Fn

Fn Fn+1

◆

where (Fn)n�0 is the solution of linear recurrence sequence
Fn+2 = Fn+1 + Fn given by the initial conditions F0 = 0,
F1 = 1.
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Leonardo Pisano Fibonacci

The Fibonacci sequence
(Fn)n�0 :

0, 1, 1, 2, 3, 5, 8, 13, 21,

34, 55, 89, 144, 233 . . .

is defined by

F0 = 0, F1 = 1,

Fn = Fn�1 + Fn�2 (n � 2).

Leonardo Pisano Fibonacci
(1170–1250)



The online encyclopaedia of integer sequences
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597,
2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418,

317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, . . .

Fibonacci sequence is online
The On-Line Encyclopedia
of Integer Sequences

Neil J. A. Sloane

http://www.research.att.com/⇠njas/sequences/A000045

http://www.research.att.com/~njas/sequences/A000045


Diagonalization

The two eigenvalues of the matrix

A1 =

✓
1 0

�1 2

◆

are 1 and 2 with eigenvectors (1, 1) and (0, 1) respectively, so
that

A1 = P�1DP

with

P =

✓
1 0

�1 1

◆
, P�1

=

✓
1 0

1 1

◆

and

D =

✓
1 0

0 2

◆
.



Computation of An
1

for A
1

=

✓
1 0
�1 2

◆

From A1 = P�1DP with

P�1
=

✓
1 0

1 1

◆
, D =

✓
1 0

0 2

◆
, P =

✓
1 0

�1 1

◆
,

we deduce

An
1 = P�1DnP

=

✓
1 0

1 1

◆✓
1 0

0 2

n

◆✓
1 0

�1 1

◆

=

✓
1 0

1� 2

n
2

n

◆
.



Diagonalization of A
2

The characteristic polynomial of the matrix

A2 =

✓
0 1

1 1

◆

is
X2 �X � 1 = (X � �)(X + �

�1
),

where � is the Golden Number :

� =

1 +

p
5

2

= 1.618033 . . . , �

�1
=

�1 +

p
5

2

= �� 1

and
�+ �

�1
=

p
5.



Diagonalization of A
2

The eigenvalues of A2 are � and ��

�1 with eigenvectors
(1,�) and (1,��

�1
). Hence

A2 = P�1DP

with

P =

�1p
5

✓
��

�1 �1

�� 1

◆
, P�1

=

✓
1 1

� ��

�1

◆

and

D =

✓
� 0

0 ��

�1

◆
.



Computation of An
2

for A
2

=

✓
0 1
1 1

◆

From

An
2 = P�1DnP

=

�1p
5

✓
1 1

� ��

�1

◆✓
�

n
0

0 (��)

�n

◆✓
��

�1 �1

�� 1

◆

=

✓
Fn�1 Fn

Fn Fn+1

◆
.

we deduce

Fn =

1p
5

�
�

n � (��)

�n
�



Fibonacci sequence and the Golden Number

A. De Moivre (1730), L. Euler (1765), J.P.M. Binet (1843) :

Fn =

1p
5

  
1 +

p
5

2

!n

�
 
1�

p
5

2

!n!
.

Remark Since 0 < �

�1 < 1, the quantity �

�n is exponentially

small, hence Fn is very close to
1p
5

�

n.



Fibonacci sequence and the Golden Number

A. De Moivre (1730), L. Euler (1765), J.P.M. Binet (1843) :

Fn =

1p
5

  
1 +

p
5

2

!n

�
 
1�

p
5

2

!n!
.

Remark Since 0 < �

�1 < 1, the quantity �

�n is exponentially

small, hence Fn is very close to
1p
5

�

n.



De Moivre – Euler – Binet formula

Abraham de Moivre
(1667–1754)

Leonhard Euler
(1707–1783)

Jacques Philippe
Marie Binet
(1786–1856)

Fn is the nearest integer to
1p
5

�

n.
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