RUPP Master in Mathematics Program: Number Theory

Michel Waldschmidt

1. Prove by induction that $4^{2 n+1}+3^{n+2}$ is a multiple of 13 for $n \geq 0$.
2. If $m>1$ and a is prime to m, show that the remainders obtained by dividing $a, 2 a, \ldots,(m-1) a$ by m are the numbers $1,2, \ldots, m-1$ in some order.
3. If m is any odd integer, prove that

$$
1^{m}+2^{m}+\cdots+(m-1)^{m} \equiv 0 \quad(\bmod m)
$$

4. Let G be a finite multiplicative group with p elements and p is prime. Show that G is cyclic and that any element $\neq 1$ is a generator.
5. Show that a finite ring without zero divisor is a field.
6.

a) Find all solutions (x, y) in positive integers of the equation $x^{2}-7 y^{2}=-1$.
b) Find two solutions $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in positive integers with $1<x_{1}<$ x_{2} of the equation $x^{2}-7 y^{2}=1$.
Hint: the following computations can be used:

$$
\begin{aligned}
& \sqrt{7}=2.6457 \cdots=2+\frac{1}{x_{1}}, \quad x_{1}=1.5485 \cdots=1+\frac{1}{x_{2}}, \\
& x_{2}=1.8228 \cdots=1+\frac{1}{x_{3}}, \quad x_{3}=1.2152 \cdots=1+\frac{1}{x_{4}}, \\
& x_{4}=4.6457 \cdots=2+\sqrt{7} . \\
& \quad \text { http }: / / \text { www } \cdot \text { math. jussieu.fr/ } \sim \text { miw/enseignement.html }
\end{aligned}
$$

