Master Training Program : Royal Academy of Cambodia/CIMPA

Written control: October 26, 2006
Timing: 3 hours
No document, no calculator
All answers require a proof.

1. Recall that the continued fraction expansion of a real irrational number t, namely

$$
t=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{\ddots}}}}
$$

with $a_{j} \in \mathbf{Z}$ for all $j \geq 0$ and $a_{j} \geq 1$ for $j \geq 1$, is denoted by $\left[a_{0} ; a_{1}, a_{2}, a_{3}, \ldots\right]$.
Let t be the real number whose continued fraction expansion is $[1 ; 3,1,3,1,3,1, \ldots]$, which means $a_{2 n}=1$ and $a_{2 n+1}=3$ for $n \geq 0$. Write a quadratic polynomial with rational coefficients vanishing at t.
2. Solve the equation $y^{2}-y=x^{2}$
a) in $\mathbf{Z} \times \mathbf{Z}$,
b) in $\mathbf{Q} \times \mathbf{Q}$.
3. Solve the equation $x^{15}=y^{21}$ in $\mathbf{Z} \times \mathbf{Z}$.
4. Let $A=\mathbf{Z}[1 / 2]$ be the subring of \mathbf{Q} spanned by $1 / 2$.
a) Is A a finitely generated \mathbf{Z}-module?
b) Which are the units of A ?
5. Which are the finitely generated sub- \mathbf{Z}-modules of the additive group \mathbf{Q} ?
6. Find the rational roots of the polynomial $X^{7}-X^{6}+X^{5}-X^{4}-X^{3}+X^{2}-X+1$.
7. Let k be the number field $\mathbf{Q}(i, \sqrt{2})$.
a) What is the degree of k over \mathbf{Q} ? Give a basis of k over \mathbf{Q}. Find $\gamma \in k$ such that $k=\mathbf{Q}(\gamma)$. Which are the conjugates of γ over \mathbf{Q} ?
b) Show that k is a Galois extension of \mathbf{Q}. What is the Galois group? Which are the subfields of k ?
8. Let $\zeta \in \mathbf{C}$ satisfy $\zeta^{5}=1$ and $\zeta \neq 1$. Let $K=\mathbf{Q}(\zeta)$.
a) What is the monic irreducible polynomial of ζ over \mathbf{Q} ? Which are the conjugates of ζ over \mathbf{Q} ? What is the Galois group G of K over \mathbf{Q} ? Which are the subgroups of G ?
b) Show that K contains a unique subfield L of degree 2 over \mathbf{Q}. What is the ring of integers of L ? What is its discriminant? What is the group of units?

The solution will soon be available on the web site
http://www.math.jussieu.fr/~miw/coursCambodge2006.html

