Coopération Mathématique inter-universitaire Cambodge France

Michel Waldschmidt

Master Training Program : Royal Academy of Cambodia/CIMPA Written control: October 26, 2006

> Timing: 3 hours No document, no calculator

All answers require a proof.

1. Recall that the continued fraction expansion of a real irrational number t, namely

$$t = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{\ddots}}}}$$

with $a_j \in \mathbf{Z}$ for all $j \ge 0$ and $a_j \ge 1$ for $j \ge 1$, is denoted by $[a_0; a_1, a_2, a_3, \ldots]$.

Let t be the real number whose continued fraction expansion is [1; 3, 1, 3, 1, 3, 1, ...], which means $a_{2n} = 1$ and $a_{2n+1} = 3$ for $n \ge 0$. Write a quadratic polynomial with rational coefficients vanishing at t.

- **2.** Solve the equation $y^2 y = x^2$
- a) in $\mathbf{Z} \times \mathbf{Z}$,
- b) in $\mathbf{Q} \times \mathbf{Q}$.
- **3.** Solve the equation $x^{15} = y^{21}$ in $\mathbf{Z} \times \mathbf{Z}$.
- 4. Let $A = \mathbb{Z}[1/2]$ be the subring of \mathbb{Q} spanned by 1/2.
- a) Is A a finitely generated **Z**-module?
- b) Which are the units of A?

5. Which are the finitely generated sub–**Z**–modules of the additive group **Q**?

6. Find the rational roots of the polynomial $X^7 - X^6 + X^5 - X^4 - X^3 + X^2 - X + 1$.

7. Let k be the number field $\mathbf{Q}(i,\sqrt{2})$.

a) What is the degree of k over \mathbf{Q} ? Give a basis of k over \mathbf{Q} . Find $\gamma \in k$ such that $k = \mathbf{Q}(\gamma)$. Which are the conjugates of γ over \mathbf{Q} ?

b) Show that k is a Galois extension of \mathbf{Q} . What is the Galois group? Which are the subfields of k?

8. Let $\zeta \in \mathbf{C}$ satisfy $\zeta^5 = 1$ and $\zeta \neq 1$. Let $K = \mathbf{Q}(\zeta)$.

a) What is the monic irreducible polynomial of ζ over **Q**? Which are the conjugates of ζ over **Q**? What is the Galois group G of K over **Q**? Which are the subgroups of G?

b) Show that K contains a unique subfield L of degree 2 over \mathbf{Q} . What is the ring of integers of L? What is its discriminant? What is the group of units?

The solution will soon be available on the web site $http://www.math.jussieu.fr/\sim miw/coursCambodge2006.html$