Master Training Program : Royal Academy of Cambodia/CIMPA
 Solution of the control of October 26, 2006

update: 30/10/2006
Statement

1. Recall that the continued fraction expansion of a real irrational number t, namely

$$
t=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{\ddots}}}}
$$

with $a_{j} \in \mathbf{Z}$ for all $j \geq 0$ and $a_{j} \geq 1$ for $j \geq 1$, is denoted by $\left[a_{0} ; a_{1}, a_{2}, a_{3}, \ldots\right]$.
Let t be the real number whose continued fraction expansion is $[1 ; 3,1,3,1,3,1, \ldots]$, which means $a_{2 n}=1$ and $a_{2 n+1}=3$ for $n \geq 0$. Write a quadratic polynomial with rational coefficients vanishing at t.

Solution

The number t satisfies

$$
t=1+\frac{1}{3+\frac{1}{t}} .
$$

An easy computation shows that t is a root of the polynomial $3 X^{2}-3 X-1$.
Statement
2. Solve the equation $y^{2}-y=x^{2}$
a) in $\mathbf{Z} \times \mathbf{Z}$,
b) in $\mathrm{Q} \times \mathrm{Q}$.

Solution
a) There are two obvious solutions $(x, y)=(0,0)$ and $(x, y)=(0,1)$. If there were another solution in $\mathbf{Z} \times \mathbf{Z}$, this solution would satisfy $x^{2} \geq 1$ and $|y| \geq 2$. In this case the two positive integers $|y|$ and $|y-1|$ are consecutive, therefore they are relatively prime. If the product of two relatively prime integers is a square, then each of them is a square. Since there is no example of two consecutive integers which are both squares, in $\mathbf{Z} \times \mathbf{Z}$ the given equation has only the two obvious solutions.
b) The geometric idea is to intersect the curve with a line through a rational point, for instance $(0,0)$. Let $(x, y) \in \mathbf{Q} \times \mathbf{Q}$ be a solution with $x \neq 0$. Set $t=y / x$. Notice
first that $t \neq \pm 1$ because $y= \pm x$ does not yield a solution when $x \neq 0$. Substitute $t x$ to y in the equation, next divides by x which is not zero. One gets

$$
\begin{equation*}
x=\frac{t}{t^{2}-1} \quad \text { and } \quad y=\frac{t^{2}}{t^{2}-1} . \tag{1}
\end{equation*}
$$

For $t=0$ these formulae (1) give the solution $(x, y)=(0,0)$ but (1) does not produce the solution $(x, y)=(0,1)$.

Conversely, if t is a rational number which is not 1 nor -1 , then (x, y) given by (1) is solution of the equation. In conclusion (1) produces all rational solutions apart from $(0,1)$.

Statement
3. Solve the equation $x^{15}=y^{21}$ in $\mathbf{Z} \times \mathbf{Z}$.

Solution

We first consider the equation $15 a=21 b$ in rational integers $(a, b) \in \mathbf{Z} \times \mathbf{Z}$. This equation is equivalent to $5 a=7 b$. Since 5 and 7 are relatively prime, the general solution is given by $(a, b)=(7 c, 5 c)$ with $c \in \mathbf{Z}$.

Now decompose x and y into prime factors. It follows that the general solution of the equation $x^{15}=y^{21}$ dans $\mathbf{Z} \times \mathbf{Z}$ is given by $(x, y)=\left(t^{7}, t^{5}\right)$ with t in \mathbf{Z}.
Remark. Since the exponents 15 and 21 are odd, x et y have the same sign. For $t>0$ one gets the positive solutions (x, y), while $t<0$ produce the negative solutions.

Statement
4. Let $A=\mathbf{Z}[1 / 2]$ be the subring of \mathbf{Q} spanned by $1 / 2$.
a) Is A a finitely generated \mathbf{Z}-module?
b) Which are the units of A ?

Solution
a) Recall that a finitely generated \mathbf{Z}-module M is a \mathbf{Z}-module which if it is generated by a finite number of elements, which means that there is a finite subset $\left\{\gamma_{1}, \ldots, \gamma_{m}\right\}$ of M such that

$$
M=\mathbf{Z} \gamma_{1}+\cdots+\mathbf{Z} \gamma_{m}
$$

Recall also that the right hand side denotes the set of linear combinations of the γ_{j} with coefficients in \mathbf{Z} :

$$
\mathbf{Z} \gamma_{1}+\cdots+\mathbf{Z} \gamma_{m}=\left\{a_{1} \gamma_{1}+\cdots+a_{m} \gamma_{m} ;\left(a_{1}, \ldots, a_{m}\right) \in \mathbf{Z}^{m}\right\}
$$

On the other hand the subring $A=\mathbf{Z}[1 / 2]$ of the rational number field \mathbf{Q} generated by $1 / 2$ is the set of rational numbers $\ell / 2^{n}$ with $\ell \in \mathbf{Z}$ and $n \in \mathbf{Z}, n \geq 0$.

Now if $\gamma_{1}, \ldots, \gamma_{m}$ are elements in $A=\mathbf{Z}[1 / 2]$, then each of them can be written $\ell_{j} / 2^{n_{j}}$. Let n be the largest of the n_{j}. Any linear combination of $\gamma_{1}, \ldots, \gamma_{m}$ with integer coefficients is an integer r such that $2^{n} r$ is an integer. For instance $1 / 2^{n+1}$ is an element in A which is not in the \mathbf{Z}-module $\mathbf{Z} \gamma_{1}+\cdots+\mathbf{Z} \gamma_{m}$. One deduces that A is not a finitely generated \mathbf{Z}-module.

The fact that the ring A is not a finitely generated \mathbf{Z}-module follows also from a theorem in the course together with the fact that $1 / 2$ is not integral over \mathbf{Z}.
b) An element $x=\ell / 2^{n}$ in A is a unit in A if and only if there exists $x^{\prime}=\ell^{\prime} / 2^{n^{\prime}} \in A$ such that the product $x x^{\prime}$ is 1 , which means $\ell \ell^{\prime}=2^{n+n^{\prime}}$. Therefore ℓ and ℓ^{\prime} are both powers of 2 , up to a multiplicative coefficient -1 . Conversely in the ring A any power of 2 with an exponent in \mathbf{Z} is a unit: $2^{j} \cdot 2^{-j}=1$ for any $j \in \mathbf{Z}$, and both factors $2^{j}, 2^{-j}$ are in A.

In conclusion the units in A are $\pm 2^{j}, j \in \mathbf{Z}$.
Statement
5. Which are the finitely generated sub-Z-modules of the additive group \mathbf{Q} ?

Solution

The answer is that they are the \mathbf{Z}-submodules of \mathbf{Q} which are generated by a single element. One direction is clear: if γ is a rational number then $\mathbf{Z} \gamma$ is a finitely generated \mathbf{Z}-submodule of \mathbf{Q}. The problem is to prove the converse.

Let $\gamma_{1}, \ldots, \gamma_{m}$ be rational numbers. If the γ_{i} are all 0 the \mathbf{Z}-module they generate is $\{0\}$ which is $\mathbf{Z} \gamma$ with $\gamma=0$. Otherwise denote by q the least positive common denominator of the γ_{i} and set $p_{i}=q \gamma_{i}$. The numbers q, p_{1}, \ldots, p_{m} are positive integers with gcd 1 . Denote by p the greatest common divisor of p_{1}, \ldots, p_{m}, so that $\mathbf{Z} p=\mathbf{Z} p_{1}+\cdots+\mathbf{Z} p_{m}$. Then p and q are relatively prime and the \mathbf{Z}-module $M=\mathbf{Z} \gamma_{1}+\cdots+\mathbf{Z} \gamma_{m}$ is $\mathbf{Z} \gamma$ with $\gamma=p / q$.

Statement
6. Find the rational roots of the polynomial $X^{7}-X^{6}+X^{5}-X^{4}-X^{3}+X^{2}-X+1$.

Solution

Recall that if p / q is a rational root with $\operatorname{pgcd}(p, q)=1$ of a polynomial $a_{0} X^{n}+\cdots+a_{n}$ with coefficients in \mathbf{Z} with $a_{0} a_{n} \neq 0$, then p divides a_{n} and q divides a_{0}. Here a_{0} and a_{n} are both equal to 1 , the only values to be tested are 1 and -1 and both are roots.

Statement

7. Let k be the number field $\mathbf{Q}(i, \sqrt{2})$.
a) What is the degree of k over \mathbf{Q} ? Give a basis of k over \mathbf{Q}. Find $\gamma \in k$ such that $k=\mathbf{Q}(\gamma)$. Which are the conjugates of γ over \mathbf{Q} ?
b) Show that k is a Galois extension of \mathbf{Q}. What is the Galois group? Which are the subfields of k ?

Solution
a) The field k is the field generated by i and $\sqrt{2}$ over \mathbf{Q}, hence it contains $\sqrt{2}$ and i. Since the field $\mathbf{Q}(\sqrt{2})$ is contained in the field \mathbf{R} of real numbers, it does not contain
i. Therefore k is an extension of degree 2 of $\mathbf{Q}(\sqrt{2})$ and therefore an extension of degree 4 of \mathbf{Q}.

A basis of $\mathbf{Q}(\sqrt{2})$ over \mathbf{Q} (as a \mathbf{Q}-vector space) is $\{1, \sqrt{2}\}$, a basis of k over $\mathbf{Q}(\sqrt{2})$ is $\{1, i\}$, hence a basis of k over \mathbf{Q} is obtained by taking the 4 products $\{1, \sqrt{2}, i, i \sqrt{2}\}$.

An example (among many!) of an element in k which is a generator of k over \mathbf{Q} (here we consider field extensions: one is looking for a γ such that $k=\mathbf{Q}(\gamma)$) is $\gamma=i+\sqrt{2}$, since its 4 conjugates over \mathbf{Q} are distinct: they are

$$
i+\sqrt{2}, \quad i-\sqrt{2}, \quad-i+\sqrt{2}, \quad-i-\sqrt{2}
$$

b) The field k is the splitting field over \mathbf{Q} of the polynomial $\left(X^{2}-2\right)\left(X^{2}+1\right)$ - it is also the splitting field over \mathbf{Q} of the monic irreducible polynomial of γ which is, given our choice above for γ,

$$
(X-i-\sqrt{2})(X-i+\sqrt{2})(X+i-\sqrt{2})(X+i+\sqrt{2})=X^{4}-2 X^{2}+9 .
$$

Hence k is a normal extension of \mathbf{Q} (it is a splitting field) as well as a separable extension (the polynomial has no multiple roots - anyway we are here in zero characteristic).

The Galois group G of k over \mathbf{Q} is the group of automorphisms of k. Such an automorphism is determined by its values at the points $\sqrt{2}$ and i. Its value at $\sqrt{2}$ is a conjugate of $\sqrt{2}$, hence is $\sqrt{2}$ or $-\sqrt{2}$. Similarly its value at i is a conjugate of i, hence is i or $-i$. This gives the four automorphisms we were looking for. Denote by σ the non-trivial automorphism of k which fixes i and by τ the automorphism which fixes $\sqrt{2}$ - then τ is the complex conjugation and $G=\{1, \sigma, \tau, \sigma \tau\}$ (here 1 is the unit element in the group G, namely the identity automorphism of k). Hence G is the non cyclic group of order 4 , it is abelian of type $(2,2)$ which means that it is isomorphic to $(\mathbf{Z} / 2 \mathbf{Z}) \times(\mathbf{Z} / 2 \mathbf{Z})$, and it has exactly 5 subgroups: two of them are the trivial subgroups $\{1\}$ and G, while the three others have order 2 :

$$
\{1, \sigma\}, \quad\{1, \tau\}, \quad\{1, \sigma \tau\} .
$$

As a consequence of Galois theory k has exactly 5 subfields, two of them are the trivial ones k (the Galois group of k over k is $\{1\}$) and \mathbf{Q} (the Galois group of k over \mathbf{Q} is G), the three others are the subfields of k which are fixed by the three subgroups of order 2 respectively, they are the three quadratic subfields of k :

$$
\mathbf{Q}(i), \quad \mathbf{Q}(\sqrt{2}), \quad \mathbf{Q}(i \sqrt{2})
$$

For instance let us check that $i \sqrt{2}$ is fixed by $\sigma \tau$: indeed $\sigma \tau(i)=\sigma(-i)=-i$ and $\sigma \tau(\sqrt{2})=\sigma(\sqrt{2})=-\sqrt{2}$. The Galois group of k over $\mathbf{Q}(i \sqrt{2})$ is $\{1, \sigma \tau\}$, as it should.

Statement
8. Let $\zeta \in \mathbf{C}$ satisfy $\zeta^{5}=1$ and $\zeta \neq 1$. Let $K=\mathrm{Q}(\zeta)$.
a) What is the monic irreducible polynomial of ζ over \mathbf{Q} ? Which are the conjugates of ζ over \mathbf{Q} ? What is the Galois group G of K over \mathbf{Q} ? Which are the subgroups of G ?
b) Show that K contains a unique subfield L of degree 2 over \mathbf{Q}. What is the ring of integers of L ? What is its discriminant? What is the group of units?

Solution
a) The monic irreducible polynomial of ζ over \mathbf{Q} is $X^{4}+X^{3}+X^{2}+X+1$. The conjugates of ζ over \mathbf{Q} are the four roots of this polynomial, they are the four primitive fifth roots of unity in \mathbf{C}; if ζ is any of them, the others are $\zeta^{2}, \zeta^{3}, \zeta^{4}$. The Galois group of K over \mathbf{Q} has four elements, which are the four automorphisms of K. Each of the four automorphisms is determined by the image of ζ, hence one can denote these automorphisms by $\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}$ with $\sigma_{j}(\zeta)=\zeta^{j}$. The group G is cyclic, a generator is σ_{2} : indeed

$$
\sigma_{2}^{2}(\zeta)=\sigma_{2}\left(\zeta^{2}\right)=\zeta^{4}, \quad \sigma_{2}^{3}(\zeta)=\sigma_{2}\left(\zeta^{4}\right)=\zeta^{8}=\zeta^{3}
$$

hence $\sigma_{2}^{2}=\sigma_{4}, \sigma_{2}^{3}=\sigma_{3}$ and $G=\left\{1, \sigma_{2}, \sigma_{2}^{2}, \sigma_{2}^{3}\right\}$. Another generator is σ_{2}^{3} (this is due to the fact that the exponent 3 is prime to the order of the group 4).
b) The group G is cyclic of order 4 ; since 4 has three divisors $(1,2,4)$ it follows that G has 3 subgroups, two of them are the trivial subgroups $\{1\}$ and G, the third one is the unique subgroup H of G of order 2, it is generated by the unique element of order 2, namely σ_{2}^{2}. Since $\sigma_{2}^{2}(\zeta)=\zeta^{4}$ is the complex conjugate of ζ (recall $\zeta^{5}=1$, $|\zeta|^{2}=\zeta \bar{\zeta}=1$ hence $\left.\zeta^{4}=\zeta^{-1}=\bar{\zeta}\right)$, the subfield L of K which is fixed by H is the intersection of K and \mathbf{R}.

Set $\alpha=\zeta+\bar{\zeta}$, so that $\alpha \in K \cap \mathbf{R}$. Since

$$
\alpha^{2}=(\zeta+\bar{\zeta})^{2}=\zeta^{2}+\bar{\zeta}^{2}+2 \quad \text { and } \quad 1+\zeta+\zeta^{2}+\bar{\zeta}^{2}+\bar{\zeta}=0
$$

we have $\alpha^{2}+\alpha-1=0$. The real part of ζ is positive, hence α is the golden number $(1+\sqrt{5}) / 2$. The field L is the field $\mathbf{Q}(\sqrt{5})$, its ring of integers is $\mathbf{Z}+\mathbf{Z} \alpha$, its discriminant is 5 , the group of units is $\left\{ \pm \alpha^{m} ; m \in \mathbf{Z}\right\}$.
http://www.math.jussieu.fr/~miw/coursCambodge2006.html

