Master Training Program : Royal Academy of Cambodia/CIMPA Solution of the control of October 26, 2006

update: 30/10/2006

Statement

1. Recall that the continued fraction expansion of a real irrational number t, namely

$$t = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{\ddots}}}}$$

with $a_j \in \mathbf{Z}$ for all $j \ge 0$ and $a_j \ge 1$ for $j \ge 1$, is denoted by $[a_0; a_1, a_2, a_3, \dots]$.

Let t be the real number whose continued fraction expansion is [1; 3, 1, 3, 1, 3, 1, ...], which means $a_{2n} = 1$ and $a_{2n+1} = 3$ for $n \ge 0$. Write a quadratic polynomial with rational coefficients vanishing at t.

Solution

The number t satisfies

$$t = 1 + \frac{1}{3 + \frac{1}{t}}$$

An easy computation shows that t is a root of the polynomial $3X^2 - 3X - 1$.

Statement 2. Solve the equation $y^2 - y = x^2$ a) in $\mathbf{Z} \times \mathbf{Z}$, b) in $\mathbf{Q} \times \mathbf{Q}$.

Solution

a) There are two obvious solutions (x, y) = (0, 0) and (x, y) = (0, 1). If there were another solution in $\mathbb{Z} \times \mathbb{Z}$, this solution would satisfy $x^2 \ge 1$ and $|y| \ge 2$. In this case the two positive integers |y| and |y-1| are consecutive, therefore they are relatively prime. If the product of two relatively prime integers is a square, then each of them is a square. Since there is no example of two consecutive integers which are both squares, in $\mathbb{Z} \times \mathbb{Z}$ the given equation has only the two obvious solutions.

b) The geometric idea is to intersect the curve with a line through a rational point, for instance (0,0). Let $(x,y) \in \mathbf{Q} \times \mathbf{Q}$ be a solution with $x \neq 0$. Set t = y/x. Notice

first that $t \neq \pm 1$ because $y = \pm x$ does not yield a solution when $x \neq 0$. Substitute tx to y in the equation, next divides by x which is not zero. One gets

(1)
$$x = \frac{t}{t^2 - 1}$$
 and $y = \frac{t^2}{t^2 - 1}$.

For t = 0 these formulae (1) give the solution (x, y) = (0, 0) but (1) does not produce the solution (x, y) = (0, 1).

Conversely, if t is a rational number which is not 1 nor -1, then (x, y) given by (1) is solution of the equation. In conclusion (1) produces all rational solutions apart from (0, 1).

Statement

3. Solve the equation $x^{15} = y^{21}$ in $\mathbf{Z} \times \mathbf{Z}$.

Solution

We first consider the equation 15a = 21b in rational integers $(a, b) \in \mathbb{Z} \times \mathbb{Z}$. This equation is equivalent to 5a = 7b. Since 5 and 7 are relatively prime, the general solution is given by (a, b) = (7c, 5c) with $c \in \mathbb{Z}$.

Now decompose x and y into prime factors. It follows that the general solution of the equation $x^{15} = y^{21}$ dans $\mathbf{Z} \times \mathbf{Z}$ is given by $(x, y) = (t^7, t^5)$ with t in \mathbf{Z} . **Remark**. Since the exponents 15 and 21 are odd, x et y have the same sign. For t > 0one gets the positive solutions (x, y), while t < 0 produce the negative solutions.

Statement

4. Let A = Z[1/2] be the subring of Q spanned by 1/2.
a) Is A a finitely generated Z-module?
b) Which are the units of A?

Solution

a) Recall that a finitely generated **Z**-module M is a **Z**-module which if it is generated by a finite number of elements, which means that there is a finite subset $\{\gamma_1, \ldots, \gamma_m\}$ of M such that

$$M = \mathbf{Z}\gamma_1 + \dots + \mathbf{Z}\gamma_m.$$

Recall also that the right hand side denotes the set of linear combinations of the γ_j with coefficients in **Z**:

$$\mathbf{Z}\gamma_1 + \dots + \mathbf{Z}\gamma_m = \left\{a_1\gamma_1 + \dots + a_m\gamma_m \; ; \; (a_1, \dots, a_m) \in \mathbf{Z}^m\right\}.$$

On the other hand the subring $A = \mathbf{Z}[1/2]$ of the rational number field \mathbf{Q} generated by 1/2 is the set of rational numbers $\ell/2^n$ with $\ell \in \mathbf{Z}$ and $n \in \mathbf{Z}$, $n \ge 0$.

Now if $\gamma_1, \ldots, \gamma_m$ are elements in $A = \mathbb{Z}[1/2]$, then each of them can be written $\ell_j/2^{n_j}$. Let *n* be the largest of the n_j . Any linear combination of $\gamma_1, \ldots, \gamma_m$ with integer coefficients is an integer *r* such that $2^n r$ is an integer. For instance $1/2^{n+1}$ is an element in *A* which is not in the \mathbb{Z} -module $\mathbb{Z}\gamma_1 + \cdots + \mathbb{Z}\gamma_m$. One deduces that *A* is not a finitely generated \mathbb{Z} -module.

The fact that the ring A is not a finitely generated \mathbf{Z} -module follows also from a theorem in the course together with the fact that 1/2 is not integral over \mathbf{Z} .

b) An element $x = \ell/2^n$ in A is a unit in A if and only if there exists $x' = \ell'/2^{n'} \in A$ such that the product xx' is 1, which means $\ell\ell' = 2^{n+n'}$. Therefore ℓ and ℓ' are both powers of 2, up to a multiplicative coefficient -1. Conversely in the ring Aany power of 2 with an exponent in \mathbf{Z} is a unit: $2^j \cdot 2^{-j} = 1$ for any $j \in \mathbf{Z}$, and both factors 2^j , 2^{-j} are in A.

In conclusion the units in A are $\pm 2^j$, $j \in \mathbb{Z}$.

Statement

5. Which are the finitely generated sub– \mathbf{Z} –modules of the additive group \mathbf{Q} ?

Solution

The answer is that they are the **Z**-submodules of **Q** which are generated by a single element. One direction is clear: if γ is a rational number then $\mathbf{Z}\gamma$ is a finitely generated **Z**-submodule of **Q**. The problem is to prove the converse.

Let $\gamma_1, \ldots, \gamma_m$ be rational numbers. If the γ_i are all 0 the **Z**-module they generate is $\{0\}$ which is $\mathbf{Z}\gamma$ with $\gamma = 0$. Otherwise denote by q the least positive common denominator of the γ_i and set $p_i = q\gamma_i$. The numbers q, p_1, \ldots, p_m are positive integers with gcd 1. Denote by p the greatest common divisor of p_1, \ldots, p_m , so that $\mathbf{Z}p = \mathbf{Z}p_1 + \cdots + \mathbf{Z}p_m$. Then p and q are relatively prime and the **Z**-module $M = \mathbf{Z}\gamma_1 + \cdots + \mathbf{Z}\gamma_m$ is $\mathbf{Z}\gamma$ with $\gamma = p/q$.

Statement

6. Find the rational roots of the polynomial $X^7 - X^6 + X^5 - X^4 - X^3 + X^2 - X + 1$.

Solution

Recall that if p/q is a rational root with pgcd(p,q) = 1 of a polynomial $a_0X^n + \cdots + a_n$ with coefficients in \mathbb{Z} with $a_0a_n \neq 0$, then p divides a_n and q divides a_0 . Here a_0 and a_n are both equal to 1, the only values to be tested are 1 and -1 and both are roots.

Statement

7. Let k be the number field $\mathbf{Q}(i,\sqrt{2})$.

a) What is the degree of k over \mathbf{Q} ? Give a basis of k over \mathbf{Q} . Find $\gamma \in k$ such that $k = \mathbf{Q}(\gamma)$. Which are the conjugates of γ over \mathbf{Q} ?

b) Show that k is a Galois extension of **Q**. What is the Galois group? Which are the subfields of k?

Solution

a) The field k is the field generated by i and $\sqrt{2}$ over **Q**, hence it contains $\sqrt{2}$ and i. Since the field $\mathbf{Q}(\sqrt{2})$ is contained in the field **R** of real numbers, it does not contain *i*. Therefore k is an extension of degree 2 of $\mathbf{Q}(\sqrt{2})$ and therefore an extension of degree 4 of \mathbf{Q} .

A basis of $\mathbf{Q}(\sqrt{2})$ over \mathbf{Q} (as a \mathbf{Q} -vector space) is $\{1, \sqrt{2}\}$, a basis of k over $\mathbf{Q}(\sqrt{2})$ is $\{1, i\}$, hence a basis of k over \mathbf{Q} is obtained by taking the 4 products $\{1, \sqrt{2}, i, i\sqrt{2}\}$.

An example (among many!) of an element in k which is a generator of k over **Q** (here we consider field extensions: one is looking for a γ such that $k = \mathbf{Q}(\gamma)$) is $\gamma = i + \sqrt{2}$, since its 4 conjugates over **Q** are distinct: they are

$$i + \sqrt{2}, \quad i - \sqrt{2}, \quad -i + \sqrt{2}, \quad -i - \sqrt{2}.$$

b) The field k is the splitting field over \mathbf{Q} of the polynomial $(X^2 - 2)(X^2 + 1)$ - it is also the splitting field over \mathbf{Q} of the monic irreducible polynomial of γ which is, given our choice above for γ ,

$$(X - i - \sqrt{2})(X - i + \sqrt{2})(X + i - \sqrt{2})(X + i + \sqrt{2}) = X^4 - 2X^2 + 9.$$

Hence k is a normal extension of \mathbf{Q} (it is a splitting field) as well as a separable extension (the polynomial has no multiple roots - anyway we are here in zero characteristic).

The Galois group G of k over \mathbf{Q} is the group of automorphisms of k. Such an automorphism is determined by its values at the points $\sqrt{2}$ and i. Its value at $\sqrt{2}$ is a conjugate of $\sqrt{2}$, hence is $\sqrt{2}$ or $-\sqrt{2}$. Similarly its value at i is a conjugate of i, hence is i or -i. This gives the four automorphisms we were looking for. Denote by σ the non-trivial automorphism of k which fixes i and by τ the automorphism which fixes $\sqrt{2}$ – then τ is the complex conjugation and $G = \{1, \sigma, \tau, \sigma\tau\}$ (here 1 is the unit element in the group G, namely the identity automorphism of k). Hence G is the non cyclic group of order 4, it is abelian of type (2, 2) which means that it is isomorphic to $(\mathbf{Z}/2\mathbf{Z}) \times (\mathbf{Z}/2\mathbf{Z})$, and it has exactly 5 subgroups: two of them are the trivial subgroups $\{1\}$ and G, while the three others have order 2:

$$\{1, \sigma\}, \{1, \tau\}, \{1, \sigma\tau\}.$$

As a consequence of Galois theory k has exactly 5 subfields, two of them are the trivial ones k (the Galois group of k over k is $\{1\}$) and **Q** (the Galois group of k over **Q** is G), the three others are the subfields of k which are fixed by the three subgroups of order 2 respectively, they are the three quadratic subfields of k:

$$\mathbf{Q}(i), \quad \mathbf{Q}(\sqrt{2}), \quad \mathbf{Q}(i\sqrt{2}).$$

For instance let us check that $i\sqrt{2}$ is fixed by $\sigma\tau$: indeed $\sigma\tau(i) = \sigma(-i) = -i$ and $\sigma\tau(\sqrt{2}) = \sigma(\sqrt{2}) = -\sqrt{2}$. The Galois group of k over $\mathbf{Q}(i\sqrt{2})$ is $\{1, \sigma\tau\}$, as it should.

4

Statement

8. Let $\zeta \in \mathbf{C}$ satisfy $\zeta^5 = 1$ and $\zeta \neq 1$. Let $K = \mathbf{Q}(\zeta)$.

a) What is the monic irreducible polynomial of ζ over **Q**? Which are the conjugates of ζ over **Q**? What is the Galois group G of K over **Q**? Which are the subgroups of G?

b) Show that K contains a unique subfield L of degree 2 over \mathbf{Q} . What is the ring of integers of L? What is its discriminant? What is the group of units?

Solution

a) The monic irreducible polynomial of ζ over \mathbf{Q} is $X^4 + X^3 + X^2 + X + 1$. The conjugates of ζ over \mathbf{Q} are the four roots of this polynomial, they are the four primitive fifth roots of unity in \mathbf{C} ; if ζ is any of them, the others are $\zeta^2, \zeta^3, \zeta^4$. The Galois group of K over \mathbf{Q} has four elements, which are the four automorphisms of K. Each of the four automorphisms is determined by the image of ζ , hence one can denote these automorphisms by $\sigma_1, \sigma_2, \sigma_3, \sigma_4$ with $\sigma_j(\zeta) = \zeta^j$. The group G is cyclic, a generator is σ_2 : indeed

$$\sigma_2^2(\zeta) = \sigma_2(\zeta^2) = \zeta^4, \quad \sigma_2^3(\zeta) = \sigma_2(\zeta^4) = \zeta^8 = \zeta^3,$$

hence $\sigma_2^2 = \sigma_4$, $\sigma_2^3 = \sigma_3$ and $G = \{1, \sigma_2, \sigma_2^2, \sigma_2^3\}$. Another generator is σ_2^3 (this is due to the fact that the exponent 3 is prime to the order of the group 4).

b) The group G is cyclic of order 4; since 4 has three divisors (1, 2, 4) it follows that G has 3 subgroups, two of them are the trivial subgroups {1} and G, the third one is the unique subgroup H of G of order 2, it is generated by the unique element of order 2, namely σ_2^2 . Since $\sigma_2^2(\zeta) = \zeta^4$ is the complex conjugate of ζ (recall $\zeta^5 = 1$, $|\zeta|^2 = \zeta \overline{\zeta} = 1$ hence $\zeta^4 = \zeta^{-1} = \overline{\zeta}$), the subfield L of K which is fixed by H is the intersection of K and **R**.

Set $\alpha = \zeta + \overline{\zeta}$, so that $\alpha \in K \cap \mathbf{R}$. Since

$$\alpha^2 = (\zeta + \bar{\zeta})^2 = \zeta^2 + \bar{\zeta}^2 + 2$$
 and $1 + \zeta + \zeta^2 + \bar{\zeta}^2 + \bar{\zeta} = 0$,

we have $\alpha^2 + \alpha - 1 = 0$. The real part of ζ is positive, hence α is the golden number $(1 + \sqrt{5})/2$. The field L is the field $\mathbf{Q}(\sqrt{5})$, its ring of integers is $\mathbf{Z} + \mathbf{Z}\alpha$, its discriminant is 5, the group of units is $\{\pm \alpha^m ; m \in \mathbf{Z}\}$.

http://www.math.jussieu.fr/~miw/coursCambodge2006.html