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Statement

1. Recall that the continued fraction expansion of a real irrational number t, namely

t = a0 +
1

a1 +
1

a2 +
1

a3 +
1
. . .

with aj ∈ Z for all j ≥ 0 and aj ≥ 1 for j ≥ 1, is denoted by [a0; a1, a2, a3, . . . ].
Let t be the real number whose continued fraction expansion is [1; 3, 1, 3, 1, 3, 1, . . . ],

which means a2n = 1 and a2n+1 = 3 for n ≥ 0. Write a quadratic polynomial with
rational coefficients vanishing at t.

Solution

The number t satisfies

t = 1 +
1

3 +
1

t

·

An easy computation shows that t is a root of the polynomial 3X2 − 3X − 1.

Statement

2. Solve the equation y2 − y = x2

a) in Z× Z,
b) in Q×Q.

Solution

a) There are two obvious solutions (x, y) = (0, 0) and (x, y) = (0, 1). If there were
another solution in Z×Z, this solution would satisfy x2 ≥ 1 and |y| ≥ 2. In this case
the two positive integers |y| and |y−1| are consecutive, therefore they are relatively
prime. If the product of two relatively prime integers is a square, then each of them
is a square. Since there is no example of two consecutive integers which are both
squares, in Z× Z the given equation has only the two obvious solutions.

b) The geometric idea is to intersect the curve with a line through a rational point,
for instance (0, 0). Let (x, y) ∈ Q×Q be a solution with x 6= 0. Set t = y/x. Notice
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first that t 6= ±1 because y = ±x does not yield a solution when x 6= 0. Substitute
tx to y in the equation, next divides by x which is not zero. One gets

(1) x =
t

t2 − 1
and y =

t2

t2 − 1
·

For t = 0 these formulae (1) give the solution (x, y) = (0, 0) but (1) does not produce
the solution (x, y) = (0, 1).

Conversely, if t is a rational number which is not 1 nor −1, then (x, y) given by (1)
is solution of the equation. In conclusion (1) produces all rational solutions apart
from (0, 1).

Statement

3. Solve the equation x15 = y21 in Z× Z.

Solution

We first consider the equation 15a = 21b in rational integers (a, b) ∈ Z × Z. This
equation is equivalent to 5a = 7b. Since 5 and 7 are relatively prime, the general
solution is given by (a, b) = (7c, 5c) with c ∈ Z.

Now decompose x and y into prime factors. It follows that the general solution
of the equation x15 = y21 dans Z× Z is given by (x, y) = (t7, t5) with t in Z.
Remark. Since the exponents 15 and 21 are odd, x et y have the same sign. For t > 0
one gets the positive solutions (x, y), while t < 0 produce the negative solutions.

Statement

4. Let A = Z[1/2] be the subring of Q spanned by 1/2.
a) Is A a finitely generated Z–module?
b) Which are the units of A?

Solution

a) Recall that a finitely generated Z–module M is a Z–module which if it is generated
by a finite number of elements, which means that there is a finite subset {γ1, . . . , γm}
of M such that

M = Zγ1 + · · ·+ Zγm.

Recall also that the right hand side denotes the set of linear combinations of the γj

with coefficients in Z:

Zγ1 + · · ·+ Zγm =
{
a1γ1 + · · ·+ amγm ; (a1, . . . , am) ∈ Zm

}
.

On the other hand the subring A = Z[1/2] of the rational number field Q generated
by 1/2 is the set of rational numbers `/2n with ` ∈ Z and n ∈ Z, n ≥ 0.

Now if γ1, . . . , γm are elements in A = Z[1/2], then each of them can be written
`j/2

nj . Let n be the largest of the nj. Any linear combination of γ1, . . . , γm with
integer coefficients is an integer r such that 2nr is an integer. For instance 1/2n+1 is
an element in A which is not in the Z–module Zγ1 + · · ·+ Zγm. One deduces that
A is not a finitely generated Z–module.
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The fact that the ring A is not a finitely generated Z–module follows also from a
theorem in the course together with the fact that 1/2 is not integral over Z.

b) An element x = `/2n in A is a unit in A if and only if there exists x′ = `′/2n′ ∈ A
such that the product xx′ is 1, which means ``′ = 2n+n′

. Therefore ` and `′ are
both powers of 2, up to a multiplicative coefficient −1. Conversely in the ring A
any power of 2 with an exponent in Z is a unit: 2j · 2−j = 1 for any j ∈ Z, and both
factors 2j, 2−j are in A.

In conclusion the units in A are ±2j, j ∈ Z.

Statement

5. Which are the finitely generated sub–Z–modules of the additive group Q?

Solution

The answer is that they are the Z–submodules of Q which are generated by a single
element. One direction is clear: if γ is a rational number then Zγ is a finitely
generated Z–submodule of Q. The problem is to prove the converse.

Let γ1, . . . , γm be rational numbers. If the γi are all 0 the Z–module they generate
is {0} which is Zγ with γ = 0. Otherwise denote by q the least positive common
denominator of the γi and set pi = qγi. The numbers q, p1, . . . , pm are positive
integers with gcd 1. Denote by p the greatest common divisor of p1, . . . , pm, so
that Zp = Zp1 + · · · + Zpm. Then p and q are relatively prime and the Z–module
M = Zγ1 + · · ·+ Zγm is Zγ with γ = p/q.

Statement

6. Find the rational roots of the polynomial X7−X6 +X5−X4−X3 +X2−X +1.

Solution

Recall that if p/q is a rational root with pgcd(p, q) = 1 of a polynomial a0X
n+· · ·+an

with coefficients in Z with a0an 6= 0, then p divides an and q divides a0. Here a0

and an are both equal to 1, the only values to be tested are 1 and −1 and both are
roots.

Statement

7. Let k be the number field Q(i,
√

2).
a) What is the degree of k over Q? Give a basis of k over Q. Find γ ∈ k such that
k = Q(γ). Which are the conjugates of γ over Q?
b) Show that k is a Galois extension of Q. What is the Galois group? Which are
the subfields of k?

Solution

a) The field k is the field generated by i and
√

2 over Q, hence it contains
√

2 and i.
Since the field Q(

√
2) is contained in the field R of real numbers, it does not contain
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i. Therefore k is an extension of degree 2 of Q(
√

2) and therefore an extension of
degree 4 of Q.

A basis of Q(
√

2) over Q (as a Q–vector space) is {1,
√

2}, a basis of k over
Q(
√

2) is {1, i}, hence a basis of k over Q is obtained by taking the 4 products
{1,

√
2, i, i

√
2}.

An example (among many!) of an element in k which is a generator of k over Q
(here we consider field extensions: one is looking for a γ such that k = Q(γ)) is
γ = i +

√
2, since its 4 conjugates over Q are distinct: they are

i +
√

2, i−
√

2, −i +
√

2, −i−
√

2.

b) The field k is the splitting field over Q of the polynomial (X2 − 2)(X2 + 1) - it
is also the splitting field over Q of the monic irreducible polynomial of γ which is,
given our choice above for γ,

(X − i−
√

2)(X − i +
√

2)(X + i−
√

2)(X + i +
√

2) = X4 − 2X2 + 9.

Hence k is a normal extension of Q (it is a splitting field) as well as a separa-
ble extension (the polynomial has no multiple roots - anyway we are here in zero
characteristic).

The Galois group G of k over Q is the group of automorphisms of k. Such an
automorphism is determined by its values at the points

√
2 and i. Its value at

√
2

is a conjugate of
√

2, hence is
√

2 or −
√

2. Similarly its value at i is a conjugate of
i, hence is i or −i. This gives the four automorphisms we were looking for. Denote
by σ the non–trivial automorphism of k which fixes i and by τ the automorphism
which fixes

√
2 – then τ is the complex conjugation and G = {1, σ, τ, στ} (here 1 is

the unit element in the group G, namely the identity automorphism of k). Hence
G is the non cyclic group of order 4, it is abelian of type (2, 2) which means that it
is isomorphic to (Z/2Z)× (Z/2Z), and it has exactly 5 subgroups: two of them are
the trivial subgroups {1} and G, while the three others have order 2:

{1, σ}, {1, τ}, {1, στ}.

As a consequence of Galois theory k has exactly 5 subfields, two of them are the
trivial ones k (the Galois group of k over k is {1}) and Q (the Galois group of k
over Q is G), the three others are the subfields of k which are fixed by the three
subgroups of order 2 respectively, they are the three quadratic subfields of k:

Q(i), Q(
√

2), Q(i
√

2).

For instance let us check that i
√

2 is fixed by στ : indeed στ(i) = σ(−i) = −i and
στ(

√
2) = σ(

√
2) = −

√
2. The Galois group of k over Q(i

√
2) is {1, στ}, as it

should.
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Statement

8. Let ζ ∈ C satisfy ζ5 = 1 and ζ 6= 1. Let K = Q(ζ).
a) What is the monic irreducible polynomial of ζ over Q? Which are the conjugates
of ζ over Q? What is the Galois group G of K over Q? Which are the subgroups
of G?
b) Show that K contains a unique subfield L of degree 2 over Q. What is the ring
of integers of L? What is its discriminant? What is the group of units?

Solution

a) The monic irreducible polynomial of ζ over Q is X4 + X3 + X2 + X + 1. The
conjugates of ζ over Q are the four roots of this polynomial, they are the four
primitive fifth roots of unity in C; if ζ is any of them, the others are ζ2, ζ3, ζ4. The
Galois group of K over Q has four elements, which are the four automorphisms of
K. Each of the four automorphisms is determined by the image of ζ, hence one can
denote these automorphisms by σ1, σ2, σ3, σ4 with σj(ζ) = ζj. The group G is cyclic,
a generator is σ2: indeed

σ2
2(ζ) = σ2(ζ

2) = ζ4, σ3
2(ζ) = σ2(ζ

4) = ζ8 = ζ3,

hence σ2
2 = σ4, σ3

2 = σ3 and G = {1, σ2, σ
2
2, σ

3
2}. Another generator is σ3

2 (this is due
to the fact that the exponent 3 is prime to the order of the group 4).

b) The group G is cyclic of order 4; since 4 has three divisors (1, 2, 4) it follows that
G has 3 subgroups, two of them are the trivial subgroups {1} and G, the third one
is the unique subgroup H of G of order 2, it is generated by the unique element of
order 2, namely σ2

2. Since σ2
2(ζ) = ζ4 is the complex conjugate of ζ (recall ζ5 = 1,

|ζ|2 = ζζ̄ = 1 hence ζ4 = ζ−1 = ζ̄), the subfield L of K which is fixed by H is the
intersection of K and R.

Set α = ζ + ζ̄, so that α ∈ K ∩R. Since

α2 = (ζ + ζ̄)2 = ζ2 + ζ̄2 + 2 and 1 + ζ + ζ2 + ζ̄2 + ζ̄ = 0,

we have α2 + α − 1 = 0. The real part of ζ is positive, hence α is the golden
number (1 +

√
5)/2. The field L is the field Q(

√
5), its ring of integers is Z + Zα,

its discriminant is 5, the group of units is {±αm ; m ∈ Z}.

http://www.math.jussieu.fr/∼miw/coursCambodge2006.html


