SEAMS School 2013 ITB Number theory

Exercise 1

Let $a \ge 2$ and $n \ge 2$ be integers.

a) Assume that the number $N = a^n - 1$ is prime. Show that N is a Mersenne prime, that is a = 2 and n is prime.

b) Assume that the number $a^n + 1$ is prime. Show that n is a power of 2, and that a is even. Can you deduce a = 2 from the hypotheses?

Exercise 2

Using $641 = 2^4 + 5^4 = 2^7 \cdot 5 + 1$, show that 641 divides the Fermat number $F_5 = 2^{32} + 1$.

Exercise 3 (compare with exercise III.4 of Weil's book)

Let n be an integer > 1. Check that n can be written as the sum of (two or more) consecutive integers if and only if n is not a power of 2.

Exercise 4 (exercise IV.3 of Weil's book)

Let a, m and n be positive integers with $m \neq n$. Check that the greatest common divisor (gcd) of $a^{2^m} + 1$ and $a^{2^n} + 1$ is 1 if a is even and 2 if a is odd. Deduce the existence of infinitely many primes.

Exercise 5 (exercise IV.5 of Weil's book) Check that the product of the divisors of an integer a is $a^{D/2}$ where D is the number of divisors of a.

Exercise 6 (exercise V.7 of Weil's book) Given n > 0, any n + 1 of the first 2n integers $1, \ldots, 2n$ contain a pair x, y such that y/x is a power of 2.

Exercise 7 (exercise V.3 of Weil's book) If n is a positive integer, then

$$2^{2n+1} \equiv 9n^2 - 3n + 2 \pmod{54}.$$

Exercise 8 (exercise V.4 of Weil's book) If x, y, z are integers such that $x^2 + y^2 = z^2$, then $xyz \equiv 0 \pmod{60}$.

Exercise 9 (exercise VI.2 of Weil's book) Solve the pair of congruences

 $5x - 7y \equiv 9 \pmod{12}, \quad 2x + 3y \equiv 10 \pmod{12};$

show that the solution is unique modulo 12.

Exercise 10 (exercise VI.3 of Weil's book) Solve $x^2 + ax + b \equiv 0 \pmod{2}$

Exercise 11 (exercise VI.4 of Weil's book) Solve $x^2 - 3x + 3 \equiv 0 \pmod{7}$.

Exercise 12 (exercise VI.5 of Weil's book) The arithmetic mean of the integers in the range [1, m - 1] prime to m is m/2.

Exercise 13 (exercise VI.6 of Weil's book) When m is an odd positive integer,

$$1^m + 2^m + \dots + (m-1)^m \equiv 0 \pmod{m}.$$

Exercise 14 (exercise VIII.3 of Weil's book) If p is an odd prime divisor of $a^{2^n} + 1$ with $n \ge 1$, show that $p \equiv 1 \pmod{2^{n+1}}$.

Exercise 15 (exercise VIII.4 of Weil's book)

If a and b are positive integers and $a = 2^{\alpha}5^{\beta}m$ with m prime to 10, then the decimal expansion for b/a has a period ℓ where the number of decimal digits of ℓ divides $\varphi(m)$. Further, if there is no period with less than m - 1 digits, then m is prime.

Exercise 16 (exercise X.3 of Weil's book) For p prime and n positive integer,

$$1^{n} + 2^{n} + \dots + (p-1)^{n} \equiv \begin{cases} 0 \pmod{p} & \text{if } p-1 \text{ does not divide } n, \\ -1 \pmod{p} & \text{if } p-1 \text{ divides } n. \end{cases}$$

http://www.math.jussieu.fr/~miw/

07/11/2013

SEAMS School 2013 ITB Number theory (solutions)

Solution of Exercise 1. From

$$a^{n} - 1 = (a - 1)(a^{n-1} + a^{n-2} + \dots + a^{2} + a + 1),$$

it follows that a - 1 divides $a^n - 1$. Since $a \ge 2$ and $n \ge 2$, the divisor a - 1 of $a^n - 1$ is $< a^n - 1$. If $a^n - 1$ is prime then a - 1 = 1, hence a = 2.

If n = bc, then $a^n - 1$ is divisible by $a^c - 1$, as we see from the relation

$$x^{b} - 1 = (x - 1)(x^{b-1} + x^{b-2} + \dots + x^{2} + x + 1)$$

with $x = a^c$. Hence if $2^n - 1$ is prime, then n is prime.

If n has an odd divisor d > 1, then the identity

$$b^{d} + 1 = (b+1)(b^{d-1} - b^{d-2} + \dots + b^{2} - b + 1)$$

with $b = a^{n/d}$ shows that b + 1 divides $a^n + 1$. Hence if $a^n + 1$ is prime, then n has no odd divisor > 1, which means that n is a power of 2. Also $a^n + 1$ is odd, hence a is even.

It may happen that $a^n + 1$ is prime with a > 2 – for instance when a is a power of 2 (Fermat primes), but also for other even values of a like a = 6and n = 2. It is a famous open problem to prove that there are infinitely many integers a such that $a^2 + 1$ is prime.

Solution of Exercise 2. Write

$$641 = 2^4 + 5^4 = 2^7 \cdot 5 + 1,$$

so that on the one hand

$$5 \cdot 2^7 \equiv -1 \pmod{641},$$

hence

$$5^4 2^{28} \equiv (-1)^4 \equiv 1 \pmod{641},$$

and on the other hand

$$5^4 \cdot 2^{28} \equiv -2^{32} \pmod{641}$$
.

Hence

$$2^{32} \equiv -1 \pmod{641}.$$

Remark. One can repeat the same proof without using congruences. From the identity

$$x^{4} - 1 = (x - 1)(x + 1)(x^{2} + 1)$$

we deduce that for any integer x, the number $x^4 - 1$ is divisible by x + 1. Take $x = 5 \cdot 2^7$; it follows that x + 1 = 641 divides $5^4 2^{28} - 1$. However 641 also divides $2^{28}(2^4 + 5^4) = 2^{32} + 5^4 2^{28}$, hence 641 divides the difference

$$(2^{32} + 5^4 2^{28}) - (5^4 2^{28} - 1) = 2^{32} + 1 = F_5.$$

Solution of Exercise 3. Assume first that $n \ge 3$ is not a power of 2. Let 2a + 1 be an odd divisor of n with $a \ge 1$. Write n = (2a + 1)b.

If b > a then n is the sum

$$(b-a) + (b-a+1) + \dots + (b-1) + b + (b+1) + \dots + (b+a)$$

of the 2a + 1 consecutive integers starting with b - a.

If $b \leq a$ then *n* is the sum

$$(a - b + 1) + (a - b + 2) + \dots + (a + b)$$

of the 2b consecutive integers starting with a - b + 1.

Assume now n is a sum of b consecutive integers with b > 1:

$$n = a + (a + 1) + \dots + (a + b - 1) = ba + \frac{b(b + 1)}{2}$$
.

Then

$$2n = b(2a + b + 1)$$

is a product of two numbers with different parity, hence 2n has an odd divisor and therefore n is not a power of 2.

Solution of Exercise 4. Without loss of generality we assume n > m. Define $x = a^{2^m}$, and notice that

$$a^{2^n} - 1 = x^{2^{n-m}} - 1$$

which is divisible by x + 1. Hence $a^{2^m} + 1$ divides $a^{2^n} - 1$. Therefore if a positive integer d divides both $a^{2^m} + 1$ and $a^{2^n} + 1$, then it divides both $a^{2^n} - 1$ and $a^{2^n} + 1$, and therefore it divides the difference which is 2. Hence d = 1 or 2. Further, $a^{2^n} + 1$ is even if and only if a is odd.

For $n \ge 1$, let P_n be the set of prime divisors of $2^{2^n} + 1$. The set P_n is not empty, and the sets P_n for $n \ge 1$ are pairwise disjoint. Hence their union is infinite.

Solution of Exercise 5. A one line proof:

$$\left(\prod_{d|a} d\right)^2 = \left(\prod_{d|a} d\right) \left(\prod_{d|a} \frac{a}{d}\right) = \left(\prod_{d|a} a\right) = a^D.$$

Remark. A side result is that if a is not a square, then D is even.

Solution of Exercise 6. Let x_1, \ldots, x_{n+1} be n+1 distinct positive integers $\leq 2n$. For $i = 1, \ldots, n+1$, denote by y_i the largest odd divisor of x_i . Notice that $1 \leq y_i \leq n$ for $1 \leq i \leq n+1$. By Dirichlet box principle, there exist $i \neq j$ such that $y_i = y_j$. Then x_i and x_j have the same largest odd divisor, which means that x_i/x_j is a power of 2.

Solution of Exercise 7. For n = 0 both sides are equal to 2, for n = 1 to 8. We prove the result by induction. Assume

$$2^{2n-1} \equiv 9(n-1)^2 - 3(n-1) + 2 \pmod{54}$$

The right hand side is $9n^2 - 21n + 14$, and

$$4(9n^2 - 21n + 14) = 36n^2 - 84n + 56$$

which is congruent to $9n^2 - 3n + 2$, since 27n(n+3) is a multiple of 54.

Solution of Exercise 8. Since $60 = 2^2 \cdot 3 \cdot 5$, we just need to check that 4, 3 and 5 divide xyz.

If two at least of the numbers x, y, z are even, then 4 divides xyz. If only one of them, say t, is even, then t^2 is either the sum or the difference of two odd squares. Any square is congruent to 0, 1 or 4 modulo 8. Hence $t^2 \equiv 0$ (mod 8), which implies $t \equiv 0 \pmod{4}$. Therefore $xyz \equiv 0 \pmod{4}$.

The squares modulo 3 are 0 and 1, hence z^2 is not congruent to 2 modulo 3, and therefore x^2 and y^2 are not both congruent to 1 modulo 3: one at least of them is 0 modulo 3, hence 3 divides xy.

Since the squares modulo 3 are 0 and 1, the same argument shows that 5 divides xy.

Solution of Exercise 9. Multiply the first equation by 3, the second by 7 and add. From $29 \equiv 5 \pmod{12}$ and $97 \equiv 1 \pmod{12}$ we get $5x \equiv 1 \pmod{12}$. Since

$$5 \times 5 - 2 \times 12 = 1,$$

the inverse of 5 modulo 12 is 5. Hence $x \equiv 5 \pmod{12}$. Substituting yields $y \equiv 4 \pmod{12}$.

The unicity can also be proved using the fact that the determinant of the system

$$\begin{vmatrix} 5 & -7 \\ 2 & 3 \end{vmatrix}$$

is 29 which is prime to 12.

Solution of Exercise 10. (Compare with exercise XI.2: If p is an odd prime and a is prime to p, show that the congruence $ax^2 + bx + c \equiv 0 \pmod{p}$ has two solutions, one or none according as $b^2 - 4ac$ is a quadratic residue, 0 or a non-residue modulo p).

If a is even, the discriminant in \mathbf{F}_2 is 0, and there is a unique solution $x \equiv b \pmod{2}$.

If a is odd, the discriminant is not 0 (hence it is 1 in \mathbf{F}_2). If b is even there are two solutions (any $x \in \mathbf{F}_2$ is a solution, x(x+1) is always even), if b is odd there is no solution: $x^2 + x + 1$ is irreducible over \mathbf{F}_2 .

Solution of Exercise 11. In the ring $\mathbf{F}_{7}[X]$ of polynomials over the finite field $\mathbf{Z}/7\mathbf{Z} = \mathbf{F}_{7}$, we have

$$X^{2} - 3X + 3 = (X + 2)^{2} - 1 = (X + 1)(X + 3).$$

The roots of this polynomial are

$$x = 6 \pmod{7}$$
 and $x = 4 \pmod{7}$.

Solution of Exercise 12. We define a partition of the set of integers k in the range [1, m-1] prime to m into two or three subsets, where one subset consists of those integers k which are < m/2, another subset consists of those integers k which are > m/2, with an extra third set with a single element $\{m/2\}$ if m is congruent to 2 modulo 4. The result follows from the existence of a bijective map $k \mapsto m - k$ from the first subset to the second.

Solution of Exercise 13. Use the same argument as in Exercise 12 with

$$k^m + (m-k)^m \equiv 0 \pmod{m}$$
 for $1 \le k \le m$

since m is odd.

Solution of Exercise 14. The property that p divides $a^{2^n} + 1$ is equivalent to $a^{2^n} \equiv -1 \pmod{p}$, which means also that a has order 2^{n+1} modulo p. Hence in this case 2^{n+1} divides p-1.

For n = 5, this shows that any prime divisor of $2^{2^5} + 1$ is congruent to 1 modulo $2^6 = 64$. It turns out that 641 divides the Fermat number F_5 (see exercise 2).

Solution of Exercise 15. For c a positive integer, the decimal expansion of the number

$$\frac{1}{10^c - 1} = 10^{-c} + 10^{-2c} + \cdots$$

is periodic, with a period having c decimal digits, namely c-1 zeros followed by one 1. For $1 \le r < 10^c - 1$, the number

$$\frac{r}{10^c - 1}$$

has a periodic decimal expansion, with a period (maybe not the least one) having c decimal digits, these digits are the decimal digits of r. Adding a positive integer to a real number does not change the expansion after the decimal point. The decimal expansion of the product of a real number x by a power of 10 is obtained by shifting the decimal expansion of x (on the right or on the left depending of whether it is a positive or a negative power of 10).

We claim that a number of the form

$$\frac{k}{10^{\ell}(10^c-1)},$$

where k, ℓ and c are integers with k > 0 and c > 0, has a decimal expansion which is ultimately periodic with a period of length c. Indeed, using the Euclidean division of k by $10^c - 1$, we write

$$k = (10^{c} - 1)q + r$$
 with $0 \le r < 10^{c} - 1$,

hence

$$\frac{k}{10^{\ell}(10^{c}-1)} = \frac{1}{10^{\ell}} \left(q + \frac{r}{10^{c}-1} \right),$$

and our claim follows from the previous remarks.

Now we consider the decimal expansion of b/a when a and b are positive integers and $a = 2^{\alpha} 5^{\beta} m$ with m prime to 10. Denote by c the order of the class of 10 modulo m. Then c divides $\varphi(m)$, $10^c \equiv 1 \pmod{m}$ and

$$\frac{b}{a}10^{\alpha+\beta}(10^c-1) \in \mathbf{Z}.$$

Therefore b/a has a decimal expansion with a period having c decimal digits. If c is the smallest period and if c = m - 1, then m - 1 divides $\varphi(m)$, hence $\varphi(m) = m - 1$ and m is prime. For instance with a = m = 7, $\alpha = \beta = 0$, b = 1:

$$1/7 = 0.14285714285714285714\ldots$$

has minimal period of length 6.

Solution of Exercise 16. If p-1 divides n, then $a^n \equiv 1 \pmod{p}$ for $a = 1, \ldots, p-1$, the sum has p-1 terms all congruent to 1 modulo p, hence the sum is congruent to -1 modulo p.

Assume p-1 does not divide n. Let ζ be a generator of the multiplicative group $(\mathbf{Z}/p\mathbf{Z})^{\times}$. Since ζ has order p-1, the condition that p-1 does not divide n means $\zeta^n \neq 1$. Let $d = \gcd(p-1, n)$ and q = (p-1)/d.

We claim that the order of ζ^n is q. Indeed, we can write $n = d\delta$. Since ζ has order p - 1 it follows that ζ^d has order q, and since $gcd(\delta, q) = 1$, $\zeta^n = (\zeta^d)^{\delta}$ has also order q.

Therefore the sequence $(1^n, 2^n, \ldots, (p-1)^n)$, which is a permutation of the sequence $(1, \zeta^n, \zeta^{2n}, \ldots, \zeta^{(p-2)n})$, is a repetition *d* times of the sequence $(1, \zeta^n, \zeta^{2n}, \ldots, \zeta^{(q-1)n})$. Also $(\zeta^n)^q = 1$. Hence

$$1^{n} + 2^{n} + \dots + (p-1)^{n} = \sum_{j=0}^{p-2} \zeta^{jn} = d \sum_{j=0}^{q-1} \zeta^{jn} = \frac{(\zeta^{n})^{q} - 1}{\zeta^{n} - 1} = 0.$$

References

WEIL, ANDRÉ. - Number theory for beginners. With the collaboration of Maxwell Rosenlicht. Springer-Verlag, New York-Heidelberg, 1979.
MR 80e:10004

http://link.springer.com/book/10.1007%2F978-1-4612-9957-8

http://www.math.jussieu.fr/~miw/