SEAMS School 2013 ITB Number theory

Exercise 1

Let $a \geq 2$ and $n \geq 2$ be integers.
a) Assume that the number $N=a^{n}-1$ is prime. Show that N is a Mersenne prime, that is $a=2$ and n is prime.
b) Assume that the number $a^{n}+1$ is prime. Show that n is a power of 2 , and that a is even. Can you deduce $a=2$ from the hypotheses?

Exercise 2

Using $641=2^{4}+5^{4}=2^{7} \cdot 5+1$, show that 641 divides the Fermat number $F_{5}=2^{32}+1$.

Exercise 3 (compare with exercise III. 4 of Weil's book)
Let n be an integer >1. Check that n can be written as the sum of (two or more) consecutive integers if and only if n is not a power of 2 .

Exercise 4 (exercise IV. 3 of Weil's book)
Let a, m and n be positive integers with $m \neq n$. Check that the greatest common divisor (gcd) of $a^{2^{m}}+1$ and $a^{2^{n}}+1$ is 1 if a is even and 2 if a is odd. Deduce the existence of infinitely many primes.

Exercise 5 (exercise IV. 5 of Weil's book)
Check that the product of the divisors of an integer a is $a^{D / 2}$ where D is the number of divisors of a.

Exercise 6 (exercise V. 7 of Weil's book)
Given $n>0$, any $n+1$ of the first $2 n$ integers $1, \ldots, 2 n$ contain a pair x, y such that y / x is a power of 2 .

Exercise 7 (exercise V. 3 of Weil's book)
If n is a positive integer, then

$$
2^{2 n+1} \equiv 9 n^{2}-3 n+2 \quad(\bmod 54)
$$

Exercise 8 (exercise V. 4 of Weil's book)
If x, y, z are integers such that $x^{2}+y^{2}=z^{2}$, then $x y z \equiv 0(\bmod 60)$.
Exercise 9 (exercise VI. 2 of Weil's book)
Solve the pair of congruences

$$
5 x-7 y \equiv 9 \quad(\bmod 12), \quad 2 x+3 y \equiv 10 \quad(\bmod 12) ;
$$

show that the solution is unique modulo 12 .
Exercise 10 (exercise VI. 3 of Weil's book)
Solve $x^{2}+a x+b \equiv 0(\bmod 2)$
Exercise 11 (exercise VI. 4 of Weil's book)
Solve $x^{2}-3 x+3 \equiv 0(\bmod 7)$.
Exercise 12 (exercise VI. 5 of Weil's book)
The arithmetic mean of the integers in the range [$1, m-1$] prime to m is $m / 2$.

Exercise 13 (exercise VI. 6 of Weil's book)
When m is an odd positive integer,

$$
1^{m}+2^{m}+\cdots+(m-1)^{m} \equiv 0 \quad(\bmod m)
$$

Exercise 14 (exercise VIII. 3 of Weil's book)
If p is an odd prime divisor of $a^{2^{n}}+1$ with $n \geq 1$, show that $p \equiv 1\left(\bmod 2^{n+1}\right)$.
Exercise 15 (exercise VIII. 4 of Weil's book)
If a and b are positive integers and $a=2^{\alpha} 5^{\beta} m$ with m prime to 10 , then the decimal expansion for b / a has a period ℓ where the number of decimal digits of ℓ divides $\varphi(m)$. Further, if there is no period with less than $m-1$ digits, then m is prime.

Exercise 16 (exercise X. 3 of Weil's book)
For p prime and n positive integer,

$$
\begin{aligned}
1^{n}+2^{n}+\cdots+(p-1)^{n} \equiv\left\{\begin{array}{lll}
0 & (\bmod p) & \text { if } p-1 \text { does not divide } n \\
-1 & (\bmod p) & \text { if } p-1 \text { divides } n .
\end{array}\right. \\
\text { http://www.math.jussieu.fr/~miw/ }
\end{aligned}
$$

SEAMS School 2013 ITB Number theory (solutions)

Solution of Exercise 1. From

$$
a^{n}-1=(a-1)\left(a^{n-1}+a^{n-2}+\cdots+a^{2}+a+1\right)
$$

it follows that $a-1$ divides $a^{n}-1$. Since $a \geq 2$ and $n \geq 2$, the divisor $a-1$ of $a^{n}-1$ is $<a^{n}-1$. If $a^{n}-1$ is prime then $a-1=1$, hence $a=2$.

If $n=b c$, then $a^{n}-1$ is divisible by $a^{c}-1$, as we see from the relation

$$
x^{b}-1=(x-1)\left(x^{b-1}+x^{b-2}+\cdots+x^{2}+x+1\right)
$$

with $x=a^{c}$. Hence if $2^{n}-1$ is prime, then n is prime.
If n has an odd divisor $d>1$, then the identity

$$
b^{d}+1=(b+1)\left(b^{d-1}-b^{d-2}+\cdots+b^{2}-b+1\right)
$$

with $b=a^{n / d}$ shows that $b+1$ divides $a^{n}+1$. Hence if $a^{n}+1$ is prime, then n has no odd divisor >1, which means that n is a power of 2 . Also $a^{n}+1$ is odd, hence a is even.

It may happen that $a^{n}+1$ is prime with $a>2$ - for instance when a is a power of 2 (Fermat primes), but also for other even values of a like $a=6$ and $n=2$. It is a famous open problem to prove that there are infinitely many integers a such that $a^{2}+1$ is prime.

Solution of Exercise 2. Write

$$
641=2^{4}+5^{4}=2^{7} \cdot 5+1
$$

so that on the one hand

$$
5 \cdot 2^{7} \equiv-1 \quad(\bmod 641)
$$

hence

$$
5^{4} 2^{28} \equiv(-1)^{4} \equiv 1 \quad(\bmod 641)
$$

and on the other hand

$$
5^{4} \cdot 2^{28} \equiv-2^{32} \quad(\bmod 641)
$$

Hence

$$
2^{32} \equiv-1 \quad(\bmod 641)
$$

Remark. One can repeat the same proof without using congruences. From the identity

$$
x^{4}-1=(x-1)(x+1)\left(x^{2}+1\right)
$$

we deduce that for any integer x, the number $x^{4}-1$ is divisible by $x+1$. Take $x=5 \cdot 2^{7}$; it follows that $x+1=641$ divides $5^{4} 2^{28}-1$. However 641 also divides $2^{28}\left(2^{4}+5^{4}\right)=2^{32}+5^{4} 2^{28}$, hence 641 divides the difference

$$
\left(2^{32}+5^{4} 2^{28}\right)-\left(5^{4} 2^{28}-1\right)=2^{32}+1=F_{5}
$$

Solution of Exercise 3. Assume first that $n \geq 3$ is not a power of 2. Let $2 a+1$ be an odd divisor of n with $a \geq 1$. Write $n=(2 a+1) b$.

If $b>a$ then n is the sum

$$
(b-a)+(b-a+1)+\cdots+(b-1)+b+(b+1)+\cdots+(b+a)
$$

of the $2 a+1$ consecutive integers starting with $b-a$.
If $b \leq a$ then n is the sum

$$
(a-b+1)+(a-b+2)+\cdots+\cdots+(a+b)
$$

of the $2 b$ consecutive integers starting with $a-b+1$.
Assume now n is a sum of b consecutive integers with $b>1$:

$$
n=a+(a+1)+\cdots+(a+b-1)=b a+\frac{b(b+1)}{2}
$$

Then

$$
2 n=b(2 a+b+1)
$$

is a product of two numbers with different parity, hence $2 n$ has an odd divisor and therefore n is not a power of 2 .

Solution of Exercise 4. Without loss of generality we assume $n>m$. Define $x=a^{2^{m}}$, and notice that

$$
a^{2^{n}}-1=x^{2^{n-m}}-1
$$

which is divisible by $x+1$. Hence $a^{2^{m}}+1$ divides $a^{2^{n}}-1$. Therefore if a positive integer d divides both $a^{2^{m}}+1$ and $a^{2^{n}}+1$, then it divides both $a^{2^{n}}-1$ and $a^{2^{n}}+1$, and therefore it divides the difference which is 2 . Hence $d=1$ or 2 . Further, $a^{2^{n}}+1$ is even if and only if a is odd.

For $n \geq 1$, let P_{n} be the set of prime divisors of $2^{2^{n}}+1$. The set P_{n} is not empty, and the sets P_{n} for $n \geq 1$ are pairwise disjoint. Hence their union is infinite.

Solution of Exercise 5. A one line proof:

$$
\left(\prod_{d \mid a} d\right)^{2}=\left(\prod_{d \mid a} d\right)\left(\prod_{d \mid a} \frac{a}{d}\right)=\left(\prod_{d \mid a} a\right)=a^{D}
$$

Remark. A side result is that if a is not a square, then D is even.

Solution of Exercise 6. Let x_{1}, \ldots, x_{n+1} be $n+1$ distinct positive integers $\leq 2 n$. For $i=1, \ldots, n+1$, denote by y_{i} the largest odd divisor of x_{i}. Notice that $1 \leq y_{i} \leq n$ for $1 \leq i \leq n+1$. By Dirichlet box principle, there exist $i \neq j$ such that $y_{i}=y_{j}$. Then x_{i} and x_{j} have the same largest odd divisor, which means that x_{i} / x_{j} is a power of 2 .

Solution of Exercise 7. For $n=0$ both sides are equal to 2 , for $n=1$ to 8 . We prove the result by induction. Assume

$$
2^{2 n-1} \equiv 9(n-1)^{2}-3(n-1)+2 \quad(\bmod 54)
$$

The right hand side is $9 n^{2}-21 n+14$, and

$$
4\left(9 n^{2}-21 n+14\right)=36 n^{2}-84 n+56
$$

which is congruent to $9 n^{2}-3 n+2$, since $27 n(n+3)$ is a multiple of 54 .

Solution of Exercise 8. Since $60=2^{2} \cdot 3 \cdot 5$, we just need to check that 4, 3 and 5 divide $x y z$.

If two at least of the numbers x, y, z are even, then 4 divides $x y z$. If only one of them, say t, is even, then t^{2} is either the sum or the difference of two odd squares. Any square is congruent to 0,1 or 4 modulo 8 . Hence $t^{2} \equiv 0$ $(\bmod 8)$, which implies $t \equiv 0(\bmod 4)$. Therefore $x y z \equiv 0(\bmod 4)$.

The squares modulo 3 are 0 and 1 , hence z^{2} is not congruent to 2 modulo 3 , and therefore x^{2} and y^{2} are not both congruent to 1 modulo 3 : one at least of them is 0 modulo 3 , hence 3 divides $x y$.

Since the squares modulo 3 are 0 and 1 , the same argument shows that 5 divides $x y$.

Solution of Exercise 9. Multiply the first equation by 3, the second by 7 and add. From $29 \equiv 5(\bmod 12)$ and $97 \equiv 1(\bmod 12)$ we get $5 x \equiv 1(\bmod 12)$. Since

$$
5 \times 5-2 \times 12=1
$$

the inverse of 5 modulo 12 is 5 . Hence $x \equiv 5(\bmod 12)$. Substituting yields $y \equiv 4(\bmod 12)$.

The unicity can also be proved using the fact that the determinant of the system

$$
\left|\begin{array}{cc}
5 & -7 \\
2 & 3
\end{array}\right|
$$

is 29 which is prime to 12 .

Solution of Exercise 10. (Compare with exercise XI.2: If p is an odd prime and a is prime to p, show that the congruence $a x^{2}+b x+c \equiv 0(\bmod p)$ has two solutions, one or none according as $b^{2}-4 a c$ is a quadratic residue, 0 or a non-residue modulo p).

If a is even, the discriminant in \mathbf{F}_{2} is 0 , and there is a unique solution $x \equiv b(\bmod 2)$.

If a is odd, the discriminant is not 0 (hence it is 1 in \mathbf{F}_{2}). If b is even there are two solutions (any $x \in \mathbf{F}_{2}$ is a solution, $x(x+1)$ is always even), if b is odd there is no solution: $x^{2}+x+1$ is irreducible over \mathbf{F}_{2}.

Solution of Exercise 11. In the $\operatorname{ring} \mathbf{F}_{7}[X]$ of polynomials over the finite field $\mathbf{Z} / 7 \mathbf{Z}=\mathbf{F}_{7}$, we have

$$
X^{2}-3 X+3=(X+2)^{2}-1=(X+1)(X+3)
$$

The roots of this polynomial are

$$
x=6 \quad(\bmod 7) \quad \text { and } \quad x=4 \quad(\bmod 7)
$$

Solution of Exercise 12. We define a partition of the set of integers k in the range [1, $m-1$] prime to m into two or three subsets, where one subset consists of those integers k which are $<m / 2$, another subset consists of those integers k which are $>m / 2$, with an extra third set with a single element $\{m / 2\}$ if m is congruent to 2 modulo 4 . The result follows from the existence of a bijective map $k \mapsto m-k$ from the first subset to the second.

Solution of Exercise 13. Use the same argument as in Exercise 12 with

$$
k^{m}+(m-k)^{m} \equiv 0 \quad(\bmod m) \quad \text { for } \quad 1 \leq k \leq m
$$

since m is odd.

Solution of Exercise 14. The property that p divides $a^{2^{n}}+1$ is equivalent to $a^{2^{n}} \equiv-1(\bmod p)$, which means also that a has order 2^{n+1} modulo p. Hence in this case 2^{n+1} divides $p-1$.

For $n=5$, this shows that any prime divisor of $2^{2^{5}}+1$ is congruent to 1 modulo $2^{6}=64$. It turns out that 641 divides the Fermat number F_{5} (see exercise 2).

Solution of Exercise 15. For c a positive integer, the decimal expansion of the number

$$
\frac{1}{10^{c}-1}=10^{-c}+10^{-2 c}+\cdots
$$

is periodic, with a period having c decimal digits, namely $c-1$ zeros followed by one 1 . For $1 \leq r<10^{c}-1$, the number

$$
\frac{r}{10^{c}-1}
$$

has a periodic decimal expansion, with a period (maybe not the least one) having c decimal digits, these digits are the decimal digits of r. Adding a positive integer to a real number does not change the expansion after the decimal point. The decimal expansion of the product of a real number x by a power of 10 is obtained by shifting the decimal expansion of x (on the right or on the left depending of whether it is a positive or a negative power of 10).

We claim that a number of the form

$$
\frac{k}{10^{\ell}\left(10^{c}-1\right)},
$$

where k, ℓ and c are integers with $k>0$ and $c>0$, has a decimal expansion which is ultimately periodic with a period of length c. Indeed, using the Euclidean division of k by $10^{c}-1$, we write

$$
k=\left(10^{c}-1\right) q+r \quad \text { with } \quad 0 \leq r<10^{c}-1,
$$

hence

$$
\frac{k}{10^{\ell}\left(10^{c}-1\right)}=\frac{1}{10^{\ell}}\left(q+\frac{r}{10^{c}-1}\right)
$$

and our claim follows from the previous remarks.
Now we consider the decimal expansion of b / a when a and b are positive integers and $a=2^{\alpha} 5^{\beta} m$ with m prime to 10 . Denote by c the order of the class of 10 modulo m. Then c divides $\varphi(m), 10^{c} \equiv 1(\bmod m)$ and

$$
\frac{b}{a} 10^{\alpha+\beta}\left(10^{c}-1\right) \in \mathbf{Z} .
$$

Therefore b / a has a decimal expansion with a period having c decimal digits. If c is the smallest period and if $c=m-1$, then $m-1$ divides $\varphi(m)$, hence $\varphi(m)=m-1$ and m is prime. For instance with $a=m=7, \alpha=\beta=0$, $b=1$:

$$
1 / 7=0.14285714285714285714 \ldots
$$

has minimal period of length 6 .

Solution of Exercise 16. If $p-1$ divides n, then $a^{n} \equiv 1(\bmod p)$ for $a=$ $1, \ldots, p-1$, the sum has $p-1$ terms all congruent to 1 modulo p, hence the sum is congruent to -1 modulo p.

Assume $p-1$ does not divide n. Let ζ be a generator of the multiplicative group $(\mathbf{Z} / p \mathbf{Z})^{\times}$. Since ζ has order $p-1$, the condition that $p-1$ does not divide n means $\zeta^{n} \neq 1$. Let $d=\operatorname{gcd}(p-1, n)$ and $q=(p-1) / d$.

We claim that the order of ζ^{n} is q. Indeed, we can write $n=d \delta$. Since ζ has order $p-1$ it follows that ζ^{d} has order q, and since $\operatorname{gcd}(\delta, q)=1$, $\zeta^{n}=\left(\zeta^{d}\right)^{\delta}$ has also order q.

Therefore the sequence $\left(1^{n}, 2^{n}, \ldots,(p-1)^{n}\right)$, which is a permutation of the sequence $\left(1, \zeta^{n}, \zeta^{2 n}, \ldots, \zeta^{(p-2) n}\right)$, is a repetition d times of the sequence $\left(1, \zeta^{n}, \zeta^{2 n}, \ldots, \zeta^{(q-1) n}\right)$. Also $\left(\zeta^{n}\right)^{q}=1$. Hence

$$
1^{n}+2^{n}+\cdots+(p-1)^{n}=\sum_{j=0}^{p-2} \zeta^{j n}=d \sum_{j=0}^{q-1} \zeta^{j n}=\frac{\left(\zeta^{n}\right)^{q}-1}{\zeta^{n}-1}=0 .
$$

References

[1] Weil, André. - Number theory for beginners. With the collaboration of Maxwell Rosenlicht. Springer-Verlag, New York-Heidelberg, 1979.
MR 80e:10004
http://link.springer.com/book/10.1007\%2F978-1-4612-9957-8

