Michel Waldschmidt
Master Training Program

Complex Analysis MMA 106

Exercises 02/05/2008
In these exercises, log is always the function defined in the open disc of center 1 and radius 1 by the power series

$$
\log z=-\sum_{n \geq 1} \frac{(1-z)^{n}}{n}
$$

For $t \in \mathbf{C}$ and $|z-1|<1$ the notation z^{t} stands for $e^{t \log z}$.
For z_{0} a complex numbers and r a positive real number, we denote by $C\left(z_{0}, r\right)$ the map $t \mapsto z_{0}+r e^{2 i \pi t}$ from $[0,1]$ onto the circle of center z_{0} and radius r. We also write

$$
\int_{\left|z-z_{0}\right|=r} f(z) d z \quad \text { in place of } \quad \int_{C\left(z_{0}, r\right)} f(z) d z
$$

1. Solve the following equations (i.e. find all $z \in \mathbf{C}$ satisfying the given equation)

$$
z^{2}+(1+i) z-i=0, \quad e^{z}=\log 2, \quad e^{z}=(1+i) / 2, \quad e^{z}=0, \quad \sin z=0, \quad \cos z=0 .
$$

2. How many $z \in \mathbf{C}$ are there such that $z^{4}-z^{3}=1$?

More generally, for $n \geq 1$ a positive integer and $t \in \mathbf{C}$, how many $z \in \mathbf{C}$ are there such that $z^{n+1}-z^{n}=t$?
3. Show that the set of 2×2 matrices

$$
\left\{\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right) ;(a, b) \in \mathbf{R} \times \mathbf{R}\right\}
$$

is a field for the usual rules on matrices. Which field is-it?
4. Check that the composition $f \circ g$ of two functions which are complex differentiable is also complex differentiable. Write the result carefully.
5. Let α and z be complex numbers with $z \bar{\alpha} \neq 1$. Set

$$
u=\frac{z-\alpha}{1-\bar{\alpha} z} .
$$

Depending on $|z|$ and $|\alpha|$, decide whether $|u|$ is >1 or $=1$ or else <1.
6. What is $\log ((1+i) / 2)$?
7. What is $(1 / 2)^{i \pi / \log 2}$?
8. Let $t \in \mathbf{C}$ and let f be the function defined in the unit disc by $f(z)=(1-z)^{t}$. Show that f is complex differentiable and satisfies the differential equation

$$
-(1-z) f^{\prime}(z)=t f(z)
$$

9. Which are the power series $\sum_{n \geq 1} a_{n} z^{n}$ solutions of $f^{\prime}(z)=e^{f(z)}$? Compute the radius of convergence.
10. Find the unique solution y of the differential equation $y^{\prime \prime}+y=0$ for each of the following initial conditions
a) $y(0)=1, \quad y^{\prime}(0)=0$.
b) $y(0)=0, \quad y^{\prime}(0)=1$.
c) $y(0)=1, \quad y^{\prime}(0)=i$.
d) $y(0)=1, \quad y^{\prime}(0)=-i$.
11. For each of the open subsets U below, decide whether U is connected or not.
a) For z_{1}, z_{2} two complex numbers and r_{1}, r_{2} two positive real numbers,

$$
U=D\left(z_{1}, r_{1}\right) \cup D\left(z_{2}, r_{2}\right)
$$

b) For $a_{1}, a_{2}, b_{1}, b_{2}$ real numbers,

$$
U=\left(\left\{z ; \Re e(z)>a_{1}\right\} \cap\left\{z ; \Im m(z)>b_{1}\right\}\right) \cup\left(\left\{z ; \Re e(z)<a_{2}\right\} \cap\left\{z ; \Im m(z)<b_{2}\right\}\right)
$$

12. What is the order of multiplicity at $z=0$ of the following functions?
a) $\sin z-z \cos z$.
b) $e^{z}+1+\log (1+z)$
c) $e^{z}-1-\log (1+z)$
13. Show that there is a unique polynomial P of degree 2 such that the function

$$
\left(z^{2}-4 z+6\right) e^{z}-P(z)
$$

has a zero of multiplicity 4 at the origin. Find it.
14. Write the polygonal path going from 0 to 1 to $(1+i \sqrt{3}) / 2$ and back to 0 (equilateral triangle).
Write the polygonal path which is the regular polygon with n sides centered at 0 starting at 1.
15. Let $u:[0,1] \rightarrow \mathbf{C}$ be a C^{1} function. Check

$$
\left|\int_{0}^{1} u(t) d t\right| \leq \int_{0}^{1}|u(t)| d t .
$$

16. Compute, for $n \in \mathbf{Z}$,

$$
\int_{|z|=1} \frac{e^{z}}{z^{n}} d z, \quad \int_{|z|=1} \frac{\cos (z)}{z^{n}} d z, \quad \int_{|z|=1} \frac{\sin (z)}{z^{n}} d z .
$$

17. Let $n \in \mathbf{Z}$ be any integer. Let δ be a closed regular polygonal line centered at 0 . Check the equality between the two integrals

$$
\int_{|z|=1} z^{n} d z=\int_{\delta} z^{n} d z
$$

Hint. The case $n \neq-1$ is easy and does not require any computation. For the case $n=-1$, use the fact that the integral along the closed path, which consists of a side of the polygon and the corresponding arc on the circle, is 0 .
18. Let z_{0} and z_{1} be complex numbers and r a positive real number. Assume $\left|z_{1}-z_{0}\right| \neq r$. Check

$$
\int_{\left|z-z_{0}\right|=r} \frac{d z}{z-z_{1}}= \begin{cases}0 & \text { if }\left|z_{1}-z_{0}\right|>r \\ 2 i \pi & \text { if }\left|z_{1}-z_{0}\right|<r .\end{cases}
$$

Hint. The case $\left|z_{1}-z_{0}\right|>r$ is easy and does not require any computation. The case $z_{1}=z_{0}$ is easy. For the case $0<\left|z_{1}-z_{0}\right|<r$, write $1 /\left(z-z_{1}\right)$ by means of the geometric series in $\left(z_{1}-z_{0}\right) /\left(z-z_{0}\right)$.

