Royal University of Phnom Penh RUPP Université Royale de Phnom Penh URPP

Master of Science in Mathematics

Michel Waldschmidt Master Training Program

Complex Analysis MMA 106

Exercises 02/05/2008

In these exercises, log is always the function defined in the open disc of center 1 and radius 1 by the power series

$$\log z = -\sum_{n\geq 1} \frac{(1-z)^n}{n} \cdot$$

For $t \in \mathbf{C}$ and |z - 1| < 1 the notation z^t stands for $e^{t \log z}$.

For z_0 a complex numbers and r a positive real number, we denote by $C(z_0, r)$ the map $t \mapsto z_0 + re^{2i\pi t}$ from [0, 1] onto the circle of center z_0 and radius r. We also write

$$\int_{|z-z_0|=r} f(z)dz \quad in \ place \ of \quad \int_{C(z_0,r)} f(z)dz$$

1. Solve the following equations (i.e. find all $z \in \mathbf{C}$ satisfying the given equation)

$$z^{2} + (1+i)z - i = 0$$
, $e^{z} = \log 2$, $e^{z} = (1+i)/2$, $e^{z} = 0$, $\sin z = 0$, $\cos z = 0$.

2. How many $z \in \mathbf{C}$ are there such that $z^4 - z^3 = 1$?

More generally, for $n \ge 1$ a positive integer and $t \in \mathbf{C}$, how many $z \in \mathbf{C}$ are there such that $z^{n+1} - z^n = t$?

3. Show that the set of 2×2 matrices

$$\left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \; ; \; (a,b) \in \mathbf{R} \times \mathbf{R} \right\}$$

is a field for the usual rules on matrices. Which field is-it?

4. Check that the composition $f \circ g$ of two functions which are complex differentiable is also complex differentiable. Write the result carefully.

5. Let α and z be complex numbers with $z\overline{\alpha} \neq 1$. Set

$$u = \frac{z - \alpha}{1 - \overline{\alpha}z} \cdot$$

Depending on |z| and $|\alpha|$, decide whether |u| is > 1 or = 1 or else < 1.

- 6. What is $\log((1+i)/2)$?
- 7. What is $(1/2)^{i\pi/\log 2}$?

8. Let $t \in \mathbf{C}$ and let f be the function defined in the unit disc by $f(z) = (1-z)^t$. Show that f is complex differentiable and satisfies the differential equation

$$-(1-z)f'(z) = tf(z).$$

9. Which are the power series $\sum_{n\geq 1} a_n z^n$ solutions of $f'(z) = e^{f(z)}$? Compute the radius of convergence.

10. Find the unique solution y of the differential equation y'' + y = 0 for each of the following initial conditions

a) y(0) = 1, y'(0) = 0. b) y(0) = 0, y'(0) = 1. c) y(0) = 1, y'(0) = i. d) y(0) = 1, y'(0) = -i.

11. For each of the open subsets U below, decide whether U is connected or not. a) For z_1 , z_2 two complex numbers and r_1 , r_2 two positive real numbers,

$$U = D(z_1, r_1) \cup D(z_2, r_2).$$

b) For a_1, a_2, b_1, b_2 real numbers,

$$U = \left(\left\{z \ ; \ \Re e(z) > a_1\right\} \cap \left\{z \ ; \ \Im m(z) > b_1\right\}\right) \cup \left(\left\{z \ ; \ \Re e(z) < a_2\right\} \cap \left\{z \ ; \ \Im m(z) < b_2\right\}\right).$$

12. What is the order of multiplicity at z = 0 of the following functions?

- a) $\sin z z \cos z$. b) $e^z + 1 + \log(1 + z)$
- c) $e^z 1 \log(1+z)$

13. Show that there is a unique polynomial P of degree 2 such that the function

$$(z^2 - 4z + 6)e^z - P(z)$$

has a zero of multiplicity 4 at the origin. Find it.

14. Write the polygonal path going from 0 to 1 to $(1 + i\sqrt{3})/2$ and back to 0 (equilateral triangle).

Write the polygonal path which is the regular polygon with n sides centered at 0 starting at 1.

15. Let $u: [0,1] \to \mathbf{C}$ be a C^1 function. Check

$$\left|\int_0^1 u(t)dt\right| \le \int_0^1 |u(t)|dt.$$

16. Compute, for $n \in \mathbb{Z}$,

$$\int_{|z|=1} \frac{e^z}{z^n} dz, \qquad \int_{|z|=1} \frac{\cos(z)}{z^n} dz, \qquad \int_{|z|=1} \frac{\sin(z)}{z^n} dz.$$

17. Let $n \in \mathbb{Z}$ be any integer. Let δ be a closed regular polygonal line centered at 0. Check the equality between the two integrals

$$\int_{|z|=1} z^n dz = \int_{\delta} z^n dz.$$

Hint. The case $n \neq -1$ is easy and does not require any computation. For the case n = -1, use the fact that the integral along the closed path, which consists of a side of the polygon and the corresponding arc on the circle, is 0.

18. Let z_0 and z_1 be complex numbers and r a positive real number. Assume $|z_1 - z_0| \neq r$. Check

$$\int_{|z-z_0|=r} \frac{dz}{z-z_1} = \begin{cases} 0 & \text{if } |z_1-z_0| > r, \\ 2i\pi & \text{if } |z_1-z_0| < r. \end{cases}$$

Hint. The case $|z_1 - z_0| > r$ is easy and does not require any computation. The case $z_1 = z_0$ is easy. For the case $0 < |z_1 - z_0| < r$, write $1/(z - z_1)$ by means of the geometric series in $(z_1 - z_0)/(z - z_0)$.

miw@math.jussieu.fr

Tél. : [33] (0)6 83 17 29 06