Some recent results in mathematics related with modern technology

Michel Waldschmidt
Université P. et M. Curie - Paris VI
Centre International de Mathématiques Pures et
Appliquées - CIMPA

December 1, 2009

French Science Today

The most important ones are:

INRIA Rocquencourt
Université de Bordeaux ENST Télécom Bretagne
Université de Limoges Université de Marseille
Université de Toulon Université de Toulouse

Institut National de Recherche en
Informatique et en Automatique
INRIA - Projet CODES
National
Codes and Cryptography
Research Institute in Computer Science and Automatic

\square

- People of CODES - Introduction to cryptography
- Our Research topics
- Publications
- Activity report

Conferences on coding an
cryptography

- How to contact us

WCC 2007 (International Workshop on Coding and Cryptography)(Rocquencourt, France) Open Shift Generator (shift register code generator)

Institut de Mathématiques de
Bordeaux
université bordeaux 1 Sciences technologies UNIVERSITE BORDEAUX 2 Viotor segalen

(2) TMB $>$ Equipes $>A 2 \mathrm{X}>$ Thématiques $>$ Codes et Réseaux

Le thème principal de nos recherches est l'étude des réseaux
Les maxima de la constante d'Hermite, qui mesure la densité Lattices and combinatorics
http://departements.enst-bretagne.fr/sc/recherche/turbo/
École Nationale Supérieure des
Télécommunications de Bretagne

Turbocodes

École Nationale Supérieure des Télécommunications de Bretagne

Accès authentifiés
http://www.xlim.fr/
Research Laboratory of LIMOGES

Projet : Protection de l'Information, Codage, Cryptographie

Marseille: Institut de Mathématiques

de Luminy

Institut de
Mathématiques de Luminy

Université du Sud Toulon-Var (f)

Boolean functions

Mathematical aspects of Coding Theory in France:

The main teams in the domain are gathered in the group
C2 "Coding Theory and Cryptography", which belongs to a more general group (GDR)
"Mathematical Informatics".

GDR IM

Groupe de Recherche

 Informatique Mathématique- The GDR "Mathematical Informatics" gathers all the french teams which work on computer science problems with mathematical methods.

error correcting codes

 and data transmission

- Transmissions by satellites
- CD's \& DVD's
- Cellular phones

Voyager 1 and 2 (1977)
Mariner 2 (1971) and 9 (1972)
Olympus Month on Mars planet

The North polar cap of Mars

Journey: Cape Canaveral, Jupiter, Saturn, Uranus, Neptune.

Black and white photographs of Mars

Voyager (1979-81) Jupiter Saturn

NASA's Pathfinder mission on Mars (1997)

- 1998: lost of control of Soho satellite recovered thanks to double correction by turbo code.

The power of the radio transmitters on these craft is only a few watts, yet this information is reliably transmitted across hundreds of millions of miles without being completely swamped by noise.

A CD of high quality may have more
 than 500000 errors!

- After processing of the signal in the CD player, these errors do not lead to any disturbing noise.
- Without error-correcting codes, there would be no CD.

Finite fields and coding theory

1 second of audio signal
 1411200 bits
 $=$
 $=$

- 1980's, agreement between Sony and Philips: norm for storage of data on audio CD's.
- 44100 times per second, 16 bits in each of the two stereo channels

SONY

Codes and Mathematics

- Algebra
(discrete mathematics finite fields, linear algebra,...)
- Geometry
- Probability and statistics

Sphere Packing

- While Shannon and Hamming were working on information transmission in the States, John Leech invented similar codes while working on Group Theory at Cambridge. This research included work on the sphere packing problem and culminated in the remarkable, 24-dimensional Leech lattice, the study of which was a key element in the programme to understand and classify finite symmetry groups.

Codes and Geometry

- 1949: Marcel Golay (specialist of radars): produced two remarkably efficient codes.
- Eruptions on Io (Jupiter's volcanic moon)
- 1963 John Leech uses Golay's ideas for sphere packing in dimension 24 - classification of finite simple groups
- 1971: no other perfect code than the two found by Golay.

Sphere packing

The kissing number is 12

Sphere Packing

Kepler Problem: maximal density of ing of identical sphères :
$\pi / \sqrt{ } 18=0.74048049 \ldots$
Conjectured in 1611.
Proved in 1999 by Thomas Hales.

- Connections with crystallography.

Some useful codes

- 1955: Convolutional codes.
- 1959: Bose Chaudhuri Hocquenghem codes (BCH codes).
- 1960: Reed Solomon codes.
- 1970: Goppa codes.
- 1981: Algebraic geometry codes.

Current trends

In the past two years the goal of finding explicit codes which reach the limits predicted by Shannon's original work has been achieved. The constructions require techniques from a surprisingly wide range of pure mathematics: linear algebra, the theory of fields and algebraic geometry all play a vital role. Not only has coding theory helped to solve problems of vital importance in the world outside mathematics, it has enriched other branches of mathematics, with new problems as well as new solutions.

Directions of research

- Theoretical questions of existence of specific codes
- connection with cryptography
- lattices and combinatoric designs
- algebraic geometry over finite fields
- equations over finite fields

Explosion of Mathematics

Société Mathématique de France

17
seem to be completely unrelated to practical matters, may turn out to be crucial for some application many years, or decades later, in a completely unpredictable way. In his book A mathematician's apology, the great British analyst G. H. Hardy (1877-1947), who was a fervent pacifist, took immense pride in working in number theory, an absolutely pure field, and at never having done anything which could be considered "useful". It was perhaps "useless" at the time. That is no longer the case today.

Elliptic curves: algebraic geometry at the service of secret agents

Error Correcting Codes by Priti Shankar
Resonance journal of science education
The Hat Problem
October 1996 Volume 1 Number 10

- How Numbers Protect Themselves
- The Hamming Codes Volume 2 Number 1
- Reed Solomon Codes Volume 2 Number 3

The Hat Problem

- Three people are in a room, each has a hat on his head, the colour of which is black or white. Hat colours are chosen randomly. Everybody sees the colour of the hat on everyone's head, but not on their own. People do not communicate with each other.
- Everyone tries to guess (by writing on a piece of paper) the colour of their hat. They may write: Black/White/Abstention.

Strategy

- A weak strategy: anyone guesses randomly.
- Probability of winning: $1 / 2^{3}=1 / 8$.
- Slightly better strategy: they agree that two of them abstain and the other guesses randomly.
- Probability of winning: $\mathbf{1 / 2}$.
- Is it possible to do better?

Rules of the game

- The people in the room win together or lose together as a team.
- The team wins if at least one of the three persons do not abstain, and everyone who did not abstain guessed the colour of their hat correctly.
- What could be the strategy of the team to get the highest probability of winning?

Information is the key

- Hint:

Improve the odds by using the available information: everybody sees the colour of the hat on everyone's head except on his own head.

Solution of the Hat Problem

- Better strategy: if a member sees two different colours, he abstains. If he sees the same colour twice, he guesses that his hat has the other colour.

The two people with black hats see one white hat and one black hat, so they abstain.

The one with a white hat sees two black hats, so he writes white.

The two people with white hats see one white hat and one black hat, so they abstain.

The one with a black hat sees two white hats, so he writes black.

The team wins!

Everybody sees two white hats, and therefore writes black on the paper.

Everybody sees two black hats, and therefore writes white on the paper.

The team looses!
41

Loosing team:

three whites
or
three blacks

Probability of winning: 3/4.

I know which card you selected

- Among a collection of playing cards, you select one without telling me which one it is.
- I ask you some questions and you answer yes or no.
- Then I am able to tell you which card you selected.

2 cards: one question suffices

- Question: is it this one?

4 cards

First question: is it one of these two?

49

4 cards: 2 questions suffice

Second question: is it one of these two?

8 Cards

First question: is it one of these?

Second question: is it one of these?

8 Cards: 3 questions

YYY	YYN	YNY	YNN
NYY	NYN	NNY	NNN

Yes／No

－ 0 ／ 1
－Yin－／Yang－－
－True／False
－White／Black
－＋／－

－Heads／Tails（tossing or flipping a coin）

3 questions， 8 solutions

000	001	010	011
0	1	2	3
100	101	110	111
4	5	6	7

8 Cards： 3 questions

```
YYY YYN YNY YNN
NYY NYN NNY NNN
    Replace Y by 0 and N by 1
```

$$
8=2 \times 2 \times 2=2^{3}
$$

One could also display the eight cards on the corners of a cube rather than in two rows of four entries．

16 Cards 4 questions

Exponential law

n questions for 2^{n} cards

Add one question =
multiply the number of cards by 2

Economy:
Growth rate of 4% for 25 years = multiply by 2.7

Label the 16 cards

0	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15

Binary representation:

0000	0001	0010	0011
0100	0101	0110	0111
1000	1001	1010	1011
1100	1101	1110	1111

Ask the questions so that the answers are:

YYYY	YYYN	YYNY	YYNN
YNYY	YNYN	YNNY	YNNN
NYYY	NYYN	NYNY	NYNN
NNYY	NNYN	NNNY	NNNN

Second question:

First question:

Third question:

Fourth question:

69

One answer may be wrong

- Consider the same problem, but you are allowed to give (at most) one wrong answer.
- How many questions are required so that I am able to know whether your answers are all right or not? And if they are all right, to know the card you selected?

Detecting one mistake

- If I ask one more question, I will be able to detect if one of your answers is not compatible with the other answers.
- And if you made no mistake, I will tell you which is the card you selected.

Principle of coding theory

Only certain words are allowed $($ code $=$ dictionary of valid words).

The «useful» letters (data bits) carry the information, the other ones (control bits or check bits) allow detecting errors and sometimes correcting errors.

Detecting one mistake with 2 cards

- With two cards I just repeat twice the same question.
- If both your answers are the same, you did not lie and I know which card you selected
- If your answers are not the same, I know that one answer is right and one answer is wrong (but I don't know which one is correct!).

Detecting one error by sending twice the message

Send twice each bit	Codewords (length two)
2 codewords among $4=2^{2}$	and
possible words	11
$(1$ data bit, l check bit $)$	Rate: $1 / 2$

Principle of codes detecting one error:

Two distinct codewords
have at least two distinct letters

First question: is it one of these two?

78

Second question: is it one of these two?

Third question: is it one of these two?

81

4 cards: 3 questions

4 cards: 3 questions

Correct triples of answers:
$000 \quad 011 \quad 101 \quad 110$

Wrong triples of answers
$001 \quad 010 \quad 100 \quad 111$
One change in a correct triple of answers yields a wrong triple of answers

In a correct triple of answers, the number 1 's of is even,
in a wrong triple of answers, the number 1 's of is odd.

Boolean addition

- $0+0=0$
- even + even $=$ even
- $0+1=1$
- even + odd = odd
- $1+0=1$
- odd + even $=$ odd
- $1+1=0$
- odd + odd = even

Parity bit or Check bit

- Use one extra bit defined to be the Boolean sum of the previous ones.
- Now for a correct answer the Boolean sum of the bits should be 0 (the number of 1 's is even).
- If there is exactly one error, the parity bit will detect it: the Boolean sum of the bits will be 1 instead of 0 (since the number of l 's is odd).
- Remark: also corrects one missing bit.

Parity bit or Check bit

- In the International Standard Book Number (ISBN) system used to identify books, the last of the ten-digit number is a check bit.
- The Chemical Abstracts Service (CAS) method of

Detecting one error with the parity bit

Codewords (of length 3):011 identifying chemical compounds, the United States

101
Postal Service (USPS) use check digits.

- Modems, computer memory chips compute checksums.
- One or more check digits are commonly embedded in credit card numbers.

Codewords Non Codewords

000	001
011	010
101	100
110	111

Two distinct codewords
have at least two distinct letters.

8 Cards

4 questions for 8 cards
Use the 3 previous questions plus the parity bit question (the number of N 's should be even).

0000	0011	0101	0110
YYYY	YYNN	YNYN	YNNY
1001	1010	1100	1111
NYYN	NYNY	NNYY	NNNN

First question: is it one of these?

Second question: is it one of these?

93

Fourth question: is it one of these?

Third question: is it one of these?

16 cards, at most one wrong answer: 5 questions to detect the mistake

Ask the 5 questions so that the answers are:

YYYYY	YYYNN	YYNYN	YYNNY
YNYYN	YNYNY	YNNYY	YNNNN
NYYYN	NYYNY	NYNYY	NYNNN
NNYYY	NNYNN	NNNYN	NNNNY

Fifth question:

Correcting one mistake

- Again I ask you questions to each of which your answer is yes or no, again you are allowed to give at most one wrong answer, but now I want to be able to know which card you selected and also to tell you whether or not you lied and when you eventually lied.

With 2 cards

- I repeat the same question three times.
- The most frequent answer is the right one: vote with the majority.
- 2 cards, 3 questions, corrects 1 error.
- Right answers: 000 and 111
- Send each bit three times
$\begin{array}{lc}2 \text { codewords } & 000 \\ \text { among } 8 \text { possible ones } & 111 \\ (1 \text { data bit, } 2 \text { check bits }) & \end{array}$
Codewords (length three)

Correcting one error by repeating three times

- Correct 001 as 000
- Correct 010 as 000
- Correct 100 as 000
and
- Correct 110 as 111
- Correct 101 as 111
- Correct 011 as 111

Hamming Distance

 between two words:
Hamming distance 1

$=$ number of places in which the two words differ

Examples

$(0,0,1)$ and $(0,0,0)$ have distance 1
$(1,0,1)$ and $(1,1,0)$ have distance 2
$(0,0,1)$ and $(1,1,0)$ have distance 3
Richard W. Hamming (1915-1998)

The code (0 00) (llll)

- The set of words of length 3 (eight elements) splits into two spheres (balls)
- The centers are respectively $(0,0,0)$ and $(1,1,1)$
- Each of the two balls consists of elements at distance at most 1 from the center

Back to the Hat Problem

Connection with error detecting codes

- Replace white by 0 and black by 1 ; hence the distribution of colours becomes a word of length 3 on the alphabet $\{0,1\}$
- Consider the centers of the balls $(0,0,0)$ and (1,1,1).
- The team bets that the distribution of colours is not one of the two centers.

At most one error

Hamming's unit sphere

The unit sphere around the word. around the word.

- The unit sphere around a word includes the words at distance at most 1

Words at distance at least 3

Decoding

The cormupted word still lies in its original unit sphere. The center of this sphere is the corrected word

With 4 cards

If I repeat my two questions three times each, I need 6 questions

Better way:
5 questions suffice
Repeat each of the two previous questions twice
 and use the parity check bit.

117

118

Length 5

- 2 data bits, 3 check bits

- 4 codewords: $a, b, a, b, a+b$

$$
\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0
\end{array}
$$

- Two codewords have distance at least

Rate : $2 / 5$.

If you know (a or b) and $a+b$ then you know a and b

Length 5

\bullet Number of words $2^{5}=32$

With 8 Cards

- 4 codewords: $a, b, a, b, a+b$
- Each has 5 neighbours
- Each of the 4 balls of radius 1 has 6 elements
- There are 24 possible answers containing at most 1 mistake
- 8 answers are not possible:

$$
a, b, a+1, b+1, c
$$

(at distance ≥ 2 of each codeword)

With 8 cards and 6 questions I can correct one error

8 cards, 6 questions, corrects 1 error

- Ask the three questions giving the right answer if there is no error, then use the parity check for questions $(1,2),(1,3)$ and $(2,3)$.
- Right answers :

$$
(a, b, c, a+b, a+c, b+c)
$$

with $\mathrm{a}, \mathrm{b}, \mathrm{c}$ replaced by 0 or 1

First question

a

Fourth question

Second question

Fifth question

Third question

Sixth question

- 8 correct answers: $a, b, c, a+b, a+c, b+c$
- from $a, b, a+b$ you know whether a and b are correct
- If you know a and b then among $c, a+c, b+c$ there is at most one mistake, hence you know c

8 cards, 6 questions
Corrects 1 error

$$
3 \text { data bits, }
$$

$$
3 \text { check bits }
$$ 3 check bits

- 8 codewords: $a, b, c, a+b, a+c, b+c$

| 000 | 000 | 100 | 110 |
| :--- | :--- | :--- | :--- | :--- |
| 001 | 011 | 101 | 101 |
| 010 | 101 | 110 | 011 |
| 011 | 110 | 111 | 000 |

Two codewords

have distance
at least 3
Rate: 1/2.

Length 6

- Number of words $26=64$

Number of questions

- 8 codewords: $a, b, c, a+b, a+c, b+c$
- Each has 6 neighbours
- Each of the 8 balls of radius 1 has 7 elements
- There are 56 possible answers containing at most 1 mistake
- 8 answers are not possible:

$$
a, b, c, a+b+1, a+c+1, b+c+1
$$

Number of questions

	No error	Detects l error	Corrects l error
2 cards	1	2	3
4 cards	2	3	5
8 cards	3	4	6
16 cards	4	5	7

129

1948, Claude Shannon, working at Bell
Laboratories in the USA, inaugurated the whole subject of coding theory by showing that it was possible to encode messages in such a way that the number of extra bits transmitted was as small as possible. Unfortunately his proof did not give any explicit recipes for these optimal codes.

Claude Shannon

With 16 cards, 7 questions suffice to correct one mistake

130

Richard Hamming

Around the same time, Richard Hamming,
 at Bell Labs, was using machines with lamps and relays having an error detecting code. The digits from 1 to 9 were send on ramps of 5 lamps with two lamps on and three out. There were very frequent errors which were easy to detect and then one had to restart the process.

The first correcting codes

- For his researches, Hamming was allowed to have the machine working during the weekend only, and they were on the automatic mode. At each error the machine stopped until the next Monday morning.
- "If it can detect the error," complained Hamming, "why can't it correct some of them! "

The binary code of Hamming (1950)

The origin of Hamming's code

- He decided to find a device so that the machine would not only detect the errors but also correct them.
- In 1950, he published details of his work on explicit error-correcting codes with information transmission rates more efficient than simple repetition.
- His first attempt produced a code in which four data bits were followed by three check bits which allowed not only the detection, but also the correction of a single error.
The Bell System Technical Journal

Vol. XXVI April, 1950	No. 2

Copyright, 1950 American Telephone and Telegraph Company

Error Detecting and Error Correcting Codes
By R. W. HAMMING

16 cards, 7 questions, corrects 1 error

Hamming code

Words of length 7
Codewords: (16=24 among 128=27)

$$
(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, e, f, g)
$$

with

$$
\begin{aligned}
& e=\mathrm{a}+\mathrm{b}+\mathrm{d} \\
& f=\mathrm{a}+\mathrm{c}+\mathrm{d} \\
& g=\mathrm{a}+\mathrm{b}+\mathrm{c}
\end{aligned}
$$

4 data bits, 3 check bits

How to compute e, f, g

16 codewords of length 7

0000000	1000111
0001110	1001001
00100011	1010100
00111101	1011010
01000101	1100010
01010111	1101100
0110110	1110001
0111000	1111111

Two distinct codewords have at least three distinct letters

Hamming code (1950):

- There are $16=2^{4}$ codewords
- Each has 7 neighbours
- Each of the 16 balls of radius 1 has $8=$ 2^{3} elements
- Any of the $8 \times 16=\mathbf{1 2 8}$ words is in exactly one ball (perfect packing)

Replace the cards by labels from 0 to 15 and write the binary expansions of these:

$$
\begin{aligned}
& 0000,0001,0010,0011 \\
& 0100,0101,0110,0111 \\
& 1000,1001,1010,1011 \\
& 1100,1101,1110,1111
\end{aligned}
$$

Using the Hamming code, get 7 digits.
Select the questions so that Yes=0 and $\mathrm{No}=1$

16 cards , 7 questions

 correct one mistake

142

7 questions to find the selected number in $\{0,1,2, \ldots$, $15\}$ with one possible wrong answer

- Is the first binary digit 0 ?
- Is the second binary digit 0 ?
- Is the third binary digit 0 ?
- Is the fourth binary digit 0 ?
- Is the number in $\{1,2,4,7,9,10,12,15\}$?
- Is the number in $\{1,2,5,6,8,11,12,15\}$?
- Is the number in $\{1,3,4,6,8,10,13,15\}$?

Hat problem with 7 people

For 7 people in the room in place of 3 ,
which is the best strategy and its probability of winning?

Answer:

the best strategy gives a
probability of winning of 7/8

The Hat Problem with 7 people

- The team bets that the distribution of the hats does not correspond to the 16 elements of the Hamming code
- Loses in 16 cases (they all fail)
- Wins in $128-16=112$ cases (one of them bets correctly, the 6 others abstain)
- Probability of winning: $112 / 128=7 / 8$

Tails and Ends

Toss a coin 7 consecutive times

There are $2^{7}=128$ possible sequences of results

How many bets are required in such a way that you are sure one at least of them has at most one wrong answer?

Tossing a coin 7 times

Tossing a coin 7 times

- Now $128=8 \times 16$.
- Therefore you cannot achieve your goal with less than 16 bets.
- Coding theory tells you how to select your 16 bets, exactly one of them will have at most one wrong answer.

Principle of codes detecting n errors:

Two distinct codewords have at least $n+1$ distinct letters

Principle of codes correcting n errors:

Two distinct codewords have at least $2 n+1$ distinct letters

Hamming balls of radius 3
Distance 6, detects 5 errors, corrects 2 errors

Hamming balls of radius 3

Distance 7, corrects 3 errors

Golay code on $\{0,1,2\}=\boldsymbol{F}_{3}$
Words of length 11 , there are 3^{5} words 6 data bits, 5 control bits,
distance 5 , corrects 2 errors
3^{6} codewords, each ball of radius 2 has

$$
\begin{aligned}
& \left({ }^{11}{ }_{0}\right)+2\left({ }^{11}{ }_{1}\right)+2^{2}\left({ }^{11}{ }_{2}\right) \\
& =1+22+220=243=3^{5}
\end{aligned}
$$

elements:
Perfect packing

Golay code on $\{0,1\}=\boldsymbol{F}_{2}$
Words of length 23 , there are 2^{23} words 12 data bits, 11 control bits, distance 7 , corrects 3 errors 2^{12} codewords, each ball of radius 3 has

$$
\begin{gathered}
\left({ }^{23}{ }_{0}\right)+\left({ }^{23}{ }_{1}\right)+\left({ }^{23}{ }_{2}\right)+\left({ }^{23}{ }_{3}\right) \\
=1+23+253+1771=2048=2^{11}
\end{gathered}
$$

elements:

Perfect packing

SPORT TOTO: the oldest error correcting code

- A match between two players (or teams) may give three possible results: either player 1 wins, or player 2 wins, or else there is a draw (write $0)$.
- There is a lottery, and a winning ticket needs to have at least 3 correct bets for 4 matches. How many tickets should one buy to be sure to win?

4 matches, 3 correct forecasts

- For 4 matches, there are $3^{4}=81$ possibilities.
- A bet on 4 matches is a sequence of 4 symbols $\{0,1$, 2\}. Each such ticket has exactly 3 correct answers 8 times.
- Hence each ticket is winning in 9 cases.
- Since $9 \times 9=81$, a minimum of 9 tickets is required to be sure to win.

Perfect packing of $\boldsymbol{F}_{3}{ }^{4}$ with 9 balls radius 1

Each experiment produces

three possible results

The fake pearl is not weighted

The fake pearl is on the right

The fake pearl is on the left

9 pearls:

put 3 on the left and 3 on the right

The fake pearl is not weighted

The fake pearl is on the right

The fake pearl is on the left

3 pearls:
put l on the left and l on the right

The fake pearl is not weighted

The fake pearl is on the right

The fake pearl is on the left

Each experiment enables one to select one third of the collection where the fake pearl is

- With 3 pearls, one experiment suffices.
- With 9 pearls, select 6 of them, put 3 on the left and 3 on the right.
- Hence you know a set of 3 pearls including the fake one. One more experiment yields the result.
- Therefore with 9 pearls 2 experiments suffice.

A protocole where each experiment

 is independent of the previous results- Label the 9 pearls from 0 to 8 , next replace the labels by their expansion in basis 3 .

| 00 | 01 | 02 |
| :--- | :--- | :--- | :--- |
| 10 | 10 | 11 |
| 20 | 21 | 22 |

- For the first experiment, put on the right the pearls whose label has first digit 1 and on the left those with first digit 2.

Result of two experiments

- Each experiment produces one among three possible results: either the fake pearl is not weighted 0 , or it is on the left 1 , or it is on the right 2 .
- The two experiments produce a two digits number in basis 3 which is the label of the fake pearl.

One experiment= one digit 0,1 or 2

The fake pearl is not weighted

The fake pearl is on the right

The fake pearl is on the left

 including a lighter one

- Assume there are 81 pearls including 80 genuine identical ones, and a fake one which is lighter. Then 4 experiments suffice to detect the fake one.
- For 3^{n} pearls including a fake one, n experiments are necessary and sufficient.

And if one of the

Labels of the 9 pearls

experiments may be erronous?

- Consider again 9 pearls. If one of the experiments may produce a wrong answer, then 4 four experiments suffice to detect the fake pearl.
- The solution is given by Sport Toto: label the 9 pearls using the 9 tickets.

$$
\begin{array}{ccc}
a, b, a+b, a+2 b & \text { modulo } 3 \\
0000 & 1012 & 2021 \\
0111 & 1120 & 2102 \\
0222 & 1201 & 2210
\end{array}
$$

Each experiment corresponds to one of the four digits. Accordingly, put on the left the three pearls with digits 1 And on the right the pearls with digit 2

Some recent results in mathematics related with modern technology

Michel Waldschmidt

Université P. et M. Curie - Paris VI
Centre International de Mathématiques Pures et
Appliquées - CIMPA

