Mathematics in the real life:
The Fibonacci Sequence and the Golden Number

Michel Waldschmidt Université P. et M. Curie (Paris VI)

Manfred R. SCHROEDER

Some applications of Number Theory

Number Theory in Science and Communication

- Cryptography, security of computer systems
- Data transmission, error correcting codes
- Interface with theoretical physics
- Musical scales

With application in Cryptography,

- Numbers in nature

Physics, Digital Information,

Computing and Self-Similarity

How many ancesters do we have?

Sequence: 1, 2, 4, 8, 16 ... $\quad E_{n+1}=2 E_{n} \quad E_{n}=2^{n}$

Fibonacci (Leonardo di Pisa)

Bees genealogy

Sequence: $1,1,2,3,5,8, \ldots \quad F_{n+1}=F_{n}+F_{n-1}$
$3+5=8$
$2+3=5$
$1+2=3$
$1+1=2$
$0+1=1$
$1+0=1$

Number of females at level $n+1=$
Bees getachandinjn at level n
Number of males at level $n+1=$
number of females at level n

 \%

- Pisa $\approx 1175, \approx 1250$
- Liber Abaci ≈ 1202
$\mathrm{F}_{0}=0, \mathrm{~F}_{1}=1, \mathrm{~F}_{2}=1$,
$\mathrm{F}_{3}=2, \mathrm{~F}_{4}=3, \mathrm{~F}_{5}=5, \ldots$

Modelization of a population

- First year
- Second year

Theory of stable populations (Alfred Lotka)

Assume each pair generates a new pair the first two years only. Then the number of pairs who are born each year again follow the Fibonacci rule.

Arctic trees

In cold countries, each branch of some trees gives rise to another one after the second year of existence only.

Exponential Sequence

- First year
- Second year
- Third year
- Fourth year

Representation of a number as a sum of distinct powers of 2

- $51=32+19,32=2^{5}$
- $19=16+3,16=2^{4}$
- $3=2+1,2=2^{1}$, $1=2^{0}$
- $51=2^{5}+2^{4}+2^{1}+2^{0}$

Binary expansion

Decimal expansion of an integer

- $51=5 \times 10+1$
- $2005=20 \times 10+5$

Representation of an integer as a sum of Fibonacci numbers

- N a positive integer
- F_{n} the largest Fibonacci number $\leq \mathrm{N}$
- Hence $N=F_{n}+$ remainder which is $<F_{n-1}$
- Repeat with the remainder

The Fibonacci sequence

$\mathrm{F}_{1}=1, \quad \mathrm{~F}_{2}=1, \quad \mathrm{~F}_{3}=2, \quad \mathrm{~F}_{4}=3, \quad \mathrm{~F}_{5}=5$,
$\mathrm{F}_{6}=8, \quad \mathrm{~F}_{7}=13 \quad \mathrm{~F}_{8}=21, \quad \mathrm{~F}_{9}=34, \quad \mathrm{~F}_{10}=55$, $\mathrm{F}_{11}=89, \mathrm{~F}_{12}=144, \mathrm{~F}_{13}=233, \mathrm{~F}_{14}=377, \mathrm{~F}_{15}=610$, ...

The sequence of integers $1=F_{2,}$
$2=\mathrm{F}_{3}$,
$3=F_{4}, 4=F_{4}+F_{2}$,
$5=\mathrm{F}_{5}, 6=\mathrm{F}_{5}+\mathrm{F}_{2}, \quad 7=\mathrm{F}_{5}+\mathrm{F}_{3}$,
$8=F_{6}, 9=F_{6}+F_{2}, 10=F_{6}+F_{3}, 11=F_{6}+F_{4}, 12=F_{6}+F_{4}+F_{2}$
$\mathrm{F}_{12}=6567$

The Fibonacci sequence

$\mathrm{F}_{1}=1, \quad \mathrm{~F}_{2}=1, \quad \mathrm{~F}_{3}=2, \quad \mathrm{~F}_{4}=3, \quad \mathrm{~F}_{5}=5$,
$\mathrm{F}_{6}=8, \quad \mathrm{~F}_{7}=13, \quad \mathrm{~F}_{8}=21, \quad \mathrm{~F}_{9}=34, \quad \mathrm{~F}_{10}=55$,
$\mathrm{F}_{11}=89, \mathrm{~F}_{12}=144, \mathrm{~F}_{13}=233, \mathrm{~F}_{14}=377, \mathrm{~F}_{15}=610$,
...
Divisibility (Lucas, 1878)
If $\boldsymbol{b} \geq$ ajviden \boldsymbol{b}, dilivideFs \boldsymbol{a} difvaddsonly if $\boldsymbol{F}_{\boldsymbol{b}}$ divides $\boldsymbol{F}_{\boldsymbol{a}}$.
Examples:
$\mathrm{F}_{12}=144$ is divisible by $\mathrm{F}_{3}=2, \mathrm{~F}_{4}=3, \mathrm{~F}_{6}=8$,
$\mathrm{F}_{14}=377$ by $\mathrm{F}_{7}=13$,
$\mathrm{F}_{16}=987$ by $\mathrm{F}_{8}=21$.

Analogy with the sequence 2^{n}

2^{b} divides 2^{a} if and only if $b \leq a$.
Sequence $u_{n}=2^{n}-1$
$2^{b}-1$ divides $2^{a}-1$ if and only if b divides a.

If $a=k b$ set $x=2^{b}$ so that $2^{a}=x^{k}$ and write
$x^{k}-1=(x-1)\left(x^{k-1}+x^{k-2}+\ldots+x+1\right)$

Recurrence relation :

$$
u_{n+1}=2 u_{n}+1
$$

Exponential Diophantine equations
Y. Bugeaud, M. Mignotte, S. Siksek (2004): The only perfect powers in the Fibonacci sequence are 1, 8 and 144.

Exponential Diophantine equations
T.N. Shorey, TIFR (2005):

The product of 2 or more consecutive Fibonacci numbers other than $F_{1} F_{2}$ is never a perfect power.

Equation: $F_{n}=a^{b}$
Unknowns: $\boldsymbol{n}, \boldsymbol{a}$ and \boldsymbol{b}
with $n \geq 1, a \geq 1$ and $b \geq 2$.

Conference DION2005, TIFR Mumbai, december 16-20, 2005

Phyllotaxy

Leaf arrangements

- Study of the position of leaves on a stem and the reason for them
- Number of petals of flowers: daisies, sunflowers, aster, chicory, asteraceae,...
- Spiral patern to permit optimum exposure to sunlight
- Pine-cone, pineapple, Romanesco cawliflower, cactus

Phyllotaxy
Laboratoire Environnement Marin Littoral, Equipe d'Accueil "Gestion de la Biodiversité"

http://www.unice.fr/LEML/coursJDV/tp/tp3.htm

Geometric construction of the Fibonacci sequence 8

This is a nice rectangle
A square

$1+x=1 / x$

The number

$$
1+x=\frac{1}{x}=\frac{1+\sqrt{5}}{2}=2 \cos (\pi / 5)
$$

is the root >1 of the equation $\Phi^{2}=\Phi+1$.
This is the Golden Number

$$
x^{2}+x=1 \quad \text { and } \quad x=\frac{-1+\sqrt{5}}{2} .
$$

$$
1+x=\frac{1}{x}
$$

Hence

Golden Rectangle

Sides 1 and $1+x$ with $x>0$.
Condition: the two rectangles of sides $1+x, 1$ and $1, x$ have the same proportion

$$
\Phi=1,6180339887499 \ldots
$$

The Golden Number

$$
\Phi^{2}=1+\Phi
$$

$$
\begin{aligned}
& \text { De Divina Prqportione } \\
& \Phi=1+\frac{1}{1+\frac{1}{1+\frac{1}{1}}} \sqrt{1+\cdots}
\end{aligned}
$$

Exercise:

$$
\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 \sqrt{\cdots}}}}=3
$$

The Golden Rectangle

Spirals in the Galaxy
The Golden Number in art, architecture,... aesthetic

Kees van Prooijen
 http://www.kees.cc/gldsec.html

Music and the Fibonacci sequence

- Dufay, XV ${ }^{\text {ème }}$ siècle
- Roland de Lassus
- Debussy, Bartok, Ravel, Webern
- Stoskhausen
- Xenakis
- Tom Johnson Automatic Music for six percussionists

Phyllotaxy

Regular pentagons and dodecagons

Penrose non-periodic tiling patterns and quasi-crystals

Diffraction of quasi-crystals
Doubly periodic tessalation (lattices) - cristallography

The first year there is only the original cow

The second year there is the original cow and 2 calves.

The third year there is the original cow and 3 calves.

| 2 |
| :---: | :---: |
| 1 |
| 4 |

long -short -short -short

