SEAMS School 2013 ITB Number theory

Structure of finite abelian groups

Recall that a direct (or Cartesian) product of abelian groups is an abelian group. We first study the simplest abelian groups, namely the cyclic groups, next we decompose any finite abelian group into a direct product of cyclic groups.

1 Cyclic groups

Two cyclic groups of the same order are isomorphic. For n a positive integer, we denote by C_{n} the cyclic group of order a. Examples are the additive group $\mathbf{Z} / n \mathbf{Z}$, generated by the class of 1 modulo n, and the multiplicative group of n-th roots of unity in \mathbf{C}^{\times}, generated by $e^{2 i \pi / n}$.

Let G be a cyclic group of order n generated by t. If we write G additively, then an element x of G is a generator of G if and only if $x=k t$ with $k \in \mathbf{Z}$ satisfying $\operatorname{gcd}(k, n)=1$. If we write G multiplicatively, then an element x of G is a generator of G if and only if $x=t^{k}$ with $k \in \mathbf{Z}$ satisfying $\operatorname{gcd}(k, n)=1$. It follows that the number of generators of G is $\varphi(n)$, where φ is Euler function. Recall that $\varphi(n)$ is the number of integers m in the range $1 \leq m \leq n$ which are prime to n.

Any subgroup of a cyclic group G is cyclic, its order divides the order of G. Conversely, if G is cyclic of order n and if d divides n, then G has a unique subgroup of order d. If G is generated by t and if $n=d d^{\prime}$, then the unique subgroup of G of order d is the subgroup generated by $d^{\prime} t$ if G is written additively, by $t^{d^{\prime}}$ if G is written multiplicatively. As a consequence, a direct product $C_{a} \times C_{b}$ of two cyclic groups of orders a and b respectively is cyclic if and only if a and b are relatively prime.

Any quotient of a cyclic group is cyclic. If G^{\prime} is a subgroup of G and if t is a generator of G, then G / G^{\prime} is generated by the class of t modulo G^{\prime}.

Example. If G is a finite group of order p where p is prime, then any element other than the unity in G is a generator of G. Conversely, if any element other than the unity in a group G is a generator, then the order of G is either 1 or a prime number.

2 Exponent of a finite abelian group

The exponent e of a finite abelian group G is the least common multiple of the orders of its elements. From this definition, it follows that e is the gcd of the positive integers n such that $n x=0$ for any $x \in G$, when G is written additively, such that $x^{n}=1$ for any $x \in G$, when G is written multiplicatively.

Proposition 1. Let G be a finite abelian group of exponent e. Then there exists $x \in G$ of order e.

Proof. Let us write G additively. Let $x \in G$ be an element of order a and $y \in G$ be an element of order b. Let $m=\operatorname{ppcm}(a, b)$. From the Fundamental Theorem of Arithmetic (unique decomposition of an integer into prime factors), it follows that there exist divisors a^{\prime} and b^{\prime} of a and b respectively, with $\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)=1$, such that $m=a^{\prime} b^{\prime}$. Then $x^{\prime}=\left(a / a^{\prime}\right) x$ has order a^{\prime}, $y^{\prime}=\left(b / b^{\prime}\right) y$ has order b^{\prime}, and $x^{\prime} y^{\prime}$ has order m.

By induction on n, it follows that for any finite set x_{1}, \ldots, x_{n} of elements of G of orders a_{1}, \ldots, a_{n}, there exists an element of G of order $\operatorname{ppcm}\left(a_{1}, \ldots, a_{n}\right)$. This completes the proof of Proposition 1.

We have seen that a direct product $C_{a} \times C_{b}$ of two cyclic groups is cyclic if and only if their orders a and b are relatively prime. Let us show that any abelian group is a direct product of cyclic groups. The example $C_{6}=C_{2} \times C_{3}$ shows that there is no unicity of such a decomposition, unless one adds a condition, as follows.

Theorem 1. Let G be a finite abelian group of order >1. There exists a unique integer $s \geq 1$ and a unique finite sequence of integers a_{1}, \ldots, a_{s}, all >1, satisfying the following properties.
(i) For $i=1, \ldots, s-1$, a_{i} divides a_{i+1}.
(ii) The group G is isomorphic to the direct product $C_{a_{1}} \times \cdots \times C_{a_{s}}$.

Definition. The integers a_{1}, \ldots, a_{s} are called the invariants of the group G.
Proof. We prove the existence of a_{1}, \ldots, a_{s} by induction on the order of G. If G is cyclic, then the result is true with $s=1$ and a_{1} the order of G. In particular the result is true for a group G with 2 elements, with $s=1$ and $a_{1}=2$,

Denote by a the exponent of G and by x an element of order a in G. Let G^{\prime} be the quotient of G by the subgroup generated by x. If G^{\prime} is the trivial group with 1 element, then G is cyclic and the result is true. Assume G^{\prime} has more than one element. By the induction hypothesis, there exist integers a_{1}, \ldots, a_{s-1} with a_{i} dividing a_{i+1} for $1 \leq i<s-1$ and there exist elements $x_{1}^{\prime}, \ldots, x_{s-1}^{\prime}$ of orders a_{1}, \ldots, a_{s-1} respectively, such that G^{\prime} is the direct product of the cyclic groups generated by $x_{1}^{\prime}, \ldots, x_{s-1}^{\prime}$. Since a_{s-1} is the exponent of G^{\prime}, it follows that a_{s-1} divides the exponent a of G. We set $a_{s}=a$ and $x_{s}=x$.

We claim that for $i=1, \ldots, s-1$, there exists an element x_{i} in G of order a_{i}, the image of which in G^{\prime} is x_{i}^{\prime}. Indeed, let y_{i} be an element in G, the class of which in G^{\prime} is x_{i}^{\prime}. Then $a_{i} y_{i}$ is in the subgroup of G generated by x_{s} : there exists an integer b_{i} such that $a_{i} y_{i}=b_{i} x_{s}$. We have

$$
0=a_{s} y_{1}=\frac{a_{s}}{a_{i}} a_{i} y_{i}=\frac{a_{s}}{a_{i}} b_{i} x_{s}
$$

hence a_{s} divides $\left(a_{s} / a_{i}\right) b_{i}$, which means that a_{i} divides b_{i}. Now define

$$
x_{i}=y_{i}-\frac{b_{i}}{a_{i}} x_{s}
$$

We have

$$
a_{i} x_{i}=0
$$

hence the order of x_{i} divides a_{i}. Since the image x_{i}^{\prime} of x_{i} in G^{\prime} has order a_{i}, we deduce that the order of x_{i} is a_{i}.

Let H be the subgroup of G which is the direct product of the subgroups generated by x_{1}, \ldots, x_{s-1}. The intersection of H with the subgroup generated by x_{s} is $\{0\}$. It follows that G is the direct product of H with the subgroup generated by x_{s}.

It remains to prove the unicity of a_{1}, \ldots, a_{s}. The unicity of a_{s} is clear: it is the exponent of G. However we start by the unicity of a_{1} and of s.

For any integer d, define

$$
\Phi(d)=\operatorname{Card}\{x \in G \mid d x=0\}
$$

We have

$$
\Phi(d)=\prod_{i=1}^{s} \operatorname{gcd}\left(d, a_{i}\right) \leq d^{s}
$$

The integer s is the least integer k such that $\Phi(d) \leq d^{k}$ for all $d \geq 1$, hence s depends only on G. Also a_{1} is the greatest integer $d \geq 1$ such that $\Phi(d) \leq d^{s}$, hence a_{1} depends only on G.

We complete the proof of Theorem 1 by induction on the order of G. Let $G\left[a_{1}\right]$ be the subgroup of G containing the elements having an order which divides a_{1}. For $i \geq 1,\left(\mathbf{Z} / a_{i} \mathbf{Z}\right)\left[a_{1}\right]=\left(a_{i} / a_{1}\right) \mathbf{Z} / a_{i} \mathbf{Z}$, hence $G / G\left[a_{i}\right]$ has invariant factors $a_{2} / a_{1}, \ldots, a_{s} / a_{1}$. By the induction hypothesis, these factors depend only on G. Hence the same is true for a_{2}, \ldots, a_{s}.

