SEAMS School 2013 ITB Number theory

Structure of finite abelian groups

Recall that a direct (or Cartesian) product of abelian groups is an abelian group. We first study the simplest abelian groups, namely the cyclic groups, next we decompose any finite abelian group into a direct product of cyclic groups.

1 Cyclic groups

Two cyclic groups of the same order are isomorphic. For n a positive integer, we denote by C_n the cyclic group of order a. Examples are the additive group $\mathbf{Z}/n\mathbf{Z}$, generated by the class of 1 modulo n, and the multiplicative group of n-th roots of unity in \mathbf{C}^{\times} , generated by $e^{2i\pi/n}$.

Let G be a cyclic group of order n generated by t. If we write G additively, then an element x of G is a generator of G if and only if x = kt with $k \in \mathbb{Z}$ satisfying gcd(k, n) = 1. If we write G multiplicatively, then an element x of G is a generator of G if and only if $x = t^k$ with $k \in \mathbb{Z}$ satisfying gcd(k, n) = 1. It follows that the number of generators of G is $\varphi(n)$, where φ is Euler function. Recall that $\varphi(n)$ is the number of integers m in the range $1 \leq m \leq n$ which are prime to n.

Any subgroup of a cyclic group G is cyclic, its order divides the order of G. Conversely, if G is cyclic of order n and if d divides n, then G has a unique subgroup of order d. If G is generated by t and if n = dd', then the unique subgroup of G of order d is the subgroup generated by d't if G is written additively, by $t^{d'}$ if G is written multiplicatively. As a consequence, a direct product $C_a \times C_b$ of two cyclic groups of orders a and b respectively is cyclic if and only if a and b are relatively prime.

Any quotient of a cyclic group is cyclic. If G' is a subgroup of G and if t is a generator of G, then G/G' is generated by the class of t modulo G'.

Example. If G is a finite group of order p where p is prime, then any element other than the unity in G is a generator of G. Conversely, if any element other than the unity in a group G is a generator, then the order of G is either 1 or a prime number.

2 Exponent of a finite abelian group

The exponent e of a finite abelian group G is the least common multiple of the orders of its elements. From this definition, it follows that e is the gcd of the positive integers n such that nx = 0 for any $x \in G$, when Gis written additively, such that $x^n = 1$ for any $x \in G$, when G is written multiplicatively.

Proposition 1. Let G be a finite abelian group of exponent e. Then there exists $x \in G$ of order e.

Proof. Let us write G additively. Let $x \in G$ be an element of order a and $y \in G$ be an element of order b. Let $m = \operatorname{ppcm}(a, b)$. From the Fundamental Theorem of Arithmetic (unique decomposition of an integer into prime factors), it follows that there exist divisors a' and b' of a and b respectively, with $\operatorname{gcd}(a', b') = 1$, such that m = a'b'. Then x' = (a/a')x has order a', y' = (b/b')y has order b', and x'y' has order m.

By induction on n, it follows that for any finite set x_1, \ldots, x_n of elements of G of orders a_1, \ldots, a_n , there exists an element of G of order $ppcm(a_1, \ldots, a_n)$. This completes the proof of Proposition 1.

We have seen that a direct product $C_a \times C_b$ of two cyclic groups is cyclic if and only if their orders a and b are relatively prime. Let us show that any abelian group is a direct product of cyclic groups. The example $C_6 = C_2 \times C_3$ shows that there is no unicity of such a decomposition, unless one adds a condition, as follows.

Theorem 1. Let G be a finite abelian group of order > 1. There exists a unique integer $s \ge 1$ and a unique finite sequence of integers a_1, \ldots, a_s , all > 1, satisfying the following properties. (i) For $i = 1, \ldots, s - 1$, a_i divides a_{i+1} .

(ii) The group G is isomorphic to the direct product $C_{a_1} \times \cdots \times C_{a_s}$.

Definition. The integers a_1, \ldots, a_s are called the *invariants* of the group G.

Proof. We prove the existence of a_1, \ldots, a_s by induction on the order of G. If G is cyclic, then the result is true with s = 1 and a_1 the order of G. In particular the result is true for a group G with 2 elements, with s = 1 and $a_1 = 2$,

Denote by a the exponent of G and by x an element of order a in G. Let G' be the quotient of G by the subgroup generated by x. If G' is the trivial group with 1 element, then G is cyclic and the result is true. Assume G' has more than one element. By the induction hypothesis, there exist integers a_1, \ldots, a_{s-1} with a_i dividing a_{i+1} for $1 \le i < s - 1$ and there exist elements x'_1, \ldots, x'_{s-1} of orders a_1, \ldots, a_{s-1} respectively, such that G' is the direct product of the cyclic groups generated by x'_1, \ldots, x'_{s-1} . Since a_{s-1} is the exponent of G', it follows that a_{s-1} divides the exponent a of G. We set $a_s = a$ and $x_s = x$.

We claim that for i = 1, ..., s-1, there exists an element x_i in G of order a_i , the image of which in G' is x'_i . Indeed, let y_i be an element in G, the class of which in G' is x'_i . Then $a_i y_i$ is in the subgroup of G generated by x_s : there exists an integer b_i such that $a_i y_i = b_i x_s$. We have

$$0 = a_s y_1 = \frac{a_s}{a_i} a_i y_i = \frac{a_s}{a_i} b_i x_s,$$

hence a_s divides $(a_s/a_i)b_i$, which means that a_i divides b_i . Now define

$$x_i = y_i - \frac{b_i}{a_i} x_s$$

We have

$$a_i x_i = 0,$$

hence the order of x_i divides a_i . Since the image x'_i of x_i in G' has order a_i , we deduce that the order of x_i is a_i .

Let H be the subgroup of G which is the direct product of the subgroups generated by x_1, \ldots, x_{s-1} . The intersection of H with the subgroup generated by x_s is $\{0\}$. It follows that G is the direct product of H with the subgroup generated by x_s .

It remains to prove the unicity of a_1, \ldots, a_s . The unicity of a_s is clear: it is the exponent of G. However we start by the unicity of a_1 and of s.

For any integer d, define

$$\Phi(d) = \operatorname{Card} \left\{ x \in G \mid dx = 0 \right\}.$$

We have

$$\Phi(d) = \prod_{i=1}^{s} \gcd(d, a_i) \le d^s.$$

The integer s is the least integer k such that $\Phi(d) \leq d^k$ for all $d \geq 1$, hence s depends only on G. Also a_1 is the greatest integer $d \geq 1$ such that $\Phi(d) \leq d^s$, hence a_1 depends only on G.

We complete the proof of Theorem 1 by induction on the order of G. Let $G[a_1]$ be the subgroup of G containing the elements having an order which divides a_1 . For $i \ge 1$, $(\mathbf{Z}/a_i\mathbf{Z})[a_1] = (a_i/a_1)\mathbf{Z}/a_i\mathbf{Z}$, hence $G/G[a_i]$ has invariant factors $a_2/a_1, \ldots, a_s/a_1$. By the induction hypothesis, these factors depend only on G. Hence the same is true for a_2, \ldots, a_s .

http://www.math.jussieu.fr/~miw/