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Diophantine approximation is a chapter in number theory which has wit-
nessed outstanding progress together with a number of deep applications during
the recent years. The proofs have long been considered as technically difficult.
However, we understand better now the underlying ideas, hence it becomes pos-
sible to introduce the basic methods and the fundamental tools in a more clear
way.

We start with irrationality proofs. Historically, the first ones concerned irra-
tional algebraic numbers, like the square roots of non square positive integers.
Next, the theory of continued fraction expansion provided a very useful tool.
Among the first proofs of irrationality for numbers which are now known to
be transcendental are the ones by H. Lambert and L. Euler, in the XVIIIth
century, for the numbers e and π. Later, in 1815, J. Fourier gave a simple proof
for the irrationality of e.

We first give this proof by Fourier and explain how J. Liouville extended it
in 1840 (four years before his outstanding achievement, where he produced the
first examples of transcendental numbers). Such arguments are very nice but
quite limited, as we shall see. Next we explain how C. Hermite was able in 1873
to go much further by proving the transcendence of the number e. We introduce
these new ideas of Hermite in several steps: first we prove the irrationality of er

for rational r 6= 0 as well as the irrationality of π. Next we relate these simple
proofs with Hermite’s integral formula, following C.L. Siegel (1929 and 1949).
Hermite’s arguments led to the theory of Padé Approximants. They also enable
Lindemann to settle the problem of the quadrature of the circle in 1882, by
proving the transcendence of π.

One of the next important steps in transcendental number theory came
with the solution by A.O. Gel’fond and Th. Schneider of the seventh of the 23
problems raised by D. Hilbert at the International Congress of Mathematicians
in Paris in 1900: for algebraic α and β with α 6= 0, α 6= 1 and β irrational, the
number αβ is transcendental. An example is 2

√
2, another less obvious example

is eπ. The proofs of Gel’fond and Schneider came after the study, by G. Pólya,
in 1914, of integer valued entire functions, using interpolation formulae going
back to Hermite. We introduce these formulae as well as some variants for
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meromorphic functions due to R. Lagrange (1935) and recently rehabilitated by
T. Rivoal (2006) [10].

The end of the course will be devoted to a survey of the most recent irra-
tionality and transcendence results, including results of algebraic independence.
We shall also introduce the main conjectures on this topic.

First course: september 12, 2007. 1

We denote by Z the ring of rational integers, by Q the field of rational
numbers, by R the field of real numbers and by C the field of complex numbers.
Given a real number, we want to know whether it is rational or not, that means
whether he belongs to Q or not. The set of irrational numbers R\Q has no nice
algebraic properties: it is not stable by addition nor by multiplication.

Irrationality is the first step, the second one is transcendence. Given a
complex number, one wants to know whether it is algebraic of not. The set of
algebraic numbers, which is the set of roots of all non-zero polynomials with
rational coefficients, is nothing else than the algebraic closure of Q into C. We
denote it by Q. The set of transcendental numbers is defined as C \ Q. Since
Q is a field, the set of transcendental numbers is not stable by addition nor by
multiplication.

1 Irrationality

1.1 Simple proofs of irrationality

The early history of irrationality goes back to the Greek mathematicians Hip-
pasus of Metapontum (around 500 BC) and Theodorus of Cyrene, Eudoxus,
Euclid. There are different early references in the Indian civilisation and the
Sulba Sutras (around 800-500 BC).

Let us start with the irrationality of the number
√

2 = 1, 414 213 562 373 095 048 801 688 724 209 . . .

One of the most well known proofs is to argue by contradiction as follows:
assume

√
2 is rational and write it as a/b where a and b are relatively prime

positive rational integers. Then a2 = 2b2. It follows that a is even. Write
a = 2a′. From 2a′2 = b2 one deduces that b also is even, contradicting the
assumption that a and b were relatively prime.

There are variants of this proof - a number of them are in the nice booklet
[9]. For instance using the relation

√
2 =

2−
√

2√
2− 1
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with
√

2 = a/b one deduces
√

2 =
2b− a
a− b

·

Now we have 1 <
√

2 < 2, hence 0 < a−b < b, which shows that the denominator
b of fraction

√
2 = a/b was not minimal.

This argument can be converted into a geometric proof: starting with an
isosceles rectangle triangle with sides b and hypothenuse a, one constructs (using
ruler and compass if one wishes) another similar triangle with smaller sides a−b
and hypothenuse 2b−a. Such a proof of irrationality is reminiscent of the ancient
Greek geometers constructions, and also of the infinite descent of Fermat.

A related but different geometric argument is to start with a rectangle having
sides 1 and 1 +

√
2. We split it into two unit squares and a smaller rectangle.

The length of this second rectangle is 1, its width is
√

2−1, hence its proportion
is

1√
2− 1

= 1 +
√

2.

Therefore the first and second rectangles have the same proportion. Now if
we repeat the process and split the small rectangle into two squares (of sides√

2 − 1) and a third tiny rectangle, the proportions of this third rectangle will
again be 1 +

√
2. This means that the process will not end, each time we shall

get two squares and a remaining smaller rectangle having the same proportion.
On the other hand if we start with a rectangle having integer side lengths, if

we split it into several squares and if a small rectangle remains, then clearly the
small rectangle while have integer side lengths. Therefore the process will not
continue forever, it will stop when there is no remaining small rectangle. This
proves again the irrationality of

√
2.

In algebraic terms the number x = 1 +
√

2 satisfies

x = 2 +
1
x

,

hence also
x = 2 +

1

2 +
1
x

= 2 +
1

2 +
1

2 +
1
x

= · · · ,

which yields the continued fraction expansion of 1 +
√

2. Here is the definition
of the continued fraction expansion of a real number.

Given a real number x, the Euclidean division in R of x by 1 yields a quotient
[x] ∈ Z (the integral part of x) and a remainder {x} in the interval [0, 1) (the
fractional part of x) satisfying

x = [x] + {x}.

Set a0 = [x]. Hence a0 ∈ Z. If x is an integer then x = [x] = a0 and {x} = 0.
In this case we just write x = a0 with a0 ∈ Z. Otherwise we have {x} > 0 and
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we set x1 = 1/{x} and a1 = [x1]. Since {x} < 1 we have x1 > 1 and a1 ≥ 1.
Also

x = a0 +
1

a1 + {x1}
·

Again, we consider two cases: if x1 ∈ Z then {x1} = 0, x1 = a1 and

x = a0 +
1
a1

with two integers a0 and a1, with a1 ≥ 2 (recall x1 > 1). Otherwise we can
define x2 = 1/{x1}, a2 = [x2] and go one step further:

x = a0 +
1

a1 +
1

a2 + {x2}

·

Inductively one obtains a relation

x = a0 +
1

a1 +
1

a2 +
1

. . .
an−1 +

1
an + {xn}

with 0 ≤ {xn} < 1. The connexion with the geometric proof of irrationality of√
2 by means of rectangles and squares is now obvious: start with a positive

real number x and consider a rectangle of sides 1 and x. Divide this rectangle
into unit squares and a second rectangle. Then a0 is the number of unit squares
which occur, while the sides of the second rectangle are 1 and {x}. If x is not
an integer, meaning {x} > 0, then we split the second rectangle into squares of
sides {x} plus a third rectangle. The number of squares is now a1 and the third
rectangle has sides {x} and 1− a1{x}. Going one in the same way, one checks
that the number of squares we get at the n-th step is an.

This geometric point of view shows that the process stops after finitely many
steps (meaning that some {xn} is zero, or equivalently that xn is in Z) if and
only if x is rational.

For simplicity of notation we write

x = [a0; a1, . . . , an] or x = [a0; a1, . . . , an, . . . ]

depending on whether xn ∈ Z for some n or not. This is the continued fraction
expansion of x. Notice that any irrational number has a unique infinite con-
tinued fraction expansion, while for rational numbers, the above construction
provides a unique well defined continued fraction which bears the restriction
that the last an is ≥ 2. But we allow also the representation

[a0; a1, . . . , an − 1, 1].
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For instance 11/3 = [3; 1, 2] = [3; 1, 1, 1].
We need a further notation for ultimately periodic continued fraction. As-

sume that x is irrational and that for some integers n0 and r > 0 its continued
fraction expansion [a0; a1, . . . , an, . . . ] satisfies

an+r = an for any n ≥ n0.

Then we write

x = [a0; a1, . . . , an0−1, an0 , an0+1, . . . , an0+r−1].

For instance √
2 = [1; 2, 2, 2, . . . ] = [1; 2].

References on continued fractions are [4, 11, 6, 7, 2]. An interesting remark
[9] on the continued fraction expansion of

√
2 is to relate the A4 paper format

21× 29.7 to the fraction expansion

297
210

=
99
70

= [1; 2, 2, 2, 2, 2].

There is nothing special with the square root of 2: most of the previous
argument extend to the proof of irrationality of

√
n when n is a positive integer

which is not the square of an integer. For instance a proof of the irrationality
of
√
n when n is not the square of an integer runs as follows. Write

√
n = a/b

where b is the smallest positive integer such that b
√
n is an integer. Further,

denote by m the integral part of
√
n: this means that m is the positive integer

such that m <
√
n < m + 1. The strict inequality m <

√
n is the assumption

that n is not a square. From 0 <
√
n−m < 1 one deduces

0 < (
√
n−m)b < b.

Now the number b′ = (
√
n−m)b is a positive rational integer, the product b′

√
n

is an integer and b′ < b, which contradicts the choice of b minimal.
An easy variant of the argument yields the irrationality of n1/k when n and

k are positive integers for which n1/k is not an integer.
The irrationality of

√
5 is equivalent to the irrationality of the Golden ratio

Φ = (1 +
√

5)/2, root of the polynomial X2 −X − 1, whose continued fraction
expansion is

Φ = [1; 1, 1, 1, 1, . . . ] = [1, 1].

This expansion follows from the relation

Φ = 1 +
1
Φ
·

The geometric irrationality proof using rectangles that we described above for
1 +
√

2 works in a similar way for the Golden ratio: a rectangle of sides Φ and
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1 splits into a square and a small rectangle of sides 1 and Φ− 1, hence the first
and the second rectangles have the same proportion

Φ =
1

Φ− 1
· (1.1)

As a consequence the process continues forever with one square and one smaller
rectangle with the same proportion. Hence Φ and

√
5 are irrational numbers.

Another proof of the same result is to deduce from the equation (1.1) that
a relation Φ = a/b with 0 < b < a yields

Φ =
b

a− b
,

hence a/b is not a rational fraction with minimal denominator.
Other numbers for which it is easy to prove the irrationality are quotients

of logarithms: if m and n are positive integers such that (logm)/(log n) is ra-
tional, say a/b, then mb = na, which means that m and n are multiplicatively
dependent. Recall that elements x1, . . . , xr in an additive group are linearly in-
dependent if a relation a1x1 + · · · + arxr = 0 with rational integers a1, . . . , ar
implies a1 = · · · = ar = 0. Similarly, elements x1, . . . , xr in a multiplicative
group are multiplicatively independent if a relation xa1

1 · · ·xarr = 1 with ratio-
nal integers a1, . . . , ar implies a1 = · · · = ar = 0. Therefore a quotient like
(log 2)/ log 3, and more generally (logm)/ log n where m and n are multiplica-
tively independent positive rational numbers, is irrational.

We have seen that a real number is rational if and only if its continued
fraction expansion is finite. There is another criterion of irrationality using
the b-adic expansion when b is an integer ≥ 2 (for b = 10 this is the decimal
expansion, for b = 2 it is the diadic expansion). Indeed any real number x can
be written

x = [x] + d1b
−1 + d2b

−2 + · · ·+ dnb
−n + · · ·

where the integers dn (the digits of x) are in the range 0 ≤ dn < b. Again there
is unicity of such an expansion apart from the integer multiples of some b−n

which have two expansions, one where all sufficiently large digits vanish and
one for which all sufficiently large digits are b− 1. This is due to the equation

b−n =
n∑
k=0

(b− 1)b−n−k−1.

Here is the irrationality criterion using such expaansions: fix an integer b ≥ 2.
Then the real number x is rational if and only if the sequence of digits (dn)n≥1

of x in basis b is ultimately periodic.
One might be tempted to conclude that it should be easy to decide whether

a given real number is rational or not. However this is not the case with many
constants from analysis, because most often one does not know any expansion,
either in continued fraction or in any basis b ≥ 2. And the fact is that for
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many such constants the answer is not known. For instance one does not know
whether the Euler–Mascheroni constant

γ = lim
n→∞

(
1 +

1
2

+
1
3

+ · · ·+ 1
n
− log n

)
= 0, 577 215 664 901 532 860 606 512 090 082 . . .

is rational or not: one expects that it is an irrational number (and even a
transcendental number - see later). Other formulas for the same number are

γ =
∞∑
k=1

(
1
k
− log

(
1 +

1
k

))
=
∫ ∞

1

(
1

[x]
− 1
x

)
dx

= −
∫ 1

0

∫ 1

0

(1− x)dxdy
(1− xy) log(xy)

·

Recent papers on that question have been published by J. Sondow [13], they are
inspired by F. Beukers’ work on Apéry’s proof of the irrationality of

ζ(3) =
∑
n≥1

1
n3

= 1, 202 056 903 159 594 285 399 738 161 511 . . .

in 1978. Recall that the values of the Riemann zeta function

ζ(s) =
∑
n≥1

n−s

was considered by Euler for real s and by Riemann for complex s, the series
being convergent for the real part of s greater than 1. Euler proved that the
values ζ(2k) of this function at the even positive integers (k ∈ Z, k ≥ 1) are
rational multiples of π2k. For instance ζ(2) = π2/6. It is interesting to notice
that Euler’s proof relates the values ζ(2k) at the positive even integers with
the values of the same function at the odd negative integers, namely ζ(1− 2k).
For Euler this involved divergent series, while Riemann defined ζ(s) for s ∈ C,
s 6= 1, by analytic continuation.

One might be tempted to guess that ζ(2k + 1)/π2k+1 is a rational num-
ber when k ≥ 1 is a positive integer. However the folklore conjecture is that
this is not the case. In fact there are good reasons to conjecture that for
any k ≥ 1 and any non-zero polynomial P ∈ Z[X0, X1, . . . , Xk], the number
P (π, ζ(3), ζ(5), . . . , ζ(2k + 1)) is not 0. But one does not know whether

ζ(5) =
∑
n≥1

1
n5

= 1, 036 927 755 143 369 926 331 365 486 457 . . .
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is irrational or not. And there is no proof so far that ζ(3)/π3 is irrational.
According to T. Rivoal, among the numbers ζ(2n + 1) with n ≥ 2, infinitely
many are irrational. And W. Zudilin proved that one at least of the four numbers

ζ(5), ζ(7), ζ(9), ζ(11)

is irrational. References with more information on this topic are given in the
Bourbaki talk [5] by S. Fischler.

A related open question is the arithmetic nature of Catalan’s constant

G =
∑
n≥1

(−1)n

(2n+ 1)2
= 0, 915 965 594 177 219 015 0 . . .

Other open questions can be asked on the values of Euler’s Gamma fonction

Γ(z) = e−γzz−1
∞∏
n=1

(
1 +

z

n

)−1

ez/n =
∫ ∞

0

e−ttz · dt
t
·

As an example we do not know how to prove that the number

Γ(1/5) · · · = 4, 590 843 711 998 803 053 204 758 275 929 152 0 . . .

is irrational.
The only rational values of z for which the answer is known (and in fact one

knows the transcendence of the Gamma value in these cases) are

r ∈
{

1
6

, 1
4

, 1
3

, 1
2

, 2
3

, 3
4

, 5
6

}
(mod 1).

The number Γ(1/n) appears when one computes periods of the Fermat curve
Xn + Y n = Zn, and this curve is simpler (in technical terms it has genus ≤ 1)
for n = 2, 3, 4 and 6. For n = 5 the genus is 2 and this is related with the fact
that one is not able so far to give the answer for Γ(1/5).

The list of similar open problems is endless. For instance, is the number

e+ π = 5, 859 874 482 048 838 473 822 930 854 632 . . .

rational or not? The answer is not yet known. And the same is true for any
number in the following list

log π, 2π, 2e, πe, ee.

1.2 Variation on a proof by Fourier (1815)

That e is not quadratic follows from the fact that the continued fraction ex-
pansion of e, which was known by L. Euler in 1737 [4] (see also [3]), is not
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periodic:

e = 2 +
1

1 +
1

2 +
1

1 +
1

1 +
1

4 +
1
. . .

= [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . . ]

Since this expansion is infinite we deduce that e is irrational. The fact that it
is not ultimately periodic implies also that e is not a quadratic irrationality, as
shown by Lagrange in 1770 – Euler knew already in 1737 that a number with
an ultimately period continued fraction expansion is quadratic (see [4, 2, 11]).

The following easier and well known proof of the irrationality of e was given
by J. Fourier in his course at the École Polytechnique in 1815. Later, in 1872 ,
C. Hermite proved that e is transcendental, while the work of F. Lindemann a
dozen of years later led to a proof of the so-called Hermite–Lindemann Theorem:
for any nonzero algebraic number α the number eα is transcendental. However
for this first section we study only weaker statements which are very easy to
prove. We also show that Fourier’s argument can be pushed a little bit further
than what is usually done, as pointed out by J. Liouville in 1844.

1.2.1 Irrationality of e

We truncate the exponential series giving the value of e at some point N :

N ! e−
N∑
n=0

N !
n!

=
∑
k≥1

N !
(N + k)!

· (1.2)

The right hand side of (1.2) is a sum of positive numbers, hence is positive (not
zero). From the lower bound (for the binomial coefficient)

(N + k)!
N !k!

≥ N + 1 for k ≥ 1,

one deduces∑
k≥1

N !
(N + k)!

<
1

N + 1

∑
k≥1

N !
(N + k)!

<
1

N + 1

∑
k≥1

1
k!

=
e− 1
N + 1

·

Therefore the right hand side of (1.2) tends to 0 when N tends to infinity. In
the left hand side, N ! and

∑N
n=0N !/n! are integers. It follows that N !e is never

an integer, hence e is an irrational number.
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1.2.2 The number e is not quadratic

.
The fact that e is not a rational number implies that for each m ≥ 1 the

number e1/m is not rational. To prove that e2 for instance is also irrational is
not so easy (see the comment on this point in [1]).

The proof below is essentially the one given by J. Liouville in 1840 [8] which
is quoted by Ch. Hermite (“ces travaux de l’illustre géomètre”).

To prove that e does not satisfy a quadratic relation ae2 + be + c with a, b
and c rational integers, not all zero, requires some new trick. Indeed if we just
mimic the same argument we get

cN ! +
N∑
n=0

(2na+ b)
N !
n!

= −
∑
k≥0

(
2N+1+ka+ b

) N !
(N + 1 + k)!

·

The left hand side is a rational integer, but the right hand side tends to infinity
(and not 0) with N , so we draw no conclusion.

Instead of this approach we write the quadratic relation as ae+b+ce−1 = 0.
This time it works:

bN ! +
N∑
n=0

(a+ (−1)nc)
N !
n!

= −
∑
k≥0

(
a+ (−1)N+1+kc

) N !
(N + 1 + k)!

·

Again the left hand side is a rational integer, but now the right hand side tends
to 0 when N tends to infinity, which is what we expected. However we need a
little more work to conclude: we do not yet get the desired conclusion, we only
deduce that both sides vanish. Now let us look more closely to the series in the
right hand side. Write the two first terms AN for k = 0 and BN for k = 1:∑

k≥0

(
a+ (−1)N+1+kc

) N !
(N + 1 + k)!

= AN +BN + CN

with

AN =
(
a− (−1)Nc

) 1
N + 1

BN =
(
a+ (−1)Nc

) 1
(N + 1)(N + 2)

CN =
∑
k≥2

(
a+ (−1)N+1+kc

) N !
(N + 1 + k)!

The above proof that the sum AN + BN + CN tends to zero as N tends to
infinity shows more: each of the three sequences

AN , (N + 1)BN , (N + 1)(N + 2)CN

tends to 0 as N tends to infinity. Hence, from the fact that the sum AN +BN +
CN vanishes for sufficiently large N , it easily follows that for sufficiently large
N , each of the three terms AN , BN and CN vanishes, hence a − (−1)Nc and
a+ (−1)Nc vanish, therefore a = c = 0, and finally b = 0.
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2, Éditions Le Pommier (2006).

[10] T. Rivoal – Applications arithmétiques de l’interpolation lagrangienne,
IJNT, to appear.

[11] W. M. Schmidt – Diophantine approximation, Lecture Notes in Mathe-
matics, vol. 785, Springer-Verlag, Berlin, 1980.

[12] S.A. Shirali – Continued fraction for e, Resonance, vol. 5 N◦1, Jan. 2000,
14–28.
http://www.ias.ac.in/resonance/

[13] Jonathan Sondow – Criterion for irrationality of Euler’s constant,
(2002)
http://xxx.lanl.gov/pdf/math.NT/0209070
http://home.earthlink.net/∼jsondow/

11

http://www.math.u-psud.fr/~fischler/publi.html
http://www.ias.ac.in/resonance/
 http://xxx.lanl.gov/pdf/math.NT/0209070
http://home.earthlink.net/~jsondow/



