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1.2.3 Irrationality of e
√

2 (Following a suggestion of D.M. Masser)

The trick here is to prove the stronger statement that ϑ = e
√

2 + e−
√

2 is an
irrational number.

Summing the two series

e
√

2 =
∑
n≥0

2n/2

n!
and e−

√
2 =

∑
n≥0

(−1)n
2n/2

n!

we deduce
ϑ = 2

∑
m≥0

2m

(2m)!
·

Let N be a sufficiently large integer. Then

(2N)!
2N

ϑ− 2
N∑
m=0

(2N)!
2N−m(2m)!

= 4
∑
k≥0

2k(2N)!
(2N + 2k + 2)!

· (1.3)

The right hand side of (1.3) is a sum of positive numbers, in particular it is not
0. Moreover the upper bound

(2N)!
(2N + 2k + 2)!

≤ 1
(2N + 2)(2k + 1)!

shows that the right hand side of (1.3) is bounded by

2
N + 1

∑
k≥0

2k

(2k + 1)!
<

√
2e
√

2

N + 1
,

hence tends to 0 as N tends to infinity.
It remains to check that the coefficients (2N)!/2N and (2N)!/2N−m(2m)!

(0 ≤ m ≤ N) which occur in the left hand side of (1.3) are integers. The first
one is nothing else than the special case m = 0 of the second one. Now for
0 ≤ m ≤ N the quotient

(2N)!
(2m)!

= (2N)(2N − 1)(2N − 2) · · · (2m+ 2)(2m+ 1)

is the product of 2N −2m consecutive integers, N −m of which are even; hence
it is a multiple of 2N−m.

The same proof shows that the number
√

2(e
√

2 − e−
√

2) is also irrational,
but the argument does not seem to lead to the conclusion that e

√
2 is not a

quadratic number.
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1.2.4 The number e2 is not quadratic

The proof below is the one given by J. Liouville in 1840 [3] . See also [1].
We saw in § 1.2.2 that there was a difficulty to prove that e is not a quadratic

number if we were to follow too closely Fourier’s initial idea. Considering e−1

provided the clue. Now we prove that e2 is not a quadratic number by truncating
the series at carefully selected places. Consider a relation ae4 + be2 + c = 0 with
rational integer coefficients a, b and c. Write ae2 + b+ ce−2 = 0. Hence

N !b
2N−1

+
N∑
n=0

(a+ (−1)nc)
N !

2N−n−1n!
= −

∑
k≥0

(
a+ (−1)N+1+kc

) 2kN !
(N + 1 + k)!

·

Like in § 1.2.2, the right hand side tends to 0 as N tends to infinity, and if
the two first terms of the series vanish for some value of N , then we conclude
a = c = 0. What remains to be proved is that the numbers

N !
2N−n−1n!

, (0 ≤ n ≤ N)

are integers. For n = 0 this is the coefficient of b, namely 2−N+1N !. The fact
that these numbers are integers is not true for all values of N , it is not true even
for all sufficiently large N ; but we do not need so much, it suffices that they are
integers for infinitely many N , and that much is true.

The exponent vp(N !) of p in the prime decomposition of N ! is given by the
(finite) sum (see for instance [2])

vp(N !) =
∑
j≥1

[
N

pj

]
. (1.4)

Using the trivial upper bound [m/pj ] ≤ m/pj we deduce the upper bound

vp(n!) ≤ n

p− 1

for all n ≥ 0. In particular v2(n!) ≤ n. On the other hand, when N is a power
of p, say N = pt, then (1.4) yields

vp(N !) = pt−1 + pt−2 + · · ·+ p+ 1 =
pt − 1
p− 1

=
N − 1
p− 1

.

Therefore when N is a power of 2 the number N ! is divisible by 2N−1 and we
have, for 0 ≤ m ≤ N ,

v2(N !/n!) ≥ N − n− 1,

which means that the numbers N !/2N−n−1n! are integers.

13



1.2.5 The number e
√

3 is irrational

Set ϑ = e
√

3 + e−
√

3. From the series expansion of the exponential function we
derive

(2N)!
3N−1

ϑ− 2
N∑
m=0

(2N)!
(2m)!3N−m−1

= 2
∑
k≥0

3k(2N)!
(2N + 2k + 2)!

·

Take N of the form (3t + 1)/2 for some sufficiently large integer t. We deduce
from (1.4) with p = 3

v3((2N)!) =
3t − 1

2
= N − 1, v3((2m)!) ≤ m, (0 ≤ m ≤ N)

hence v3((2N)!/(2m)!) ≥ N −m− 1.

1.2.6 Is-it possible to go further?

The same argument does not seem to yield the irrationality of e3. The range
of applications of this method is limited. The main ideas allowing to go further
have been introduced by Charles Hermite. These new ideas are basic for the
development of transcendental number theory which we shall discuss later.

1.2.7 A geometrical proof of the irrationality of e

The following proof of the irrationality of e is due to Jonathan Sondow [4]. Start
with an interval I1 of length 1. We are going to construct inductively a sequence
of intervals (In)n≥1, where for each n the interval In is obtained by splitting
In−1 into n intervals of the same length and keeping only one such piece. Hence
the length of In will be 1/n!.

In order to have the origin of In as

1 +
1
1!

+
1
2!

+ · · ·+ 1
n!

we start with I1 = [2, 3]. For n ≥ 2, split In−1 into n intervals and keep the
second one: this is In. Hence

I1 =
[
1 +

1
1!

, 1 +
2
1!

]
= [2, 3],

I2 =
[
1 +

1
1!

+
1
2!

, 1 +
1
1!

+
2
2!

]
=
[

5
2!

, 6
2!

]
,

I3 =
[
1 +

1
1!

+
1
2!

+
1
3!

, 1 +
1
1!

+
1
2!

+
2
3!

]
=
[

16
3!

, 17
3!

]
·

The origin of In is

1 +
1
1!

+
1
2!

+ · · ·+ 1
n!

=
an
n!

,
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the length is 1/n!, hence the endpoint of In is (an + 1)/n!. Also for n ≥ 1 we
have an+1 = (n+ 1)an + 1.

The number e is the intersection of all these intervals, hence it lies in the
interior of each In, and therefore it cannot be written as a/n! with a ∈ Z.

Since
p

q
=

(q − 1)! p
q!

,

the irrationality of e follows.
As pointed out by Sondow in [4], the proof shows that for any integer n > 1,

1
(n+ 1)!

< min
m∈Z

∣∣∣e− m

n!

∣∣∣ < 1
n!
·

The Smarandache function is defined as follows: S(q) is the least positive
integer such that S(q)! is a multiple of q:

S(1) = 1, S(2) = 2, S(3) = 3, S(4) = 4, S(5) = 5, S(6) = 3 . . .

Hence S(n) ≤ n or all n ≥ 1, S(p) = p for p prime and S(n!) = n. From his
proof Sondow [4] deduces an irrationality measure for e: for any p/q ∈ Q,∣∣∣∣e− p

q

∣∣∣∣ > 1
(S(q) + 1)!

·

1.3 Irrationality Criteria

The main tool in Diophantine approximation is the basic property that any
non-zero integer has absolute value at least 1. There are many consequences
of this fact. The first one we consider here is the following:
If ϑ is a rational number, there is a positive constant c = c(ϑ) such that, for
any rational number p/q with p/q 6= ϑ,∣∣∣∣ϑ− p

q

∣∣∣∣ ≥ c

q
· (1.5)

This result is obvious: if ϑ = a/b then an admissible value for c is 1/b, because
the non-zero integer aq − bp has absolute value at least 1.

This property is characteristic of rational numbers: a rational number cannot
be well approximated by other rational numbers, while an irrational number can
be well approximated by rational numbers.

We now give several such criteria. The first one was used implicitly in § 1.2.

1.3.1 Statement of the first criterion

Lemma 1.6. Let ϑ be a real number. The following conditions are equivalent
(i) ϑ is irrational.
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(ii) For any ε > 0 there exists p/q ∈ Q such that

0 <
∣∣∣∣ϑ− p

q

∣∣∣∣ < ε

q
·

(iii) For any real number Q > 1 there exists an integer q in the range 1 ≤ q < Q
and a rational integer p such that

0 <
∣∣∣∣ϑ− p

q

∣∣∣∣ < 1
qQ
·

(iv) There exist infinitely many p/q ∈ Q such that

0 <
∣∣∣∣ϑ− p

q

∣∣∣∣ < 1
q2
·

So far we needed only (ii)⇒(i), which is the easiest part, as we just checked
in (1.5).

According to this implication, in order to prove that some number is ir-
rational, it is sufficient (and in fact also necessary) to produce good rational
approximations. Lemma 1.6 tells us that an irrational real number ϑ has very
good friends among the rational numbers, the sharp inequality (iv) shows in-
deed that ϑ is well approximated by rational numbers (and a sharper version
of (iv) will be proved in Lemma 1.8 below). Conversely, the proof we just gave
shows that a rational number has no good friend, apart from himself. Hence
in this world of rational approximation it suffices to have one good friend (not
counting oneself) to guarantee that one has many very good friends.

1.3.2 Proof of Dirichlet’s Theorem (i)⇒(iii) in the criterion 1.6

The implications (iii)⇒(iv)⇒(ii)⇒(i) in Lemma 1.6 are easy. It only remains
to prove (i)⇒(iii), which is a Theorem due to Dirichlet. For this we shall use
the box or pigeon hole principle.

Proof of (i)⇒(iii). Let Q > 1 be given. Define N = dQe: this means that N is
the integer such that N − 1 < Q ≤ N . Since Q > 1, we have N ≥ 2.

For x ∈ R write x = [x] + {x} with [x] ∈ Z (integral part of x) and 0 ≤
{x} < 1 (fractional part of x). Let ϑ ∈ R\Q. Consider the subset E of the unit
interval [0, 1] which consists of the N + 1 elements

0, {ϑ}, {2ϑ}, {3ϑ}, . . . , {(N − 1)ϑ}, 1.

Since ϑ is irrational, these N+1 elements are pairwise distinct. Split the interval
[0, 1] into N intervals

Ij =
[
j

N
,
j + 1
N

]
(0 ≤ j ≤ N − 1).
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One at least of these N intervals, say Ij0 , contains at least two elements of
E. Apart from 0 and 1, all elements {qϑ} in E with 1 ≤ q ≤ N − 1 are
irrational, hence belong to the union of the open intervals (j/N, (j + 1)/N)
with 0 ≤ j ≤ N − 1.

If j0 = N − 1, then the interval

Ij0 = IN−1 =
[
1− 1

N
; 1
]

contains 1 as well as another element of E of the form {qϑ} with 1 ≤ q ≤ N −1.
Set p = [qϑ] + 1. Then we have 1 ≤ q ≤ N − 1 < Q and

p− qϑ = [qϑ] + 1− [qϑ]− {qϑ} = 1− {qϑ}, hence 0 < p− qϑ < 1
N
≤ 1
Q
·

Otherwise we have 0 ≤ j0 ≤ N − 2 and Ij0 contains two elements {q1ϑ} and
{q2ϑ} with 0 ≤ q1 < q2 ≤ N − 1. Set

q = q2 − q1, p = [q2ϑ]− [q1ϑ].

Then we have 0 < q = q2 − q1 ≤ N − 1 < Q and

|qϑ− p| = |{q2ϑ} − {q1ϑ}| < 1/N ≤ 1/Q.

There are other proofs of (i)⇒(iii) – for instance one can use Minkowski’s
Theorem in the geometry of numbers, which is more powerful than Dirichlet’s
box principle. We shall come back to this point in section § 2.2.7.

1.3.3 Irrationality of at least one number

We shall use the following variant of Lemma 1.6 later.

Lemma 1.7. Let ϑ1, . . . , ϑm be real numbers. The following conditions are
equivalent
(i) One at least of ϑ1, . . . , ϑm is irrational.
(ii) For any ε > 0 there exist p1, . . . , pm, q in Z with q > 0 such that

0 < max
1≤i≤m

∣∣∣∣ϑi − pi
q

∣∣∣∣ < ε

q
·

(iii) For any integer Q > 1 there exists p1, . . . , pm, q in Z such that 1 ≤ q ≤ Qm
and

0 < max
1≤i≤m

∣∣∣∣ϑi − pi
q

∣∣∣∣ ≤ 1
qQ
·

(iv) There is an infinite set of q ∈ Z, q > 0, for which there there exist p1, . . . , pm
in Z satisfying

0 < max
1≤i≤m

∣∣∣∣ϑi − pi
q

∣∣∣∣ < 1
q1+1/m

·
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Proof. The proofs of (iii)⇒(iv)⇒(ii)⇒(i) are easy.
For (i)⇒(iii) we use Dirichlet’s box principle 3 like in the proof of Lemma

1.6. Consider the Qm + 1 elements

ξq =
(
{qϑ1}, . . . , {qϑm}

)
(q = 0, 1, . . . , Qm)

in the unit cube [0, 1)m of Rm. Split this unit cube into Qm cubes having sides
of lengths 1/Q. One at least of these small cubes contains at least two ξq, say
ξq1 and ξq2 , with 0 ≤ q2 < q1 ≤ Qm. Set q = q1 − q2 and take for pi the nearest
integer to ϑi, 1 ≤ i ≤ m. This completes the proof of Lemma 1.7.

1.3.4 Hurwitz Theorem

The following result improves the implication (i)⇒(iv) of Lemma 1.6.

Lemma 1.8. Let ϑ be a real number. The following conditions are equivalent
(i) ϑ is irrational.
(ii) There exist infinitely many p/q ∈ Q such that

0 <
∣∣∣∣ϑ− p

q

∣∣∣∣ < 1√
5q2
·

Of course the implication (ii)⇒(i) in Lemma 1.8 is weaker than the implica-
tion (iv)⇒(i) in Lemma 1.6. What is new is the converse.

Classical proofs of the equivalence between (i) and (iv) involve either con-
tinued fractions or Farey series. We give here a proof which does not involve
continued fractions, but they occur implicitly.

Lemma 1.9. Let ϑ be a real irrational number. Then there exists infinitely
many pairs (p/q, r/s) of irreducible fractions such that

p

q
< ϑ <

r

s
and qr − ps = 1.

In this statement and the next ones it is sufficient to prove inequalities ≤ in
place of <: the strict inequalities are plain from the irrationality of ϑ.

Proof. First let H be a positive integer. Among the irreducible rational fractions
a/b with 1 ≤ b ≤ H, select one for which |ϑ−a/b| is minimal. If a/b < ϑ rename
a/b as p/q, while if a/b > ϑ, then rename a/b as r/s.

First consider the case where a/b < ϑ, hence a/b = p/q. Since gcd(p, q) = 1,
using Euclidean’s algorithm, one deduces (Bézout’s Theorem) that there exist
(r, s) ∈ Z2 such that qr − sp = 1 with 1 ≤ s < q and |r| < |p|. Since 1 ≤ s <
q ≤ H, from the choice of a/b it follows that∣∣∣∣ϑ− p

q

∣∣∣∣ ≤ ∣∣∣ϑ− r

s

∣∣∣
3An alternative arguments relies on geometry of numbers - see section § 2.2.7 and

W.M. Schmidt’s lecture notes - as a consequence it is not necessary to assume that Q is
an integer, and the strict inequality q < Qm can be achieved.
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hence r/s does not belong to the interval [p/q, ϑ]. Since qr − sp > 0 we also
have p/q < r/s, hence ϑ < r/s.

In the second case where a/b > ϑ and r/s = a/b we solve qr − sp = 1 by
Euclidean algorithm with 1 ≤ q < s and |p| < r, and the argument is similar.

We now complete the proof of infinitely many such pairs. Once we have a
finite set of such pairs (p/q, r/s), we use the fact that there is a rational number
closer to ϑ than any of these rational fractions. We use the previous argument
with H = max{|a|, b}. This way we produce a new pair (p/q, r/s) of rational
numbers which is none of the previous ones (because one at least of the two
rational numbers p/q, r/s is a better approximation than the previous ones).
Hence this construction yields infinitely many pairs, as claimed.

Lemma 1.10. Let ϑ be a real irrational number. Assume (p/q, r/s) are irre-
ducible fractions such that

p

q
< ϑ <

r

s
and qr − ps = 1.

Then

min
{
q2
(
ϑ− p

q

)
, s2

(r
s
− ϑ

)}
<

1
2
·

Proof. Define

δ = min
{
q2
(
ϑ− p

q

)
, s2

(r
s
− ϑ

)}
.

From
δ

q2
≤ ϑ− p

q
and

δ

s2
≤ r

s
− ϑ

one deduces that the number t = s/q satisfies

t+
1
t
≤ 1
δ
·

Since the minimum of the function t 7→ t+ 1/t is 2 and since t 6= 1, we deduce
δ < 1/2.

Remark. The inequality t+ (1/t) ≥ 2 for all t > 0 with equality if and only if
t = 1 is equivalent to the arithmetico-geometric inequality

√
xy ≤ x+ y

2
,

when x and y are positive real numbers, with equality if and only if x = y. The
correspondance between both estimates is t =

√
x/y.
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From Lemmas 1.9 and 1.10 it follows that for ϑ ∈ R\Q, there exist infinitely
many p/q ∈ Q such that

0 <
∣∣∣∣ϑ− p

q

∣∣∣∣ < 1
2q2
·

A further step is required in order to complete the proof of Lemma 1.8.

Lemma 1.11. Let ϑ be a real irrational number. Assume (p/q, r/s) are irre-
ducible fractions such that

p

q
< ϑ <

r

s
and qr − ps = 1.

Define u = p+ r and v = q + s. Then

min
{
q2
(
ϑ− p

q

)
, s2

(r
s
− ϑ

)
, v2

∣∣∣ϑ− u

v

∣∣∣} <
1√
5
·

Proof. First notice that qu− pv = 1 and rv − su = 1. Hence

p

q
<
u

v
<
r

s
·

We repeat the proof of lemma 1.10 ; we distinguish two cases according to
whether u/v is larger or smaller than ϑ. Since both cases are quite similar, let
us assume ϑ < u/v. The proof of lemma 1.10 shows that

s

q
+
q

s
≤ 1
δ

and
v

q
+
q

v
≤ 1
δ
·

Hence each of the four numbers s/q, q/s, v/q, q/v satisfies t+ 1/t ≤ 1/δ. Now
the function t 7→ t+1/t is decreasing on the interval (0, 1) and increasing on the
interval (1,+∞). It follows that our four numbers all lie in the interval (1/x, x),
where x is the root > 1 of the equation x+1/x = 1/δ. The two roots x and 1/x
of the quadratic polynomial X2 − (1/δ)X + 1 are at a mutual distance equal to
the square root of the discriminant ∆ = (1/δ)2 − 4 of this polynomial. Now

v

q
− s

q
= 1,

hence the length
√

∆ of the interval (1/x, x) is ≥ 1 and therefore δ ≥ 1/
√

5.
This completes the proof of Lemma 1.11.
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