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We now show that Lemma 1.8 is optimal.
Denote again by Φ = 1.6180339887499 . . . the Golden ratio, which is the

root > 1 of the polynomial X2 −X − 1. The discriminant of this polynomial is
5. Recall also the definition of the Fibonacci sequence (Fn)n≥0:

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 (n ≥ 2).

Lemma 1.12. For any q ≥ 1 and any p ∈ Z,∣∣∣∣Φ− p

q

∣∣∣∣ > 1√
5q2 + (q/2)

·

On the other hand

lim
n→∞

F 2
n−1

∣∣∣∣Φ− Fn
Fn−1

∣∣∣∣ =
1√
5
·

Proof. It suffices to prove the lower bound when p is the nearest integer to qΦ.
From X2 −X − 1 = (X − Φ)(X + Φ−1) we deduce

p2 − pq − q2 = q2
(
p

q
− Φ

)(
p

q
+ Φ−1

)
.

The left hand side is a non-zero rational integer, hence has absolute value at
least 1. We now bound the absolute value of the right hand side from above.
Since p < qΦ + (1/2) and Φ + Φ−1 =

√
5 we have

p

q
+ Φ−1 ≤

√
5 +

1
2q
·

Hence

1 ≤ q2
∣∣∣∣pq − Φ

∣∣∣∣ (√5 +
1
2q

)
The first part of Lemma 1.12 follows.

The real vector space of sequences (vn)n≥0 satisfying vn = vn−1 + vn−2 has
dimension 2, a basis is given by the two sequences (Φn)n≥0 and ((−Φ−1)n)n≥0.
From this one easily deduces the formula

Fn =
1√
5

(Φn − (−1)nΦ−n)

4Updated: October 12, 2007
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due to A. De Moivre (1730), L. Euler (1765) and J.P.M. Binet (1843). It follows
that Fn is the nearest integer to

1√
5

Φn,

hence the sequence (un)n≥2 of quotients of Fibonacci numbers

un = Fn/Fn−1

satisfies limn→∞ un = Φ.
By induction one easily checks

F 2
n − FnFn−1 − F 2

n−1 = (−1)n

for n ≥ 1. The left hand side is F 2
n−1(un − Φ)(un + Φ−1), as we already saw.

Hence
F 2
n−1|Φ− un| =

1
Φ−1 + un

,

and the limit of the right hand side is 1/(Φ + Φ−1) = 1/
√

5. The result follows.

Remark. The sequence un = Fn/Fn−1 is also defined by

u2 = 2, un = 1 +
1

un−1

, (n ≥ 3).

Hence
un = 1 +

1

1 +
1

un−2

= 1 +
1

1 +
1

1 +
1

un−3

= · · ·

Remark. It is known (see for instance [4] p. 25) that if k is a positive integer,
if an irrational real number ϑ has a continued fraction expansion [a0; a1, a2, . . . ]
with an ≥ k for infinitely many n, then

lim inf
q→∞

q2
∣∣∣∣ϑ− p

q

∣∣∣∣ ≤ 1√
4 + k2

·

This proof of Lemma 1.12 can be extended by replacing X2 −X − 1 by any
irreducible polynomial with integer coefficients. Recall that the ring Z[X] is
factorial, its irreducible elements of positive degree are the non-constant poly-
nomials with integer coefficients which are irreducible in Q[X] (i.e. not a product
of two non-constant polynomials in Q[X]) and have content 1. The content of
a polynomial in Z[X] is the greatest common divisor of its coefficients.

The minimal polynomial of an algebraic number α is the unique irreducible
polynomial P ∈ Z[X] which vanishes at α and has a positive leading coefficient.

The next lemma ([4] p. 6 Lemma 2E) is a variant of Liouville’s inequality
that we shall study more throughly later.

23



Lemma 1.13. Let α be a real algebraic number of degree d ≥ 2 and minimal
polynomial P ∈ Z[X]. Define c = |P ′(α)|. Let ε > 0. Then there exists an
integer q0 such that, for any p/q ∈ Q with q ≥ q0,∣∣∣∣α− p

q

∣∣∣∣ ≥ 1
(c+ ε)qd

·

Proof. Let q be a sufficiently large positive integer and let p be the nearest
integer to α. In particular ∣∣∣∣α− p

q

∣∣∣∣ ≤ 1
2
·

Denote a0 the leading coefficient of P and by α1, . . . , αd its the roots with
α1 = α. Hence

P (X) = a0(X − α1)(X − α2) · · · (X − αd)

and

qdP (p/q) = a0q
d

d∏
i=1

(
p

q
− αi

)
. (1.14)

Also

P ′(α) = a0

d∏
i=2

(α− αi).

The left hand side of (1.14) is a rational integer. It is not zero because P is
irreducible of degree ≥ 2. For i ≥ 2 we use the estimate∣∣∣∣αi − p

q

∣∣∣∣ ≤ |αi − α|+ 1
2q
·

We deduce

1 ≤ qda0

∣∣∣∣α− p

q

∣∣∣∣ d∏
i=2

(
|αi − α|+

1
2q
)
.

For sufficiently large q the right hand side is bounded from above by

qd
∣∣∣∣α− p

q

∣∣∣∣ (|P ′(α)|+ ε).

If α is a real root of a quadratic polynomial P (X) = aX2 + bX + c, then
P ′(α) = 2aα+ b is a square root of the discriminant of P . So Hurwitz Lemma
1.8 is optimal for all quadratic numbers having a minimal polynomial of dis-
criminant 5. Incidentally, this shows that 5 is the smallest positive discriminant
of an irreducible quadratic polynomial in Z[X] (of course it is easily checked di-
rectly that if a, b, c are three rational integers with a > 0 and b2 − 4ac positive
and not a perfect square in Z, then b2 − 4ac ≥ 5).
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It follows that for the numbers of the form (aΦ + b)/(cΦ + d) with integers
a, b, c, d having ad − bc = ±1, one cannot replace in Lemma 1.8 the number√

5 by a larger number.
If one omits these irrational numbers in the field generated by the Golden

ratio, then Hurwitz showed that one can replace
√

5 by 2
√

2, and again this
is optimal. This is the beginning of the so-called Markoff 5 spectrum

√
5,
√

8,√
221/5,

√
1517/13, . . . which tends to 1/3 and is obtained as follows. First

consider the set of integers m for which the Markoff equation

m2 +m2
1 +m2

2 = 3mm1m2

has a solution in positive integers (m1,m2) with 0 < m1 ≤ m2 ≤ m. The
infinite increasing sequence of these integers m starts with

1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, 610, 985, 1325, 1597, . . . (1.15)

and there is an easy and well known algorithm to construct it (see for instance
[8]): apart from (1, 1, 1) and (2, 1, 1), for any solution (m,m1,m2) there are
three exactly solutions sharing two components with (m,m1,m2), namely

(m′,m1,m2), (m,m′1,m2), (m,m1,m
′
2),

where

m′ = 3m1m2 −m, m′1 = 3mm2 −m1, m′2 = 3mm1 −m2.

This produces the Markoff tree

(1, 1, 1)
|

(2, 1, 1)
|

(5, 2, 1)

|
| |

(29, 5, 2) (13, 5, 1)

| |
| | | |

(433, 29, 5) (169, 29, 2) (194, 13, 5) (34, 13, 1)
|

...
...

|
...

...
|

...
...

|
...

...

For each m in the Markoff sequence (1.15), we define

µm =
√

9m2 − 4
m

·

5His name is spelled Markov in probability theory.
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Then there is an explicit quadratic form fm(x, y) such that fm(x, 1) = 0 and
there is a root αm of fm for which

lim sup
q∈Z, q→∞

(q‖qαm‖) =
1
µm

,

where ‖ · ‖ denotes the distance too the nearest integer:

‖x‖ = min
m∈Z
|x−m| = min

{
{x} ; 1− {x}

}
.

The sequence of (m, fm, αm, µm) starts as follows,

m 1 2 5 13

fm(x, 1) x2 + x− 1 x2 + 2x− 1 5x2 + 11x− 5 13x2 + 29x− 13

αm [0; 1] [0; 2] [0; 2211] [0; 221111]

µm
√

5
√

8
√

221/5
√

1517/13

The third row gives the continued fraction expansion for αm.

1.3.5 Irrationality of series studied by Liouville and Fredholm

The implication (ii)⇒(i) in lemma 1.6 was used implicitely in § 1.1. We give
here another application.

Several methods are available to investigate the arithmetic nature of numbers
of the form ∑

n≥0

a−n
2

and
∑
n≥0

a−2n (1.16)

where a is a positive integer.
There is apparently a confusion in the litterature between these two series.

The name Fredholm series is often wrongly attributed to the power series∑
n≥0

z2n .

However Fredholm studied rather the series∑
n≥0

zn
2

(see the book [1] by Allouche & Shallit, Notes on chapter 13, page 403 as well
as Shallit’s paper [7]).

The series
∑
n≥0 z

n2
was explicitly quoted by Liouville (see for instance [3]).

We shall come back to this question later (where we discuss Nesterenko’s result
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in 1995 according to which this number is transcendental). Right now we only
prove the irrationality of the numbers (1.16) for a ∈ Z, a ≥ 2 by means of
Lemma 1.6. More generally we replace the sequences (n2)n≥0 and (2n)n≥0 by
more general ones: one requires that they grow and tend to infinity sufficiently
fast.

Lemma 1.17. Let (un)n≥0 be an increasing sequence of positive numbers. As-
sume there exists c > 0 such that, for all sufficiently large n,

un − un−1 ≥ cn.

Let a ∈ Z, a ≥ 2. Then the number

ϑ =
∑
n≥0

a−un

is irrational.

Proof. Let ε > 0. Let N be a sufficiently large integer. Set

qN = auN , pN =
N∑
n=0

auN−un and RN = qNϑ− pN .

Then pN and qN are rational integers, while

RN =
∞∑
k=1

auN−uN+k

is > 0.
By induction on k ≥ 1 one checks

uN+k ≥ uN + ckN + vk where vk := c
k(k − 1)

2
·

Therefore
uN+k − uN − cN ≥ (k − 1)cN + vk ≥ vk

and
0 < RN ≤ a−cN

∑
k≥1

a−vk .

Hence RN tends to 0 as N tends to infinity and Lemma 1.6 shows that ϑ is
irrational.

1.3.6 A further irrationality criterion

Lemma 1.18. Let ϑ be a real number. The following conditions are equivalent
(i) ϑ is irrational.
(ii) For any ε > 0 there exists p/q and r/s in Q such that

p

q
< ϑ <

r

s
, qr − ps = 1
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and
max{qϑ− p ; r − sϑ} < ε.

(iii)There exist infinitely many pairs (p/q, r/s) of rational numbers such that

p

q
< ϑ <

r

s
, qr − ps = 1

and
max{q(qϑ− p) ; s(r − sϑ)} < 1.

Proof. The implications (iii)⇒(ii)⇒(i) are easy. For (i)⇒(iii) we use the argu-
ments in the proof of Lemma 1.9, but we use also an auxiliary result from the
theory of continued fractions.

Since ϑ is irrational, Hurwitz Lemma 1.8 shows that there are infinitely many
p/q such that ∣∣∣∣ϑ− p

q

∣∣∣∣ < 1
2q2
·

We shall use the fact that such a p/q is a so-called best approximation to ϑ: this
means that for any a/b ∈ Q with 1 ≤ b ≤ q and a/b 6= p/q, we have∣∣∣ϑ− a

b

∣∣∣ > ∣∣∣∣ϑ− p

q

∣∣∣∣ .
Assume first p/q < ϑ. Let r/s be defined by qr − ps = 1 and 1 ≤ s < q,

|r| < |p|. We have

0 <
r

s
− ϑ < r

s
− p

q
=

1
qs
≤ 1
s2
·

Next assume p/q > ϑ. In this case rename it r/s and define p/q by qr− ps = 1
and 1 ≤ q < s, |p| < |r|.

Finally repeat the argument in the proof of Lemma 1.9 to get an infinite set
of approximations. Lemma 1.18 follows.

1.4 Irrationality of er and π, following Nesterenko

The proofs given in subsection 1.2 of the irrationality of er for several rational
values of r (namely r ∈ {1/a, 2/a,

√
2/a,
√

3/a ; a ∈ Z, a 6= 0}) are similar:
the idea is to start from the expansion of the exponential function, to truncate
it and to deduce rational approximations to er. In terms of the exponential
function this amounts to approximate ez by a polynomial. The main idea, due
to C. Hermite [4], is to approximate ez by rational functions A(z)/B(z). The
word “approximate” has the following meaning (Hermite-Padé): an analytic
function is well approximated by a rational function A(z)/B(z) (where A and
B are polynomial) if the difference B(z)f(z)− A(z) has a zero at the origin of
high multiplicity.
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When we just truncate the series expansion of the exponential function,
we approximate ez by a polynomial in z with rational coefficients; when we
substitute z = a where a is a positive integer, this polynomial produces a
rational number, but the denominator of this number is quite large (unless
a = ±1). A trick gave the result also for a = ±2, but definitely for a a larger
prime number for instance there is a problem: if we multiply by the denominator
then the “remainder” is by no means small. To produce a sufficiently large gap
in the power expansion of B(z)ez will solve the problem.

Our first goal in this section is to prove the irrationality of er when r is a
non-zero rational number. Next we show how a slight modification implies the
irrationality of π.

1.4.1 Irrationality of er for r ∈ Q

If r = a/b is a rational number such that er is also rational, then e|a| is also
rational, and therefore the irrationality of er for any non-zero rational number r
follows from the irrationality of ea for any positive integer a. We shall approx-
imate the exponential function ez by a rational function A(z)/B(z) and show
that A(a)/B(a) is a good rational approximation to ea, sufficiently good in fact
so that one may use Lemma 1.6.

Write

ez =
∑
k≥0

zk

k!
·

We wish to multiply this series by a polynomial so that the Taylor expansion
at the origin of the product B(z)ez has a large gap: the polynomial preceding
the gap will be A(z), the remainder R(z) = B(z)ez − A(z) will have a zero of
high multiplicity at the origin.

In order to create such a gap, we shall use the differential equation of the
exponential function - hence we introduce derivatives.

We first explain how to produce, from an analytic function whose Taylor
development at the origin is

f(z) =
∑
k≥0

akz
k, (1.19)

another analytic function with one given Taylor coefficient, say the coefficient of
zm, is zero. The coefficient of zm for f is f (m)(0) = am/m!. The same number
am occurs when one computes the Taylor coefficient of zm−1 for the derivative
f ′ of f , it is also the Taylor coefficient of zm in the development of zf ′(z):

(zf ′)(m)(0) =
am

(m− 1)!
·

Hence the coefficient of zm in the Taylor development of zf ′(z) −mf(z) is 0,
which is what we wanted.
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It is the same thing to write

zf ′(z) =
∑
k≥0

kakz
k

so that
zf ′(z)−mf(z) =

∑
k≥0

(k −m)akzk.

Now we want that several consecutive Taylor coefficients cancel. It will be
convenient to introduce derivative operators.

We start with D = d/dz. As usual D2 denotes D ◦D and Dm = Dm−1 ◦D
for m ≥ 2. The derivation D and the multiplication by z do not commute:

D(zf) = f + zD(f),

relation which we write Dz = 1+zD. From this relation it follows that the non-
commutative ring generated by z and D over C is also the ring of polynomials
in D with coefficients in C[z]. In this ring C[z][D] there is an element which
will be very useful for us, namely δ = zd/dz. It satisfies δ(zk) = kzk. To any
polynomial T ∈ C[X] one associate the derivative operator T (δ).

By induction on m one checks δmzk = kmzk for all m ≥ 0. By linearity, one
deduces that if T is a polynomial with complex coefficients, then

T (δ)zk = T (k)zk.

For our function f with the Taylor development (1.19) we have

T (δ)f(z) =
∑
k≥0

akT (k)zk.

Hence if we want a function with a Taylor expansion having 0 as coefficient of
zk, it suffices to consider T (δ)f(z) where T is a polynomial satisfying T (k) = 0.
For instance if n0 and n1 are two non-negative integers and if we take

T (X) = (X − n0 − 1)(X − n0 − 2) · · · (X − n0 − n1),

then the series T (δ)f(z) can be written A(z) +R(z) with

A(z) =
n0∑
k=0

T (k)akzk

and
R(z) =

∑
k≥n0+n1+1

T (k)akzk.

This means that in the Taylor expansion at the origin of T (δ)f(z), all coefficients
of zn0+1, zn0+2, . . . , zn0+n1 are 0.
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